MODEL PAPER - 1
 S.S.C. PUBLIC EXAMINATIONS-2021 MATHEMATICS
 (English Medium)
 (Max. Marks : 100) Time : 2hr.45min.

Class: X

Instructions to students:

1. There are four sections and 33 questions in this paper.
2. Answers should be written in a given answer sheets.
3. There is an internal choice in Section-IV.
4. Write all the questions visible and legibly.
5. 15 Minutes are given for reading the question paper and 2 hr 30 min given for writing answers.

Section-I

Note : 1. Answer all the Questions.

2. Each Question carries 1mark
3. Which of the following point lies in Q_{3} ?
A) $(3,-2)$
B) $(3,2)$
C) $(-3,-2)$
D) $-3,2$)

2 . What are the zeroes of $x^{2}-1$?
A) 1,1
B) $1,-1$
C) $-1,-1$
D) $\sqrt{1}, \sqrt{1}$
3. $\frac{7}{5}$ is the zero of $7 x-5$. Is it True / False? \qquad
4. If $\operatorname{Tan} \theta=\operatorname{Cot} \theta$ then value of acute angle ' θ ' \qquad
5. In $2,4,6,8,10 \ldots$ of A.P., common difference is \qquad
6. Choose the correct answer following

Statement $\mathrm{p}: \operatorname{Sin} 45^{\circ}=\frac{1}{\sqrt{2}}$
Statement $q: \operatorname{Tan} 30^{\circ}=\frac{1}{\sqrt{3}}$
A) p true, q false
B) p false, q true
C) both p, q are true
D) both p, q are false
7. How many number of zeroes exist for the following graph
(A) 2
(B) 0
(C) 3
(D) 4

8. Match the following
(a) Volume of cube
(i) $2 \pi \mathrm{rh}$
(b) Volume of Cuboid
(ii) a^{3}
(c) Lateral Surface area of cylinder
(iii) $l b h$
(A) A-(i), B-(ii), C-(iii)
(B) A-(ii), B-(iii), C-(i)
(C) A-(iii), B-(i), C-(ii)
(D) A-(i), B-(ii), C-(iii)
9. Match the following
(A) value of $\log _{10} 10$
(i) $\frac{3}{2}$
(B) Zero of $2 x-3$
(ii) 3
(C) Find the value of y,
(iii) 1
when $x=2$ in $x+y=5$
(a) A-(i), B-(ii), C-(iii)
(b) A-(i), B-(iii), C-(ii)
(c) A-(iii), B-(i), C-(ii)
(d) A-(ii), B-(iii), C-(i)
10. If $A=\{1,2\}$ and $B=\{3,4\}$ then $A \cup B$ \qquad
11. What is the mind point of line joining $(2,2)$ and $(4,4)$.
12. In Mode $=l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h$ ' l 'represents \qquad
A) lower limit
B) upper limit
C) lower boundery
D) upper boundery

Section - II

Note : 1. Answer all the Questions.

2. Each Question carries 2 Marks.

$$
8 \times 2=16
$$

[Contd... 3rd

3

13. Write all possible subsets of $C=\{x, y, z\}$.
14. Is $2 t-1=2 t+5$ a linear equation in one variable?
15. If $\mathrm{P}(x)=5 x^{7}-6 x^{5}-3 x+8$, find (i) coefficient of x^{5} (ii) degree of $\mathrm{P}(x)$
16. $2,3,5,7,8,10,15 \ldots$ is an arithometic progression? Why?
17. What is the probability for drawing out a 'red king' from a deck of cards?
18. Write the formula to find meadian of a grouped data?
19. Find the coordinate of centroid of a given triangle whose vertices are $(3,-5)$, $(-7,4),(10,-2)$.
20. Rinki obsrved a ball on the ground from the balcony of the first floor of a building at an angle of depression θ. If the height of the first floor of the building is ' x ' meters. Draw the diagram for this data.

Section - III

Note : 1. Answer all the Questions.

2. Each Question carries 4 Marks $8 \times 4=32$

21. Write $2 \log 3+3 \log 5-5 \log 2$ as a single logarithm.
22. The area of rectangular plot $528 \mathrm{~m}^{2}$. The length of plot is one more than twise. It's breadth we used to find length and breadth of plot.
23. If $\mathrm{A}=\{0,2,4\}$, find (i) $\mathrm{A} \cap \phi$ (ii) $\mathrm{A} \cap \mathrm{A}$ (iii) $\mathrm{A} \cup \varphi$. Comment.
24. Find the Quadratic polynomial if the zeroes of it are 2 and $-\frac{1}{3}$ respectively?
25. Prove that the points $A(-7,-3), B(5,10), C(15,8)$ and $D(3,-5)$ taken in order are the vertices of a parallelogram.
26. Find the mode of the given data.

Family size	$1-3$	$3-5$	$5-7$	$7-9$	$9-11$
Number of families	7	8	2	2	1

4

27. Show that $\sqrt{\frac{1+\operatorname{Sin} \mathrm{A}}{1-\operatorname{Sin} \mathrm{A}}}=\operatorname{Sec} \mathrm{A}+\tan \mathrm{A}$
28. A die is thrown once. Find the probability of getting
(i) a Prime Number
(ii) a number lying between 2 and 6
(iii) an odd number
(iv) multiple of 3 .

Section - IV

Note : 1. Answer all the Questions.

2. Each Question carries 8 Marks

3. There is an internal choice for each question
4. $\mathrm{A}=\{x: x$ Set of even Prime $\}$
$\mathrm{B}=\{x: x$ is a Natural number $<12\}$
$\mathrm{C}=\{x: x$ is a multiple of 4 less than or equal to 12$\}$
$\mathrm{D}=\{x: x$ is a factors of 12$\}$
Find (i) $A \cup B$
(ii) $\mathrm{B} \cap \mathrm{C}$
iii) $\mathrm{C}-\mathrm{D}$
iv) $\mathrm{A}-\mathrm{D}$

OR

If $\log \left(\frac{x+y}{3}\right)=\frac{1}{2}(\log x+\log y)$, then find the value of $\frac{x}{y}+\frac{y}{x}$.
30. For which acute angle ' θ '
$\frac{\operatorname{Cos} \theta}{1-\operatorname{Sin} \theta}+\frac{\operatorname{Cos} \theta}{1+\operatorname{Sin} \theta}=4$ is true $?$

Prove that $(\operatorname{Sin} \mathrm{A}+\operatorname{Cosec} \mathrm{A})^{2}+(\operatorname{Cos} \mathrm{A}+\operatorname{Sec} \mathrm{A})^{2}=7+\operatorname{Tan}^{2} \mathrm{~A}+\operatorname{Cot}^{2} \mathrm{~A}$
31. The mean pocket allowance is ₹ $18 /$-. Find the missing frequences.

Daily pocket allowance	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
Number of Children	7	6	9	13	f	5	4

OR
Find the co-ordinates of the points of tri-section of the line segment joining $(4,-1)$ and $(-2,-3)$.
32. State and prove Pythagoras Theorem.

OR

Check whether the following are the Quadratic equation or not.
Justify your answer.
(i) $(x-2)^{2}+1=2 x-3$
(ii) $x(x+1)+8=(x+2)(x-2)$
(iii) $x(2 x+3)=x^{2}+1$
(iv) $(x+2)^{3}=x^{3}-4$
33. Draw the graph of $P(x)=x^{2}-x-12$ and find the zeroes. Justify your answer.

OR
Draw a circle of radius 6 cm . From a point 10 cm away from its centre construct the pair of tangents to the circle and measure their lengths. Verify by using pythogeras theorem.

Note:- (1) Academic Standards are slightly deviated for this academic year due to Covid-19.
(2) Unit weightage is considered based on alternate academic calender.

