CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. If EMF of Hydrogen electrode at 25°C is zero in pure water then pressure of H_2 in bar

(1) 10 ⁻¹⁴	(2)	10 ⁻⁷
-----------------------	-----	------------------

(3) 1 (4) 0.5

Answer (1)

Sol.
$$E_{SHE} = -\frac{0.0591}{2} \log \frac{P_{H_2}}{\left[H^+\right]^2} = 0$$

 $\Rightarrow P_{H_2} = \left[H^+\right]^2$
 $P_{H_2} = \left(10^{-7}\right)^2$

= 10⁻¹⁴ bar

2. For which of the following element only one oxidation state is possible

(2)	Co
	(2)

(3) Ni (4) Fe

Answer (1)

Sol. Only +3 oxidation state is possible for Sc

For other options, more than one oxidation states are possible, correct answer is (1)

3. Among the following, decreasing order of basic strength will be

Answer (2)

Acidic strength:

 $HCOOH > CH_3COOH > H_2O > ROH > H_2$

Basic strength:

 $HCOO^- < CH_3COO^- < OH^- < RO^- < H^-$

4. We are given with the following graph between P and T $\,$

Choose the correct option

(1) $\rho_1 > \rho_2 > \rho_3$ (2) $\rho_1 < \rho_2 < \rho_3$

(4) $\rho_2 > \rho_1 > \rho_3$

(3)
$$\rho_1 = \rho_2 = \rho_3$$

Answer (1)

Sol. $\rho = \frac{P \times MW}{RT}$

$$P = \frac{\rho. R. T}{MW}$$
$$P = \left(\frac{\rho. R}{MW}\right). T$$

Slope =
$$\frac{\rho.R}{MW}$$

Slope $\alpha \rho$ (density)

$$\Rightarrow \rho_1 > \rho_2 > \rho_3$$

 \Rightarrow Option (1) is correct

5. Which of the following have maximum dipole moment?

(1) NH₃ (2) PF₅

(3) NF₃ (4) PCl₅

Answer (1)

Sol.

NH₃ has greater dipole moment than NF₃

Answer (2)

- Sol. This is an example of Clemmensen reduction reaction. In this reaction carbonyl group is reduced to methylene group.
- 7. Which of the following is the correct order of first ionization enthalpy?
 - (1) Be < B < O < F < N
 - (2) B < Be < O < N < F
 - (3) B < Be < N < F < O
 - (4) Be < B < N < O < F

Answer (2)

TWO YEAR CLASSROOM PROGRAM

se sheet and NTA answer key

As per stude

Sol. Be has more value of first ionization enthalpy than B due to fully filled configuration and N has more value of first ionization enthalpy than O due to half filled configuration

The correct order is B < Be < O < N < F

8. Statement-1 : Aldol condensation is caused by acidity of α hydrogen

Statement-2 : Cross aldol is not possible between

- (1) Both statement-1 and statement-2 are correct
- (2) Both statement-1 and statement-2 are incorrect
- (3) Statement-1 is correct but statement-2 is incorrect
- (4) Statement-1 is incorrect but statement-2 is correct

Answer (3)

- Sol. Aldol reaction is given by those carbonyl compounds which have at least one α hydrogen atom because a-hydrogen of carbonyl compounds is acidic. Benzaldehyde and acetaldehyde will form cross aldol because acetaldehyde has a-hydrogen atom.
- 9. Select the correct structure of L-glucose.

2022

- 10. Decreasing order of the field strength of the following ligands will be:

Answer (1)

- **Sol.** $CO > CN > H_2O > CI$
- 11. Calculate the molarity of NaCl solution, if 5.85 gm of NaCl is dissolved in 500 ml of solution.
 - (1) 0.1 M (2) 0.2 M (3) 0.32 M (4) 0.4 M

Answer (2)

Sol. Molarity = $\frac{\text{Number of moles of solute}}{\text{Volume of solution (in L)}}$

$$=\frac{5.85\times1000}{58.5\times500}=0.1\times2=0.2\,\text{M}$$

- 12. Which of the following does not give Lassaigne's test?
 - (1) Urea(2) Azobenzene(3) Hydrazine(4) Phenylhydrazine

Answer (3)

- Sol. Hydrazine (NH₂ NH₂) does not contain carbon. On fusion with sodium metal, it cannot form NaCN. So hydrazine does not show Lassaigne's test.
- 13. Among the following, species that have one unpaired e^{Θ} ?

Unpaired e[⊖]

(1) CN^{\ominus} (2) O_2^{2-} (3) O_2^+ (4) NO^{\ominus}

Answer (3)

Sol.

CN^{\ominus}	$ ightarrow$ 14e $^{\ominus}$ $ ightarrow$ zero	
O ₂ ^{2–}	\rightarrow 18e $^{\ominus} \rightarrow$ zero	
O_2^+	$ ightarrow$ 15e $^{ m \ominus}$ $ ightarrow$ one	
NO^{\ominus}	\rightarrow 16e $^{\ominus} \rightarrow$ two	

14. For a given reaction

$$(P) \xrightarrow{CH_2 - CH_2 - Br} \xrightarrow{\text{alc. KOH}} A \xrightarrow{HBr} B$$

Relation between the molecules P and B are:

- (1) Enantiomer (2) Diastereomers
- (3) Positional isomers (4) Functional isomers

Answer (3)

Sol. Positional isomers.

- 15. From the given data, find enthalpy of hydrogenation of ethene in kJ/mol
 - (a) B.E. of C C = 350 kJ/mol
 - (b) B.E. of C = C = 600 kJ/mol
 - (c) B.E. of H H = 400 kJ/mol
 - (d) B.E. of C H = 410 kJ/mol
 - (1) -170 (2) -580

Answer (1)

 Find out wavelength of a photon having frequency equal to 900 sec⁻¹.

(1) 3.33 × 10⁵ m	(2) 3.33 × 10 ⁵ cm
(3) 3.33 × 10 ⁷ m	(4) 3.33 × 10 ⁴ m

Answer (1)

JEE (Main)-2024 : Phase-2 (04-04-2024)-Morning

JEE (Main)-2024 : Phase-2 (04-04-2024)-Morning

Sol.
$$v = \frac{C}{\lambda}$$

 $\lambda = \frac{C}{v}$
 $\lambda = \frac{3 \times 10^8 \text{ m sec}^{-1}}{900 \text{ sec}^{-1}}$
 $= \frac{3 \times 10^8}{900}$
 $= \frac{3 \times 10^6}{9}$

$$=\frac{1}{3}\times 10^6$$

$$= 0.333 \times 10^{6}$$

- Why NH₄Cl is added before NH₄OH for the ppt. of Fe³⁺ ions?
 - (1) To decrease OH⁻ ion concentration
 - (2) To increase Cl⁻ ion concentration
 - (3) To increase NH_4^+ ion concentration
 - (4) To decrease H⁺ ion concentration

Answer (1)

Sol. $NH_4OH \Longrightarrow NH_4^+ + OH^-$

 $NH_4CI \Longrightarrow NH_4^+ + CI^-$

Solid NH₄Cl is added to NH₄OH solution to decrease the OH⁻ ion concentration due to common ion effect.

 Consider the following sequence of reactions and identify the unknown reagents (A) and (B) respectively.

$$CH_{3} - CH_{2} - CH_{2} \xrightarrow{(A)} (P) \xrightarrow{(B)}$$

$$Br$$

$$CH_{3} - CH - CH_{3} \leftarrow$$

$$I$$

$$Br$$

$$(Major)$$

- (B) :HBr, CH₃COOH
- (2) (A) : Dil. aq NaOH at 20°C(B) : Br₂, CHCl₃
- (3) (A) : Alc. NaOH at 80°C
 - (B) : HBr, CH₃COOH
- (4) (A) : Alc. NaOH at 80°C(B) : Br₂, CHCI₃

Sol.
$$CH_3 - CH_2 - CH_2 \xrightarrow{Alc. NaOH} CH_3 - CH = CH_2 \xrightarrow[P]{Br} CH_3 - CH = CH_2 \xrightarrow[P]{Br} CH_3 - CH - CH_3 \xrightarrow[HBr+]{HBr+} CH_3 - CH - CH_3 \xrightarrow[HBr+]{CH_3COOH} Br (Major)}$$

19. Match the following

(2) (i)
$$\rightarrow$$
 (a), (ii) \rightarrow (b), (iii) \rightarrow (c), (iv) \rightarrow (d)
(3) (i) \rightarrow (c) (ii) \rightarrow (b) (iii) \rightarrow (a) (iv) \rightarrow (d)

(3) (i)
$$\rightarrow$$
 (c), (ii) \rightarrow (b), (iii) \rightarrow (a), (iv) \rightarrow (d)
(4) (i) \rightarrow (d) (iii) \rightarrow (c) (iii) \rightarrow (a) (iv) \rightarrow (b)

(4) (1)
$$\rightarrow$$
 (0), (11) \rightarrow (C), (111) \rightarrow (a), (IV) \rightarrow (D)

Answer (1)

Sol. (i) \rightarrow (b), (ii) \rightarrow (a), (iii) \rightarrow (c), (iv) \rightarrow (d)

20. Which of the following is not possible major product?

(2)
$$CH_3 - (CH_2)_2 - NH_2 \xrightarrow{NaNO_2} CH_3 (CH_2)_2 - NO_2 + N_2$$

Answer (2)

Sol. $CH_3 - CH_2 - CH_2 - NH_2$ $V_{Z} = V_{Z}$ $V_{Z} = V_{Z}$ OH $CH_3 - CH - CH_3 + N_2$ (Major)

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. How many of the following compounds are *sp*³ hybridised?

CIO₃, CIO₂, NH₃, NO₂

Answer (3)

22. Total number of structural isomers possible for a compound with molecular formula C₇H₁₆ are:

Answer (5)

- **Sol.** C_7H_{16} has DoU = 0
 - (i) CH_3 — CH_2 — CH_2 — CH_2 — CH_2 — CH_2 — CH_3 (ii) CH_3 —CH— CH_2 — CH_2 — CH_2 — CH_3 I CH_3

JEE (Main)-2024 : Phase-2 (04-04-2024)-Morning

23. The de-Broglie wavelength of an electron in 4th orbit of hydrogen atom is πa_0 (a_0 = Bohr radius).

Answer (8)

Sol. ::
$$\lambda_{de-Broglie} = \frac{2\pi r}{n} = \frac{2\pi}{n} \times 0.529 \frac{n^2}{z} \text{ Å}$$

or, $\lambda_{de-Broglie} = 2\pi \times n \times a_0 \text{ Å}$

 $= 2\pi \times 4 \times a_0 \text{ Å}$

= 8πa₀ Å

24. 50 mL of KMnO₄ solution is used for titration with 20 mL of 2M oxalic acid solution in Acidic medium. The molarity of KMnO₄ solution is $x \times 10^{-2}$ M. The value of x is

Answer (32)

JEE (Main)-2024 : Phase-2 (04-04-2024)-Morning

Sol.
$$\operatorname{MnO}_{4}^{\ominus}(\operatorname{aq}) + \operatorname{C}_{2}\operatorname{O}_{4}^{2-}(\operatorname{aq}) \xrightarrow{H^{+}} \operatorname{Mn}^{2+} + \operatorname{CO}_{2}^{\uparrow}$$
$$5 \times \operatorname{M}_{\mathsf{KMNO}_{4}} \times 50 = 2 \times 20 \times 2$$
$$\operatorname{M}_{\mathsf{KMnO}_{4}} = \frac{8}{25} = 32 \times 10^{-2} \operatorname{M}$$
$$x = 32$$

25. A solution having non-volatile solute in water shows elevation in boiling point of 2°C. Find out vapour pressure of solution (in mm Hg) (Nearest integer) Vapour pressure of pure water = 760 mm Hg K_b of water = 0.52 K.kg mole⁻¹

Answer (711)

Sol. $\Delta T_b = (K_b) (m)$ 2 = (0.52) (m)m = 3.846

$$X_{Solute} = \frac{m}{m + 55.5} = 0.0648$$

$$\frac{760 - X}{760} = 0.0648$$

 \Rightarrow P_{solution} = 710.74 mm Hg ≈ 711 mm Hg

26. $MnO_2 + KOH + O_2 \longrightarrow A$ 'A' disproportionate into 'B' and 'C'. Find the sum of magnetic moment (spin only) (in B.M.) of B and C (Nearest integer)

Answer (4)

Sol.
$$2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O_{(A)}$$

 $+4H^+ \xrightarrow{\text{Disproportionation}} 2MnO_4^- + MnO_2 + 2H_2O_2$ 3MnO₄² (A)

B and C are MnO₄⁻ and MnO₂

Mn in MnO₂ has +4 oxidation state hence it has $(n-1)d^3 ns^0$ electronic configuration unpaired e = 3

Mag. moment : 3.87 B.M. by $\sqrt{n(n+2)}$

 $KMnO_4/MnO_4^-$ is diamagnetic hence magnetic moment = 0 because it has no unpaired electron. Hence, sum of mag. moment = 3.87 B.M. Nearest integer = 4

27. How many of the following coordination compounds have even number of unpaired electrons? $[V(H_2O)_6]^{2+}$ $[Fe(H_2O)_6]^{2+}$ $[Cu(H_2O)_6]^{2+}$ $[Ni(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{2+}$ Answer (3)

Sol. $[V(H_2O)_6]^{2+} \Rightarrow d^2sp^3 \Rightarrow n = 3$ $[Fe(H_2O)_6]^{2+} \Rightarrow sp^3d^2 \Rightarrow n = 4$ $[Cu(H_2O)_6]^{2+} \Rightarrow sp^3 d^2 \Rightarrow n = 1$ $[Ni(H_2O)_6]^{2+} \Rightarrow sp^3d^2 \Rightarrow n = 2$ $[Cr(H_2O)_6]^{2+} \Rightarrow sp^3 d^2 \Rightarrow n = 4$

28. Consider the following reaction sequence :

$$A \xrightarrow{k_1} B \xrightarrow{k_3} C$$

Overall
$$k = \frac{k_1 k_2}{k_3}$$

if $E_{a_1} = 300 \text{ kJ/mole}$

$$E_{a_2} = 200 \text{ kJ/mole}$$

Overall, (E_a)_{eff} = 400 kJ/mole Find out E_{a2} (in kJ/mole)

Answer (100)

Sol.
$$(E_a)_{eff} = E_{a_1} + E_{a_2} - E_{a_3}$$

400 = 300 + 200 - E_{a_3}
 $E_{a_3} = 100 \text{ kJ/mole}$

29. x g of ethylamine on reaction with NaNO₂ and HCl, produces 2.24 L of N2(g) at NTP. The value of 2x will be

Answer (9)

Sol. $NaNO_2 + HCI \longrightarrow NaCI + HNO_2$

$$C_2H_5NH_2 + HNO_2 \longrightarrow C_2H_5OH + N_2 \uparrow + H_2O$$
Mole of N₂(g) produced = $\frac{2.24}{22.4} = 0.1$ mol
So, mole of C₂H₅NH₂ used = 0.1 mol
Mass of C₂H₅NH₂ = 45 × 0.1 = 4.5 g
So, 2x = 2 × 4.5
= 9
30.

Aakashians Conquer JEE (Main) 2024 SESSION-1

