GROUP A

1. Let $A_n = ((a_{ij}))$ be the $n \times n$ matrix defined by

$$a_{ij} = \begin{cases} 0 & \text{if } |i-j| > 1, \\ 1 & \text{if } |i-j| = 1, \\ 2 & \text{if } i = j. \end{cases}$$

Find the determinant of A_n for $n \ge 1$.

- 2. Consider a random permutation of the eight numbers 1, 2, ..., 8. Compute the probability that no two adjacent numbers in this permutation have a product which is odd. Give justification for your computations.
- 3. Identify, with justification, all cumulative distribution functions F that satisfy $F(x) = F(x^{2023})$ for every $x \in \mathbb{R}$.

GROUP B

- 4. A six-faced fair die is rolled repeatedly till 1 appears. Let X be the total number of rolls and Y be the number of times 6 appeared in these X rolls.
 - (a) Find E[Y|X = x].
 - (b) Find E[Y].

5. Suppose X_1, \ldots, X_n $(n \ge 2)$ are independent and identically distributed observations from a distribution having probability density function

$$f_{\theta}(x) = \begin{cases} e^{-(x-\theta)} & \text{if } x \ge \theta, \\ 0 & \text{if } x < \theta, \end{cases}$$

where $\theta \in \mathbb{R}$. Let

$$\psi(\theta) = \int_1^\infty f_\theta(x) dx.$$

Define $\widehat{\theta}_n = \min\{X_1, \ldots, X_n\}$. Consider $\psi(\widehat{\theta}_n)$ as an estimator of $\psi(\theta)$ and let $B_n(\theta)$ denote the associated bias.

- (a) Show that $B_n(\theta) > 0$ for every $\theta < 1$ and $B_n(\theta) = 0$ for every $\theta \ge 1$.
- (b) Show that $\lim_{n \to \infty} B_n(\theta) = 0$ for every $\theta < 1$.
- 6. Suppose that two observations X_1 and X_2 are drawn at random from a distribution with the following probability density function

$$f_{\theta}(x) = \begin{cases} \frac{1}{2\theta} & \text{if } 0 \le x \le \theta \text{ or } 2\theta \le x \le 3\theta, \\ \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$. Determine the maximum likelihood estimator of θ for each of the following observed values of X_1 and X_2 .

(a) $X_1 = 7$ and $X_2 = 9$.

(b)
$$X_1 = 4$$
 and $X_2 = 9$

(c) $X_1 = 5$ and $X_2 = 9$.

7. Mr. X wants to compare five different varieties of wheat. He has access to a piece of land which has been divided into 25 smaller plots as shown in the figure below.

Mr. X has asked for your help in his venture.

- (a) Give an allocation of the wheat varieties to the plots so that you are able to compare them. Justify your allocation rule. Clearly state all the assumptions you make.
- (b) Once the crop is harvested, how would you analyze the data and compare the different varieties of wheat?

- 8. Let X_1, \ldots, X_n be independent and identically distributed Bernoulli(θ) random variables where $\theta \in (0, 1)$. The maximum likelihood estimator of θ is the sample mean \overline{X}_n . However, a statistician feels that the sample size n is too small, and decides to increase the sample size. In order to do so, he records the observed values of the data points, $\{x_1, \ldots, x_n\}$, and then selects a random sample of size m = kn with replacement from $\{x_1, \ldots, x_n\}$, where k is a positive integer. The values in the observed sample are recorded as $\{Y_1, \ldots, Y_m\}$. The statistician proposes the new estimator $T = \frac{1}{2}(\overline{Y}_m + \overline{X}_n)$, where \overline{Y}_m is the sample mean of Y_1, \ldots, Y_m .
 - (a) Show that T is unbiased for θ .
 - (b) Is T a better estimator of θ than \overline{X}_n ? Justify your answer.

9. To test whether the heights of siblings are correlated, a researcher devised the following plan: She identified a random sample of *n* families with at least two adult male children. For the *i*th family, suppose that X_i and Y_i are the heights of the first and second male child, respectively. Assume that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are independent bivariate normal random vectors with parameters $(\mu, \mu, \sigma^2, \sigma^2, \rho)$, where μ and σ^2 are known from previous studies. She is interested in testing the null hypothesis $H_0: \rho = 0$ against the alternative $H_1: \rho = 0.5$.

Unfortunately, due to a mistake in the questionnaire, she was only able to observe (U_i, V_i) for each *i*, where $U_i = \max(X_i, Y_i)$ and $V_i = \min(X_i, Y_i)$.

- (a) Based on the observed sample, obtain the test statistic corresponding to the most powerful test of H_0 against H_1 .
- (b) Find a critical value so that the size of the test converges to 0.05 as $n \to \infty$.