BOARD QUESTION PAPER: MARCH 2023
 Mathematics Part - II

Time: 2 Hours
Max. Marks: 40
Note:
i. All questions are compulsory.
ii. Use of calculator is not allowed.
iii. The numbers to the right of the questions indicate full marks.
iv. In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
v. For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer.
vi. Draw the proper figures for answers wherever necessary.
vii. The marks of construction should be clear and distinct. Do not erase them.
viii. Diagram is essential for writing the proof of the theorem.
Q.1. (A) Four alternative answers are given for every subquestion. Select the correct alternative and write the alphabet of that answer:

1. If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of triangle:
(A) Obtuse angled triangle
(B) Acute angled triangle
(C) Right angled triangle
(D) Equilateral triangle
2. Chords $A B$ and $C D$ of a circle intersect inside the circle at point E. If $A E=4, E B=10$, $C E=8$, then find $E D$:
(A) 7
(B) 5
(C) 8
(D) 9
3. Co-ordinates of origin are \qquad .
(A) $(0,0)$
(B) $(0,1)$
(C) $(1,0)$
(D) $(1,1)$
4. If radius of the base of cone is 7 cm and height is 24 cm , then find its slant height:
(A) 23 cm
(B) 26 cm
(C) 31 cm
(D) 25 cm
(B) Solve the following sub-questions:
5. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{PQR})}=\frac{16}{25}$, then find $\mathrm{AB}: \mathrm{PQ}$.
6. In $\triangle \mathrm{RST}, \angle \mathrm{S}=90^{\circ}, \angle \mathrm{T}=30^{\circ}$, $\mathrm{RT}=12 \mathrm{~cm}$, then find RS.
7. If radius of a circle is 5 cm , then find the length of longest chord of a circle.
8. Find the distance between the points $\mathrm{O}(0,0)$ and $\mathrm{P}(3,4)$.
Q.2. (A) Complete the following activities (any two):
9.

In the above figure, $\angle \mathrm{L}=35^{\circ}$, find:
i. $\quad \mathrm{m}(\operatorname{arc} \mathrm{MN})$
ii. m(arc MLN)

Solution:
i. $\quad \angle \mathrm{L}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{MN})$...(By inscribed angle theorem)
$\therefore \quad \square=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{MN})$
$\therefore \quad 2 \times 35=\mathrm{m}(\operatorname{arc} \mathrm{MN})$
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{MN})=\square$
ii. $m(\operatorname{arc} M L N)=\square-m(\operatorname{arc} M N) \quad \ldots$ (Definition of measure of arc)

$$
=360^{\circ}-70^{\circ}
$$

$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{MLN})=$ \square
2. Show that, $\cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$

Solution:

L.H.S $=\cot \theta+\tan \theta$
$=\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}$
$=\frac{\square+\square}{\sin \theta \times \cos \theta}$
$=\frac{1}{\sin \theta \times \cos \theta}$

$=\frac{1}{\sin \theta} \times \frac{1}{\square}$

$$
=\operatorname{cosec} \theta \times \sec \theta
$$

L.H.S = R.H.S
$\therefore \quad \cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$
3. Find the surface area of a sphere of radius 7 cm .

Solution:

Surface area of sphere $=4 \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times \square^{2} \\
& =4 \times \frac{22}{7} \times \square \\
& =\square \times 7
\end{aligned}
$$

$\therefore \quad$ Surface area of sphere $=\square$ sq.cm.
(B) Solve the following sub-questions(Any four):
1.

In trapezium ABCD side $\mathrm{AB} \|$ side $\mathrm{PQ} \|$ side $\mathrm{DC} . \mathrm{AP}=15, \mathrm{PD}=12, \mathrm{QC}=14$, find BQ .
2. Find the length of the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm .
3.

In the given figure points $\mathrm{G}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are points of a circle with centre $\mathrm{C}, \angle \mathrm{ECF}=70^{\circ}$, $m(\operatorname{arc} D G F)=200^{\circ}$.
Find:
i. $m(\operatorname{arc} D E) \quad$ ii. $m(\operatorname{arc} D E F)$.
4. Show that points $\mathrm{A}(-1,-1), \mathrm{B}(0,1), \mathrm{C}(1,3)$ are collinear.
5. A person is standing at a distance of 50 m from a temple looking at its top. The angle of elevation is of 45°. Find the height of the temple.

Q.3. (A) Complete the following activities (any one):

1.

In $\triangle \mathrm{PQR}$, seg PM is a median. Angle bisectors of $\angle \mathrm{PMQ}$ and $\angle \mathrm{PMR}$ intersect side PQ and side PR in points X and Y respectively. Prove that $\mathrm{XY} \| \mathrm{QR}$.
Complete the proof by filling in the boxes.

Solution:

In $\triangle \mathrm{PMQ}$,
Ray MX is the bisector of $\angle \mathrm{PMQ}$
$\therefore \quad \frac{\mathrm{MP}}{\mathrm{MQ}}=\frac{\square}{\square}$
....(I) [Theorem of angle bisector]
Similarly, in $\triangle \mathrm{PMR}$, Ray MY is bisector of $\angle \mathrm{PMR}$
$\therefore \quad \frac{\mathrm{MP}}{\mathrm{MR}}=\frac{\square}{\square}$
....(II) [Theorem of angle bisector]
But $\frac{M P}{M Q}=\frac{M P}{M R}$
...(III) [As M is the midpoint of QR]
Hence MQ = MR
$\therefore \quad \frac{\mathrm{PX}}{\square}=\frac{\square}{\mathrm{YR}}$
...[From (I), (II) and (III)]
$\therefore \quad \mathrm{XY} \| \mathrm{QR}$
...[Converse of basic proportionality theorem]
2. Find the co-ordinates of point P where P is the midpoint of a line segment $A B$ with $A(-4,2)$ and $B(6,2)$.
Solution:

Suppose, $(-4,2)=\left(x_{1}, y_{1}\right)$ and $(6,2)=\left(x_{2}, y_{2}\right)$ and co-ordinates of P are (x, y)
$\therefore \quad$ According to midpoint theorem,
$x=\frac{x_{1}+x_{2}}{2}=\frac{\square}{2}+6=\frac{\square}{2}=\square$
$y=\frac{y_{1}+y_{2}}{2}=\frac{2+\square}{2}=\frac{4}{2}=\square$
$\therefore \quad$ Co-ordinates of midpoint P are \qquad
(B) Solve the following sub-questions (any two):

1. In $\triangle A B C$, seg $A P$ is a median. If $B C=18, A B^{2}+A C^{2}=260$, find $A P$.
2. Prove that, "Angles inscribed in the same are congruent".
3. Draw a circle of radius 3.3 cm . Draw a chord PQ of length 6.6 cm . Draw tangents to the circle at points P and Q.
4. The radii of circular ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm . Find its curved surface area. $(\pi=3.14)$

Q.4. Solve the following sub-questions (any two):

1. In $\triangle A B C$, seg $D E \|$ side $B C$. If $2 A(\triangle A D E)=A(\square D B C E)$, find $A B: A D$ and show that $\mathrm{BC}=\sqrt{3} \mathrm{DE}$.
2. $\Delta \mathrm{SHR} \sim \Delta \mathrm{SVU}$. In $\Delta \mathrm{SHR}, \mathrm{SH}=4.5 \mathrm{~cm}, \mathrm{HR}=5.2 \mathrm{~cm}, \mathrm{SR}=5.8 \mathrm{~cm}$ and $\frac{\mathrm{SH}}{\mathrm{SV}}=\frac{3}{5}$, construct $\Delta \mathrm{SVU}$.
3. An ice-cream pot has a right circular cylindrical shape. The radius of the base is 12 cm and height is 7 cm . This pot is completely filled with ice-cream. The entire ice-cream is given to the students in the form of right circular ice-cream cones, having diameter 4 cm and height is 3.5 cm . If each student is given one cone, how many students can be served?
Q.5. Solve the following sub-questions (any one):

A circle touches side $B C$ at point P of the $\triangle A B C$, from out-side of the triangle. Further extended lines $A C$ and $A B$ are tangents to the circle at N and M respectively. Prove that: $A M=\frac{1}{2}$ (Perimeter of $\left.\triangle \mathrm{ABC}\right)$
2. Eliminate θ if $x=r \cos \theta$ and $y=r \sin \theta$.

