

JEE Main Session 2 Mathematics Exam: Model 2

- 1. If a die is rolled until 2 is obtained, then what is the probability that 2 is obtained on an evennumbered toss?
- 2. A GP has 64 terms such that $(S_n)_{total} = 7(S_n)_{odd}$. Find the common ratio r.
- 3. What is the rank of the word GTWENTY in the dictionary?
- 4. $(C_1^{11}/2) + (C_2^{11}/3) + ... + (C_9^{11}/10) = m/n$. Find m + n.
- 5. If $4\cos\theta + 5\sin\theta = 1$, then find the number of all positive values of $\tan\theta$ where $\theta \in (-\pi/2, \pi/2)$.
- 6. If the given data 60, 60, 44, 58, 68, α , β , 56 has a mean of 58 and a variance of 66.2, then find $\alpha^2 + \beta^2$.
- 7. If $|z+1| = \alpha z + \beta$ (i+1) and z = (1/2) 2i, then find $\alpha + \beta$.
- 8. In an increasing arithmetic progression a_1 , a_2 ,..., a_n if $a_6 = 2$ and the product of a_1 , a_5 and a_4 is greatest, then the value of d is equal to?
- 9. If relation R : (a, b) R (c, d) is only if ad bc is divisible by 5, (a, b, c, $d \in Z$) then R is: i. Reflexive
 - ii. Symmetric, Reflexive but not Transitive
 - iii. Reflexive, Transitive but not Symmetric
 - iv. Equivalence Relation
- 10. Find the area under the curve $x^2 + y^2 = 169$ and below the line 5x y = 13.
- 11. a, b, c are non-zero vectors and b and c are non-collinear vectors. a +5b is collinear with c and b +6c is collinear with a. If $a + \alpha b + \beta c = 0$, then $\alpha + \beta = ?$
- 12. If the foot of the perpendicular from (1, 2, 3) to the line (x + 1)/2 = (y 2)/5 = (z 4)/1 is (α, β, β) γ), then find $\alpha + \beta + \gamma$.
- 13. In an arithmetic progression, if the sum of 20 terms is 790 and the sum of 10 terms is 145, then $S_{15} - S_5 = ?$
- 14. Find the value of the maximum area possible (in sq.units) of \triangle ABC with vertices A(0, 0), B(x, y) and C(-x, y) such that $y = -2x^2 + 54x$.
- 15. What is the range of r for which circles $(x + 1)^2 + (y + 2)^2 = r^2$ and $x^2 + y^2 4x 4y + 4 = 0$ coincide at two distinct points.