CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If EMF of Hydrogen electrode at $25^{\circ} \mathrm{C}$ is zero in pure water then pressure of H_{2} in bar
(1) 10^{-14}
(2) 10^{-7}
(3) 1
(4) 0.5

Answer (1)
Sol. $E_{\text {SHE }}=-\frac{0.0591}{2} \log \frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}}=0$

$$
\begin{aligned}
\Rightarrow & \mathrm{P}_{\mathrm{H}_{2}}=\left[\mathrm{H}^{+}\right]^{2} \\
& \mathrm{P}_{\mathrm{H}_{2}}=\left(10^{-7}\right)^{2} \\
= & 10^{-14} \mathrm{bar}
\end{aligned}
$$

2. For which of the following element only one oxidation state is possible
(1) Sc
(2) Co
(3) Ni
(4) Fe

Answer (1)
Sol. Only +3 oxidation state is possible for Sc
For other options, more than one oxidation states are possible, correct answer is (1)
3. Among the following, decreasing order of basic strength will be
$\mathrm{OH}^{-}, \mathrm{H}^{-}, \mathrm{HCOO}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{OR}$
(I) (II) (III) (IV) (V)
(1) II $>$ V $>$ III $>$ I $>$ IV
(2) II $>$ V $>$ I $>$ IV $>$ III
(3) III $>$ IV $>$ I $>$ V $>$ II
(4) V $>$ I $>$ IV $>$ II $>$ III

Answer (2)

Sol. Basic strength $\propto \frac{1}{\text { Strength of conjugate acid }}$
Acidic strength:
$\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{ROH}>\mathrm{H}_{2}$
Basic strength:
$\mathrm{HCOO}^{-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{OH}^{-}<\mathrm{RO}^{-}<\mathrm{H}^{-}$
4. We are given with the following graph between P and T

Choose the correct option
(1) $\rho_{1}>\rho_{2}>\rho_{3}$
(2) $\rho_{1}<\rho_{2}<\rho_{3}$
(3) $\rho_{1}=\rho_{2}=\rho_{3}$
(4) $\rho_{2}>\rho_{1}>\rho_{3}$

Answer (1)
Sol. $\rho=\frac{P \times M W}{R T}$
$P=\frac{\rho . R . T}{M W}$
$P=\left(\frac{\rho \cdot R}{M W}\right) \cdot T$
Slope $=\frac{\rho \cdot R}{M W}$
Slope $\alpha \rho$ (density)
$\Rightarrow \rho_{1}>\rho_{2}>\rho_{3}$
\Rightarrow Option (1) is correct
5. Which of the following have maximum dipole moment?
(1) NH_{3}
(2) PF_{5}
(3) NF_{3}
(4) PCl_{5}

Answer (1)

RISHIS SHUKLA
two Year classroom program

Sol.

NH_{3} has greater dipole moment than NF_{3}
6.

(1)

(2)

(3)

(4)

Answer (2)

Sol. This is an example of Clemmensen reduction reaction. In this reaction carbonyl group is reduced to methylene group.
7. Which of the following is the correct order of first ionization enthalpy?
(1) $\mathrm{Be}<\mathrm{B}<\mathrm{O}<\mathrm{F}<\mathrm{N}$
(2) $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
(3) $\mathrm{B}<\mathrm{Be}<\mathrm{N}<\mathrm{F}<\mathrm{O}$
(4) $\mathrm{Be}<\mathrm{B}<\mathrm{N}<\mathrm{O}<\mathrm{F}$

Answer (2)
Sol. Be has more value of first ionization enthalpy than B due to fully filled configuration and N has more value of first ionization enthalpy than O due to half filled configuration
The correct order is $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
8. Statement-1 : Aldol condensation is caused by acidity of α hydrogen
Statement-2 : Cross aldol is not possible between

(1) Both statement- 1 and statement- 2 are correct
(2) Both statement-1 and statement-2 are incorrect
(3) Statement-1 is correct but statement-2 is incorrect
(4) Statement-1 is incorrect but statement-2 is correct

Answer (3)

Sol. Aldol reaction is given by those carbonyl compounds which have at least one α hydrogen atom because α-hydrogen of carbonyl compounds is acidic. Benzaldehyde and acetaldehyde will form cross aldol because acetaldehyde has α-hydrogen atom.
9. Select the correct structure of L-glucose.
(1)

(2)

Answer (2)

Sol.

D-Glucose

L-Glucose

Our Stars

Aakashians Gonquer JEE (Main) 2024 session-1

two Year classroom program
As per student response sheet and NTA answerker

10. Decreasing order of the field strength of the following ligands will be:
co, $\stackrel{\ominus}{\mathrm{CN}}, \stackrel{\ominus}{\mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}}$
(1) $\mathrm{CO}>\stackrel{\ominus}{\mathrm{CN}}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}$
(2) $\mathrm{CO}>\stackrel{\ominus}{\mathrm{CN}}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}$
(3) $\stackrel{\ominus}{\mathrm{CN}}>\mathrm{CO}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}$
(4) $\stackrel{\ominus}{\mathrm{CN}}>\mathrm{CO}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}$

Answer (1)
Sol. $\mathrm{CO}>\stackrel{\ominus}{\mathrm{C}} \mathrm{N}>\mathrm{H}_{2} \mathrm{O}>\stackrel{\ominus}{\mathrm{C}}$
11. Calculate the molarity of NaCl solution, if 5.85 gm of NaCl is dissolved in 500 ml of solution.
(1) 0.1 M
(2) 0.2 M
(3) 0.32 M
(4) 0.4 M

Answer (2)
Sol. Molarity $=\frac{\text { Number of moles of solute }}{\text { Volume of solution (in L) }}$

$$
=\frac{5.85 \times 1000}{58.5 \times 500}=0.1 \times 2=0.2 \mathrm{M}
$$

12. Which of the following does not give Lassaigne's test?
(1) Urea
(2) Azobenzene
(3) Hydrazine
(4) Phenylhydrazine

Answer (3)
Sol. Hydrazine $\left(\mathrm{NH}_{2}-\mathrm{NH}_{2}\right)$ does not contain carbon. On fusion with sodium metal, it cannot form NaCN . So hydrazine does not show Lassaigne's test.
13. Among the following, species that have one unpaired e^{\ominus} ?
(1) CN^{\ominus}
(2) O_{2}^{2-}
(3) O_{2}^{+}
(4) NO^{\ominus}

Answer (3)
Sol. Unpaired e^{\ominus}

$$
\begin{aligned}
& \mathrm{CN}^{\ominus} \rightarrow 14 \mathrm{e}^{\ominus} \rightarrow \text { zero } \\
& \mathrm{O}_{2}^{2-} \rightarrow 18 \mathrm{e}^{\ominus} \rightarrow \text { zero } \\
& \mathrm{O}_{2}^{+} \rightarrow 15 \mathrm{e}^{\ominus} \rightarrow \text { one } \\
& \mathrm{NO}^{\ominus} \rightarrow 16 \mathrm{e}^{\ominus} \rightarrow \text { two }
\end{aligned}
$$

14. For a given reaction

Relation between the molecules P and B are:
(1) Enantiomer
(2) Diastereomers
(3) Positional isomers
(4) Functional isomers

Answer (3)

Sol. Positional isomers.

15. From the given data, find enthalpy of hydrogenation of ethene in $\mathrm{kJ} / \mathrm{mol}$
(a) B.E. of $\mathrm{C}-\mathrm{C}=350 \mathrm{~kJ} / \mathrm{mol}$
(b) B.E. of $\mathrm{C}=\mathrm{C}=600 \mathrm{~kJ} / \mathrm{mol}$
(c) B.E. of $\mathrm{H}-\mathrm{H}=400 \mathrm{~kJ} / \mathrm{mol}$
(d) B.E. of $\mathrm{C}-\mathrm{H}=410 \mathrm{~kJ} / \mathrm{mol}$
(1) -170
(2) -580
(3) +170
(4) +580

Answer (1)

Sol.
 $+\mathrm{H}-\mathrm{H}$

$\Delta_{r} \mathrm{H}=\Delta \mathrm{H}(\mathrm{C}=\mathrm{C})+\Delta \mathrm{H}(\mathrm{H}-\mathrm{H})-\Delta \mathrm{H}(\mathrm{C}-\mathrm{C})$

$$
\begin{align*}
& =600+400-350-2(410) \tag{C-H}\\
& =-170 \mathrm{~kJ} / \mathrm{mol}
\end{align*}
$$

16. Find out wavelength of a photon having frequency equal to $900 \mathrm{sec}^{-1}$.
(1) $3.33 \times 10^{5} \mathrm{~m}$
(2) $3.33 \times 10^{5} \mathrm{~cm}$
(3) $3.33 \times 10^{7} \mathrm{~m}$
(4) $3.33 \times 10^{4} \mathrm{~m}$

Answer (1)

Aakashians Conquer JEE (Main) 2024 session-1

two Year classkoom program
IWO YEAK CLASSKOOM PKOGRAM
As per student response sheet and NTA answer key.

Our Stars

Sol. $v=\frac{C}{\lambda}$
$\lambda=\frac{C}{v}$
$\lambda=\frac{3 \times 10^{8} \mathrm{msec}^{-1}}{900 \mathrm{sec}^{-1}}$
$=\frac{3 \times 10^{8}}{900}$
$=\frac{3 \times 10^{6}}{9}$
$=\frac{1}{3} \times 10^{6}$
$=0.333 \times 10^{6}$
$=3.33 \times 10^{5} \mathrm{~m}$
17. Why $\mathrm{NH}_{4} \mathrm{Cl}$ is added before $\mathrm{NH}_{4} \mathrm{OH}$ for the ppt. of Fe^{3+} ions?
(1) To decrease OH^{-}ion concentration
(2) To increase Cl^{-}ion concentration
(3) To increase NH_{4}^{+}ion concentration
(4) To decrease H^{+}ion concentration

Answer (1)
Sol. $\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{NH}_{4} \mathrm{Cl} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
Solid $\mathrm{NH}_{4} \mathrm{Cl}$ is added to $\mathrm{NH}_{4} \mathrm{OH}$ solution to decrease the OH^{-}ion concentration due to common ion effect.
18. Consider the following sequence of reactions and identify the unknown reagents (A) and (B) respectively.

(1) (A) :Dil. aq NaOH at $20^{\circ} \mathrm{C}$
(B) : $\mathrm{HBr}, \mathrm{CH}_{3} \mathrm{COOH}$
(2) (A) : Dil. aq NaOH at $20^{\circ} \mathrm{C}$
(B) : $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$
(3) (A) : Alc. NaOH at $80^{\circ} \mathrm{C}$ (B) : $\mathrm{HBr}, \mathrm{CH}_{3} \mathrm{COOH}$
(4) (A) : Alc. NaOH at $80^{\circ} \mathrm{C}$
(B) : $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$

Answer (3)
Sol.

19. Match the following

(i)	Nitrobenzene	(a)	+R
(ii)	Aniline	(b)	-R
(iii)		(c)	+E
(iv)		(d)	-E

(1) (i) \rightarrow (b), (ii) \rightarrow (a), (iii) \rightarrow (c), (iv) \rightarrow (d)
(2) (i) \rightarrow (a), (ii) \rightarrow (b), (iii) \rightarrow (c), (iv) \rightarrow (d)
(3) (i) \rightarrow (c), (ii) \rightarrow (b), (iii) \rightarrow (a), (iv) \rightarrow (d)
(4) (i) \rightarrow (d), (ii) \rightarrow (c), (iii) \rightarrow (a), (iv) \rightarrow (b)

Answer (1)
Sol. (i) \rightarrow (b), (ii) \rightarrow (a), (iii) \rightarrow (c), (iv) \rightarrow (d)
20. Which of the following is not possible major product?
(1)

(2)
$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{2} \xrightarrow[H \mathrm{XX}]{\mathrm{NaNO}_{2}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NO}_{2}+\mathrm{N}_{2}$
(3)

(4)

Answer (2)

Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. How many of the following compounds are $s p^{3}$ hybridised?

$$
\mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NO}_{2}
$$

Answer (3)

Sol.

22. Total number of structural isomers possible for a compound with molecular formula $\mathrm{C}_{7} \mathrm{H}_{16}$ are:

Answer (5)

Sol. $\mathrm{C}_{7} \mathrm{H}_{16}$ has $\mathrm{DoU}=0$

(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3}-\mathrm{C}_{\mathrm{CH}}^{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

23. The de-Broglie wavelength of an electron in $4^{\text {th }}$ orbit of hydrogen atom is \qquad $\pi \mathrm{a}_{0}$ ($\mathrm{a}_{0}=$ Bohr radius).

Answer (8)
Sol. $\because \quad \lambda_{\text {de-Broglie }}=\frac{2 \pi r}{n}=\frac{2 \pi}{n} \times 0.529 \frac{n^{2}}{z} \AA$

$$
\text { or, } \begin{aligned}
\lambda_{\text {de-Broglie }} & =2 \pi \times \mathrm{n} \times \mathrm{a}_{0} \AA \\
& =2 \pi \times 4 \times \mathrm{a}_{0} \AA \\
& =8 \pi \mathrm{a}_{0} \AA
\end{aligned}
$$

24. 50 mL of KMnO_{4} solution is used for titration with 20 mL of 2 M oxalic acid solution in Acidic medium. The molarity of KMnO_{4} solution is $x \times 10^{-2} \mathrm{M}$. The value of x is

Answer (32)

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Sol. $\underset{\substack{\text { n.f. }=5}}{\mathrm{MnO}_{4}^{\ominus}}(\mathrm{aq})+\underset{\substack{\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \\ \text { n.f. }=2}}{\mathrm{H}^{+}}(\mathrm{aq}) \xrightarrow{\mathrm{Mn}^{2+}}+\mathrm{CO}_{2} \uparrow$
$5 \times \mathrm{M}_{\mathrm{KMNO}_{4}} \times 50=2 \times 20 \times 2$
$\mathrm{M}_{\mathrm{KMnO}}^{4}-1=\frac{8}{25}=32 \times 10^{-2} \mathrm{M}$
$x=32$
25. A solution having non-volatile solute in water shows elevation in boiling point of $2^{\circ} \mathrm{C}$. Find out vapour pressure of solution (in mm Hg) (Nearest integer)
Vapour pressure of pure water $=760 \mathrm{~mm} \mathrm{Hg}$ K_{b} of water $=0.52 \mathrm{~K} . \mathrm{kg} \mathrm{mole}^{-1}$
Answer (711)
Sol. $\Delta \mathrm{T}_{\mathrm{b}}=\left(\mathrm{K}_{\mathrm{b}}\right)(\mathrm{m})$
$2=(0.52)(m)$
$\mathrm{m}=3.846$
$X_{\text {Solute }}=\frac{m}{m+55.5}=0.0648$
$\frac{760-X}{760}=0.0648$
$\Rightarrow P_{\text {solution }}=710.74 \mathrm{~mm} \mathrm{Hg}$
$\approx 711 \mathrm{~mm} \mathrm{Hg}$
26. $\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{O}_{2} \longrightarrow \mathrm{~A}$
' A ' disproportionate into ' B ' and ' C '. Find the sum of magnetic moment (spin only) (in B.M.) of B and C (Nearest integer)

Answer (4)

Sol. $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ (A)
$3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \xrightarrow{\text { Disproportionation }} 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(A)

B and C are MnO_{4}^{-}and MnO_{2}
Mn in MnO_{2} has +4 oxidation state hence it has $(n-1) d^{3} n s^{0}$ electronic configuration unpaired e $=3$
Mag. moment : 3.87 B.M. by $\sqrt{n(n+2)}$
$\mathrm{KMnO}_{4} / \mathrm{MnO}_{4}^{-}$is diamagnetic hence magnetic moment $=0$ because it has no unpaired electron.
Hence, sum of mag. moment $=3.87$ B.M.
Nearest integer $=4$
27. How many of the following coordination compounds have even number of unpaired electrons?
$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
Answer (3)
Sol. $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow d^{2} s p^{3} \Rightarrow \mathrm{n}=3$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} a^{2} \Rightarrow \mathrm{n}=4$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{2} \Rightarrow \mathrm{n}=1$
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{R} \Rightarrow \mathrm{n}=2$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{2} \Rightarrow \mathrm{n}=4$
28. Consider the following reaction sequence :
$A \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} B \xrightarrow{\mathrm{k}_{3}} C$
Overall $k=\frac{k_{1} k_{2}}{k_{3}}$
if $\mathrm{E}_{\mathrm{a}_{1}}=300 \mathrm{~kJ} /$ mole

$$
\mathrm{E}_{\mathrm{a}_{2}}=200 \mathrm{~kJ} / \mathrm{mole}
$$

Overall, $\left(E_{a}\right)_{\text {eff }}=400 \mathrm{~kJ} / \mathrm{mole}$
Find out $\mathrm{E}_{\mathrm{a}_{3}}$ (in $\mathrm{kJ} /$ mole)

Answer (100)

Sol. $\left(E_{a}\right)_{\text {eff }}=E_{a_{1}}+E_{a_{2}}-E_{a_{3}}$
$400=300+200-E_{a_{3}}$
$\mathrm{E}_{\mathrm{a}_{3}}=100 \mathrm{~kJ} / \mathrm{mole}$
29. xg of ethylamine on reaction with NaNO_{2} and HCl , produces 2.24 L of $\mathrm{N}_{2}(\mathrm{~g})$ at NTP. The value of 2 x will be
Answer (9)
Sol. $\mathrm{NaNO}_{2}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{HNO}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
Mole of $\mathrm{N}_{2}(\mathrm{~g})$ produced $=\frac{2.24}{22.4}=0.1 \mathrm{~mol}$
So, mole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ used $=0.1 \mathrm{~mol}$
Mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}=45 \times 0.1=4.5 \mathrm{~g}$
So, $2 \mathrm{x}=2 \times 4.5$

$$
=9
$$

30.

Aakashians Gonquer JEE (Main) 2024 sEssion-1

two Year classkoom program

"936 9 spereamulus

Our Stars

