JEE Main Session 2 Mathematics Exam: Model 4

1. Find the solution of the differential equation $y d y / d x=x\left(\log _{e} x-\log _{e} y+1\right), x>0, y>0$ and passes through $(e, 1)$.
2. $f(x)=(4 x+3) /(6 x-4)$ and $g(x)=f(f(x))$, then find $g(g(g(g(x))))$.
3. $A=\{1,2,3,4\}, R=\{(1,2),(2,3),(2,4)\}, R \subseteq S$ and S is an equivalence relation, then the minimum number of elements to be added to R is n . Find the value of n .
4. ABCD is a parallelogram where $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$, and $\mathrm{D}(3,2)$ and $\mathrm{AB}=\sqrt{ } 10$. Find the value of $2(\alpha+\beta+\gamma+\delta)$.
5. The distance of the point $\mathrm{Q}(0,2,-2)$ from the line passing through the point $\mathrm{P}(5,-4,3)$ and perpendicular to the line $r=(-3 i+2 k)+\lambda(2 i+3 j+5 k), \lambda \in R$ and $r=(i-2 j+k)+\mu(-i+3 j+$ $2 \mathrm{k}), \mu \in \mathrm{R}$ is?
6. Let S be the set of positive integral value of a for which $\left[\left(a x^{2}+2(a+1) x+9 a+4\right) /\left(x^{2}+8 x+32\right)\right]<0 \forall x \in R$.
Find the number of elements in S.
7. For $\alpha, \beta, \gamma \neq 0$, if $\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\pi$ and $(\alpha+\beta+\gamma) *(\alpha-\gamma+\beta)=3 \alpha \beta$, then find the value of γ.
8. If $|\mathrm{a}|=1,|\mathrm{~b}|=4$ and $\mathrm{a} \cdot \mathrm{b}=2$. Also, $\mathrm{c}=(3 \mathrm{a} \times \mathrm{b})-\mathrm{b}$ and α is the angle between b and c , then what is the value of $192 \sin ^{2} \alpha$?
9. If the system of linear equation $x-2 y+z=-4,2 x+\alpha y+32=5 \& 3 x-y+\beta z=3$ has infinitely many solutions then find the value of $12 \alpha+13 \beta$.
10. If 3 , a, b, c are in A.P. and $3,(a-1),(b+1)$ are in G.P., then find the arithmetic mean of a, b and c.
11. If $\mathrm{AP}_{1}=3,7,11, \ldots, 403$ and $\mathrm{AP}_{2}=2,5,8, \ldots, 401$. Find the sum of common terms of $A P_{1}$ and AP_{2}.
12. If $(t+1) d x=\left(2 x+(t+1)^{3}\right) d t$ and $x(0)=2$, then $x(1)=$?
13. Five people are distributed in four identical rooms. A room can also contain zero people. Find the number of ways to distribute them.
14. If $5 f(x)+4 f(1 / x)=x^{2}-4$ and $y=9 f(x) * x^{2}$

If y is strictly increasing, then find the interval of x.
15. If the hyperbola $x^{2}-y^{2} \operatorname{cosec}^{2} \theta=5$ and ellipse $x^{2} \operatorname{cosec}^{2} \theta+y^{2}=5$ has eccentricity e_{H} and e_{E} respectively and $e_{H}=\sqrt{7} \mathrm{e}_{\mathrm{E}}$, then find the value of θ.

