1. The order of the differential equation of all circles whose radius is 4 , is
(A) 1
(B) 2
(C) 3
(D) 4
2. The intercept on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is $A B$. The equation of the circle with AB as a diameter is
(A) $x^{2}+y^{2}+x+y=0$
(B) $x^{2}+y^{2}-x-y=0$
(C) $x^{2}+y^{2}-3 x+y=0$
(D) $x^{2}+y^{2}+3 x-y=0$
3. Which of the following statements is contingency?
(A) $(\mathrm{p} V \mathrm{q}) \mathrm{V} \sim \mathrm{q}$
(B) $(p \vee q) V \sim p$
(C) $(\mathrm{p} V \mathrm{q}) ~ \Lambda \sim q$
(D) $p \rightarrow(p \vee q)$
4. It is observed that 25% of the cases related to child labour reported to the police station are solved. If 6 new cases are reported, then the probability that atleast 5 of them will be solved is
(A) $(1 / 4)^{6}$
(B) $19 / 1024$
(C) $19 / 2048$
(D) $19 / 4096$
5. A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour is
(A) $5 / 7$
(B) $1 / 7$
(C) $7 / 15$
(D) $1 / 15$
6. If the foot of the perpendicular drawn from the point $(0,0,0)$ to the plane is $(4,-2,-5)$ then the equation of the plane is
(A) $4 x+2 y+5 z=-13$
(B) $4 x-2 y-5 z=45$
(C) $4 x+2 y-5 z=37$
(D) $4 x-2 y+5 z=-5$
7. A stone is dropped into a pond. Waves in the form of circles are generated and the radius of outermost ripple increases at the rate of $5 \mathrm{~cm} / \mathrm{sec}$. Then area increased after 2 seconds is
(A) $100 \Pi \mathrm{~cm} 2 / \mathrm{sec}$
(B) $40 \mathrm{~cm} 2 / \mathrm{sec}$
(C) $50 \mathrm{~cm} 2 / \mathrm{sec}$
(D) $25 \mathrm{~cm} 2 / \mathrm{sec}$
8. If $G(3,-5, r)$ is centroid of triangle $A B C$ where $A(7,-8,1), B(p, q, 5)$ and C ($q+1,5 p, 0$) are vertices of a triangle then values of p, q, r are respectively
(A) $6,5,4$
(B) $-4,5,4$
(C) $-3,4,3$
(D) $-2,3,2$
9. A particle moves so that $x=2+27 t-t^{3}$. The direction of motion reverses after moving a distance of units.
(A) 80
(B) 56
(C) 60
(D) 65
10. Which of the following equations has no solution?
(A) $\sec \theta=23$
(B) $\cos \theta=\sqrt{ } 2$
(C) $\tan \theta=2019$
(D) $\sin \theta=-1 / 5$
11. Using Differentiation, approximate value of $f(x)=x 2-2 x+1$ at $x=2.99$ is (A) 3.96
(B) 9.96
(C) 4.98
(D) 5.98
12. If the sum of an infinite G.P be 9 and sum of first two terms be 5 then their common ratio is
(A) $1 / 3$
(B) 3
(C) $2 / 3$
(D) $3 / 2$
13. if three dice are thrown then the probability that the sum of the numbers on their uppermost faces to be at least 5 is
(A) $1 / 53$
(B) $53 / 54$
(C) $1 / 54$
(D) $52 / 53$
14. The joint equation of the lines passing through the origin and trisecting the first quadrant is
(A) $\sqrt{ } 3 x^{2}-4 x y+\sqrt{ } 3 y^{2}=0$
(B) $x^{2}+\sqrt{ } 3 x y-y^{2}=0$
(C) $3 x^{2}-y^{2}=0$
(D) $x^{2}-\sqrt{ } 3 x y-y^{2}=0$
15. If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and $8 / 3$ respectively, then the equation of the hyperbola is
(A) $4 x^{2}-9 y^{2}=72$
(B) $4 x^{2}-9 y^{2}=36$
(C) $9 x^{2}-4 y^{2}=72$
(D) $9 x^{2}-4 y^{2}=36$
16. The area of the region enclosed between the pair of lines $x y=0$ and the lines $x y+5 x-4 y-20=0$, is
(A) 20 Square Units
(B) $4 / 5$ Square Units
(C) 10 Square Units
(D) 6 Square Units
17. If $f(x)=3 x 3-9 x 2-27 x+15$, then the maximum value of $f(x)$ is
(A) -66
(B) 30
(C) -30
(D) 66
18. If A is non-singular matrix and $(\mathrm{A}+\mathrm{I})(\mathrm{A}-\mathrm{I})=0$ then $\mathrm{A}+\mathrm{A}^{-1}=$
(A) 2 A
(B) 0
(C) I
(D) 3 I
19. The y-intercept of the line passing through $A(6,1)$ and perpendicular to the line $x-2 y=4$ is
(A) 5
(B) 13
(C) -2
(D) 26
20. The minimum value of $z=10 x+25 y$ subject to $0 \leq x \leq 3,0 \leq y \leq 3, x+y \geq 5$ is
(A) 80
(B) 95
(C) 105
(D) 30
21. If A, B, C and D are $(3,7,4),(5,-2,3),(-4,5,6)$ and $(1,2,3)$ respectively, then the volume of the parallelepiped with AB, AC and AD as the co-terminus edges, is cubic units.
(A) 91
(B) 94
(C) 92
(D) 93
22. The maximum value of $z=6 x+8 y$ subject to $x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq$ 0 is \qquad
(A) 72
(B) 42
(C) 96
(D) 24
23. In a binomial distribution, mean is 18 and variance is 12 then $p=$ (A) $2 / 3$
(B) $1 / 3$
(C) $3 / 4$
(D) $1 / 2$
24. The number of principal solutions of $\tan 2 \theta=1$ is
(A) One
(B) Two
(C) Three
(D) Four
25. The maximum value of $f(x)=\log x / x(x \neq 0, x \neq 1)$ is
(A) e
(B) $1 / \mathrm{e}$
(C) e^{2}
(D) $1 / \mathrm{e}^{2}$
26. If lines represented by equation $\mathrm{px}^{2}-\mathrm{qy}^{2}=0$ are distinct then
(A) $\mathrm{pq}>0$
(B) $\mathrm{pq}<0$
(C) $p q=0$
(D) $\mathrm{p}+\mathrm{q}=0$
27. If slopes of lines represented by $K x^{2}+5 x y+y^{2}=0$ differ by 1 then $K=$
(A) 2
(B) 3
(C) 6
(D) 8
28. The particular solution of a differential equation $x d y+2 d y x=0$ when $x=2$, $\mathrm{y}=1$ is
(A) $x y=4$
(B) $x^{2} y=4$
(C) $x y^{2}=4$
(D) $x^{2} y^{2}=4$
29. A boy tosses fair coin 3 times. If he gets ₹ $2 X$ for X heads then his expected gain equals to ₹
(A) 1
(B) $2 / 3$
(C) 3
(D) 4
30. The area of the region bounded by the lines $y=2 x+1, y=3 x+1$ and $x=4$ is
(A) 16 square unit
(B) $121 / 3$ square unit
(C) $121 / 6$ square unit
(D) 8 square unit
