## JEE Main Session 2 Mathematics Exam: Model 2

1. If a die is rolled until 2 is obtained, then what is the probability that 2 is obtained on an evennumbered toss?
2. A GP has 64 terms such that $\left(\mathrm{S}_{\mathrm{n}}\right)_{\text {total }}=7\left(\mathrm{~S}_{\mathrm{n}}\right)_{\text {odd. }}$. Find the common ratio r .
3. What is the rank of the word GTWENTY in the dictionary?
4. $\left(\mathrm{C}_{1}{ }^{11} / 2\right)+\left(\mathrm{C}_{2}{ }^{11} / 3\right)+\ldots+\left(\mathrm{C}_{9}{ }^{11} / 10\right)=\mathrm{m} / \mathrm{n}$. Find $\mathrm{m}+\mathrm{n}$.
5. If $4 \cos \theta+5 \sin \theta=1$, then find the number of all positive values of $\tan \theta$ where $\theta \in(-\pi / 2, \pi / 2)$.
6. If the given data $60,60,44,58,68, \alpha, \beta, 56$ has a mean of 58 and a variance of 66.2 , then find $\alpha^{2}+\beta^{2}$.
7. If $|z+1|=\alpha z+\beta(i+1)$ and $z=(1 / 2)-2 i$, then find $\alpha+\beta$.
8. In an increasing arithmetic progression $a_{1}, a_{2}, \ldots, a_{n}$ if $a_{6}=2$ and the product of $a_{1}, a_{5}$ and $a_{4}$ is greatest, then the value of d is equal to?
9. If relation $R$ : (a, b) $R(c, d)$ is only if ad $-b c$ is divisible by $5,(a, b, c, d \in Z)$ then $R$ is:
i. Reflexive
ii. Symmetric, Reflexive but not Transitive
iii. Reflexive, Transitive but not Symmetric
iv. Equivalence Relation
10. Find the area under the curve $x^{2}+y^{2}=169$ and below the line $5 x-y=13$.
11. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero vectors and b and c are non-collinear vectors. $\mathrm{a}+5 \mathrm{~b}$ is collinear with c and b +6 c is collinear with a . If $\mathrm{a}+\alpha \mathrm{b}+\beta \mathrm{c}=0$, then $\alpha+\beta=$ ?
12. If the foot of the perpendicular from $(1,2,3)$ to the line $(x+1) / 2=(y-2) / 5=(z-4) / 1$ is $(\alpha, \beta$, $\gamma$ ), then find $\alpha+\beta+\gamma$.
13. In an arithmetic progression, if the sum of 20 terms is 790 and the sum of 10 terms is 145 , then $\mathrm{S}_{15}-\mathrm{S}_{5}=$ ?
14. Find the value of the maximum area possible (in sq.units) of $\triangle A B C$ with vertices $A(0,0), B(x$, $y)$ and $C(-x, y)$ such that $y=-2 x^{2}+54 x$.
15. What is the range of $r$ for which circles $(x+1)^{2}+(y+2)^{2}=r^{2}$ and $x^{2}+y^{2}-4 x-4 y+4=0$ coincide at two distinct points.
