BOARD QUESTION PAPER: MARCH 2020 Mathematics Part - II

Notes:

i. All questions are compulsory.
ii. Use of calculator is not allowed.
iii. The numbers to the right of the questions indicate full marks.
iv. In case of MCQ's [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
v. For every MCQ, the correct alternative (A), (B), (C) or (D) in front of sub-question number is to be written as an answer.
vi. Draw proper figures for answers wherever necessary.
vii. The marks of construction should be clear and distinct. Do not erase them.
viii. Diagram is essential for writing the proof of the theorem.
Q.1. A. Four alternative answers are given for every sub-question. Select the correct alternative and write the alphabet of that answer:
i. Out of the following which is the Pythagorean triplet?
(A) $(1,5,10)$
(B) $(3,4,5)$
(C) $(2,2,2)$
(D) $(5,5,2)$
ii. Two circles of radii 5.5 cm and 3.3 cm respectively touch each other externally. What is the distance between their centres?
(A) 4.4 cm
(B) 2.2 cm
(C) 8.8 cm
(D) 8.9 cm
iii. Distance of point $(-3,4)$ from the origin is \qquad -.
(A) 7
(B) 1
(C) $\quad-5$
(D) 5
iv. Find the volume of a cube of side 3 cm :
(A) $27 \mathrm{~cm}^{3}$
(B) $9 \mathrm{~cm}^{3}$
(C) $81 \mathrm{~cm}^{3}$
(D) $3 \mathrm{~cm}^{3}$
B. Solve the following questions:
i. The ratio of corresponding sides of similar triangles is $3: 5$, then find the ratio of their areas.
ii. Find the diagonal of a square whose side is 10 cm .
iii. $\square A B C D$ is cyclic. If $\angle B=110^{\circ}$, then find measure of $\angle \mathrm{D}$.
iv. Find the slope of the line passing through the points $\mathrm{A}(2,3)$ and $\mathrm{B}(4,7)$.
Q.2. A. Complete and write the following activities (Any two):
i.

In the figure given above, ' O ' is the centre of the circle, seg PS is a tangent segment and S is the point of contact. Line PR is a secant.
If $\mathrm{PQ}=3.6, \mathrm{QR}=6.4$, find PS .
Solution:

$$
\begin{aligned}
\mathrm{PS}^{2} & =\mathrm{PQ} \times \square \quad \ldots(\text { tangent secant segments theorem }) \\
& =\mathrm{PQ} \times(\mathrm{PQ} \times \square) \quad
\end{aligned}
$$

$$
\begin{aligned}
& =3.6 \times(3.6+6.4) \\
& =3.6 \times \square \\
& =36 \\
\therefore \quad \mathrm{PS} & =\square
\end{aligned}
$$

ii. If $\sec \theta=\frac{25}{7}$, find the value of $\tan \theta$.

Solution:

$$
\begin{array}{rlrl}
& & 1+\tan ^{2} \theta & =\sec ^{2} \theta \\
& \therefore & 1+\tan ^{2} \theta & =\left(\frac{25}{7}\right) \\
& \therefore & \tan ^{2} \theta & =\frac{625}{49}-\square \\
& =\frac{625-49}{49} \\
& =\frac{\square}{49} \\
& \therefore & \tan \theta & =\frac{\square}{7}
\end{array}
$$

iii.

In the figure given above, O is the centre of the circle. Using given information complete the following table:

Type of arc	Name of the are	Measure of the arc
Minor arc	\square	\square
Major arc	\square	\square

B. Solve the following sub-questions (Any four):

In $\triangle P Q R, N M \| R Q$. If $P M=15, M Q=10, N R=8$, then find $P N$.
ii.

In $\triangle \mathrm{MNP}, \angle \mathrm{MNP}=90^{\circ}$, seg NQ $\perp \operatorname{seg} \mathrm{MP}$. If $\mathrm{MQ}=9, \mathrm{QP}=4$, then find NQ .
iii.

In the figure given above, M is the centre of the circle and seg KL is a tangent segment. L is a point of contact. If $\mathrm{MK}=12, \mathrm{KL}=6 \sqrt{3}$, then find the radius of the circle.
iv. Find the co-ordinates of midpoint of the segment joining the points $(22,20)$ and $(0,16)$.
v. A person is standing at a distance of 80 metres from a Church and looking at its top. The angle of elevation is of 45°. Find the height of the Church.
Q.3. A. Complete and write the following activities (Any one):
i.

In the given figure, X is any point in the interior of the triangle. Point X is joined to the vertices of triangle. seg $\mathrm{PQ} \|$ seg DE , seg $\mathrm{QR} \|$ seg EF. Complete the activity and prove that $\operatorname{seg} \operatorname{PR} \| \operatorname{seg} \mathrm{DF}$.

Proof:

$$
\begin{aligned}
& \text { In } \triangle \mathrm{XDE}, \\
& \mathrm{PQ} \| \mathrm{DE} \\
\therefore \quad & \frac{\mathrm{XP}}{\mathrm{PD}}=\frac{\square}{\mathrm{QE}}
\end{aligned}
$$

...(Given)
...(Basic proportionality theorem)...(i)
In $\triangle \mathrm{XEF}$, QR \| EF
...(Given)
$\therefore \quad \frac{\mathrm{XQ}}{\square}=\frac{\mathrm{XR}}{\square}$
$\therefore \quad \frac{\mathrm{XP}}{\mathrm{PD}}=\square$
$\therefore \quad$ seg PR $\| \operatorname{seg} \mathrm{DF}$
\square)...(ii)
...[From (i) and (ii)]
...(By converse of basic proportionality theorem)
ii. If $A(6,1), B(8,2), C(9,4)$ and $D(7,3)$ are the vertices of $\square A B C D$, show that $\square A B C D$ is a parallelogram.

Solution:

$$
\begin{array}{ll}
& \text { Slope of line }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\therefore & \text { Slope of line } \mathrm{AB}=\frac{2-1}{8-6}=\square \\
\therefore & \text { Slope of line } \mathrm{BC}=\frac{4-2}{9-8}=\square \\
\therefore & \text { Slope of line } \mathrm{CD}=\frac{3-4}{7-9}=\square \tag{iii}
\end{array}
$$

$\therefore \quad$ Slope of line $\mathrm{DA}=\frac{3-1}{7-6}=\square$
...(iv)
$\therefore \quad$ Slope of line $\mathrm{AB}=\square$...[From (i) and (iii)]
$\therefore \quad$ line $\mathrm{AB}|\mid$ line CD
$\therefore \quad$ Slope of line $\mathrm{BC}=\square \quad \ldots[$ From (ii) and (iv)]
$\therefore \quad$ line BC || line DA
Both the pairs of opposite sides of the quadrilateral are parallel.
$\therefore \quad \square \mathrm{ABCD}$ is a parallelogram.
B. Solve the following sub-questions (Any two):
i. If $\triangle P Q R$, point S is the mid-point of side $Q R$. If $P Q=11, P R=17, P S=13$, find $Q R$.
ii. Prove that, tangent segments drawn from an external point to the circle are congruent.
iii. Draw a circle with radius 4.1 cm . Construct tangents to the circle from a point at a distance 7.3 cm from the centre.
iv. A metal cuboid of measures $16 \mathrm{~cm} \times 11 \mathrm{~cm} \times 10 \mathrm{~cm}$ was melted to make coins. How many coins were made, if the thickness and diameter of each coin was 2 mm and 2 cm respectively? ($\pi=3.14$)
Q.4. Solve the following sub-questions (Any two):
i. In $\triangle A B C, P Q$ is a line segment intersecting $A B$ at P and $A C$ at Q such that seg $P Q \|$ seg $B C$. If $P Q$ divides $\triangle A B C$ into two equal parts having equal areas, find $\frac{B P}{A B}$.
ii. Draw a circle of radius 2.7 cm and draw a chord PQ of length 4.5 cm . Draw tangents at points P and Q without using centre.
iii.

In the figure given above $\square \mathrm{ABCD}$ is a square of side 50 m . Points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are midpoints of side $A B$, side $B C$, side $C D$, side $A D$ respectively. Find area of shaded region.
Q.5. Solve the following sub-questions (Any one):
i. Circles with centres A, B and C touch each other externally. If $A B=3 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}$, $\mathrm{CA}=4 \mathrm{~cm}$, then find the radii of each circle.
ii. If $\sin \theta+\sin ^{2} \theta=1$
show that: $\cos ^{2} \theta+\cos ^{4} \theta=1$

