1. The order of the differential equation of all circles whose radius is 4 , is
(A) 1
(B) 2
(C) 3
(D) 4
2. It is observed that $25 \%$ of the cases related to child labour reported to the police station are solved. If 6 new cases are reported, then the probability that atleast 5 of them will be solved is
(A) $(1 / 4)^{6}$
(B) $19 / 1024$
(C) $19 / 2048$
(D) $19 / 4096$
3. A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is
(A) $5 / 7$
(B) $1 / 7$
(C) $7 / 15$
(D) $1 / 15$
4. A stone is dropped into a pond. Waves in the form of circles are generated and the radius of outermost ripple increases at the rate of $5 \mathrm{~cm} / \mathrm{sec}$. Then area increased after 2 seconds is
(A) $100 \Pi \mathrm{~cm} 2 / \mathrm{sec}$
(B) $40 \mathrm{~cm} 2 / \mathrm{sec}$
(C) $50 \mathrm{~cm} 2 / \mathrm{sec}$
(D) $25 \mathrm{~cm} 2 / \mathrm{sec}$

5. If $G(3,-5, r)$ is centroid of triangle $A B C$ where $A(7,-8,1), B(p, q, 5)$ and $C$ $(q+1,5 p, 0)$ are vertices of a triangle then values of $p, q, r$ are respectively
(A) $6,5,4$
(B) $-4,5,4$
(C) $-3,4,3$
(D) $-2,3,2$
6. Which of the following equations has no solution ?
(A) $\sec \theta=23$
(B) $\cos \theta=\sqrt{ } 2$
(C) $\tan \theta=2019$
(D) $\sin \theta=-1 / 5$
7. The joint equation of the lines passing through the origin and trisecting the first quadrant is
(A) $\sqrt{ } 3 x^{2}-4 x y+\sqrt{ } 3 y^{2}=0$
(B) $x^{2}+\sqrt{ } 3 x y-y^{2}=0$
(C) $3 x^{2}-y^{2}=0$
(D) $x^{2}-\sqrt{3} x y-y^{2}=0$
8. If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and $8 / 3$ respectively, then the equation of the hyperbola is
(A) $4 x^{2}-9 y^{2}=72$
(B) $4 x^{2}-9 y^{2}=36$
(C) $9 x^{2}-4 y^{2}=72$
(D) $9 x^{2}-4 y^{2}=36$

9. If $f(x)=3 x 3-9 x 2-27 x+15$, then the maximum value of $f(x)$ is
(A) -66
(B) 30
(C) -30
(D) 66
10. The minimum value of $z=10 x+25 y$ subject to $0 \leq x \leq 3,0 \leq y \leq 3, x+y \geq 5$ is
(A) 80
(B) 95
(C) 105
(D) 30


