Sol.

NH_{3} has greater dipole moment than NF_{3}
6.

(1)

(2)

(3)

(4)

Answer (2)

Sol. This is an example of Clemmensen reduction reaction. In this reaction carbonyl group is reduced to methylene group.
7. Which of the following is the correct order of first ionization enthalpy?
(1) $\mathrm{Be}<\mathrm{B}<\mathrm{O}<\mathrm{F}<\mathrm{N}$
(2) $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
(3) $\mathrm{B}<\mathrm{Be}<\mathrm{N}<\mathrm{F}<\mathrm{O}$
(4) $\mathrm{Be}<\mathrm{B}<\mathrm{N}<\mathrm{O}<\mathrm{F}$

Answer (2)
Sol. Be has more value of first ionization enthalpy than B due to fully filled configuration and N has more value of first ionization enthalpy than O due to half filled configuration
The correct order is $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
8. Statement-1 : Aldol condensation is caused by acidity of α hydrogen
Statement-2 : Cross aldol is not possible between

(1) Both statement- 1 and statement- 2 are correct
(2) Both statement-1 and statement-2 are incorrect
(3) Statement-1 is correct but statement-2 is incorrect
(4) Statement-1 is incorrect but statement-2 is correct

Answer (3)

Sol. Aldol reaction is given by those carbonyl compounds which have at least one α hydrogen atom because α-hydrogen of carbonyl compounds is acidic. Benzaldehyde and acetaldehyde will form cross aldol because acetaldehyde has α-hydrogen atom.
9. Select the correct structure of L-glucose.
(1)

(2)

Answer (2)

Sol.

D-Glucose

L-Glucose

Our Stars

Aakashians Gonquer JEE (Main) 2024 session-1

two Year classroom program
As per student response sheet and NTA answerker

10. Decreasing order of the field strength of the following ligands will be:
co, $\stackrel{\ominus}{\mathrm{CN}}, \stackrel{\ominus}{\mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}}$
(1) $\mathrm{CO}>\stackrel{\ominus}{\mathrm{CN}}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}$
(2) $\mathrm{CO}>\stackrel{\ominus}{\mathrm{CN}}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}$
(3) $\stackrel{\ominus}{\mathrm{CN}}>\mathrm{CO}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}$
(4) $\stackrel{\ominus}{\mathrm{CN}}>\mathrm{CO}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}$

Answer (1)
Sol. $\mathrm{CO}>\stackrel{\ominus}{\mathrm{C}} \mathrm{N}>\mathrm{H}_{2} \mathrm{O}>\stackrel{\ominus}{\mathrm{C}}$
11. Calculate the molarity of NaCl solution, if 5.85 gm of NaCl is dissolved in 500 ml of solution.
(1) 0.1 M
(2) 0.2 M
(3) 0.32 M
(4) 0.4 M

Answer (2)
Sol. Molarity $=\frac{\text { Number of moles of solute }}{\text { Volume of solution (in L) }}$

$$
=\frac{5.85 \times 1000}{58.5 \times 500}=0.1 \times 2=0.2 \mathrm{M}
$$

12. Which of the following does not give Lassaigne's test?
(1) Urea
(2) Azobenzene
(3) Hydrazine
(4) Phenylhydrazine

Answer (3)
Sol. Hydrazine $\left(\mathrm{NH}_{2}-\mathrm{NH}_{2}\right)$ does not contain carbon. On fusion with sodium metal, it cannot form NaCN . So hydrazine does not show Lassaigne's test.
13. Among the following, species that have one unpaired e^{\ominus} ?
(1) CN^{\ominus}
(2) O_{2}^{2-}
(3) O_{2}^{+}
(4) NO^{\ominus}

Answer (3)
Sol. Unpaired e^{\ominus}

$$
\begin{aligned}
& \mathrm{CN}^{\ominus} \rightarrow 14 \mathrm{e}^{\ominus} \rightarrow \text { zero } \\
& \mathrm{O}_{2}^{2-} \rightarrow 18 \mathrm{e}^{\ominus} \rightarrow \text { zero } \\
& \mathrm{O}_{2}^{+} \rightarrow 15 \mathrm{e}^{\ominus} \rightarrow \text { one } \\
& \mathrm{NO}^{\ominus} \rightarrow 16 \mathrm{e}^{\ominus} \rightarrow \text { two }
\end{aligned}
$$

14. For a given reaction

Relation between the molecules P and B are:
(1) Enantiomer
(2) Diastereomers
(3) Positional isomers
(4) Functional isomers

Answer (3)

Sol. Positional isomers.

15. From the given data, find enthalpy of hydrogenation of ethene in $\mathrm{kJ} / \mathrm{mol}$
(a) B.E. of $\mathrm{C}-\mathrm{C}=350 \mathrm{~kJ} / \mathrm{mol}$
(b) B.E. of $\mathrm{C}=\mathrm{C}=600 \mathrm{~kJ} / \mathrm{mol}$
(c) B.E. of $\mathrm{H}-\mathrm{H}=400 \mathrm{~kJ} / \mathrm{mol}$
(d) B.E. of $\mathrm{C}-\mathrm{H}=410 \mathrm{~kJ} / \mathrm{mol}$
(1) -170
(2) -580
(3) +170
(4) +580

Answer (1)

Sol.
 $+\mathrm{H}-\mathrm{H}$

$\Delta_{r} \mathrm{H}=\Delta \mathrm{H}(\mathrm{C}=\mathrm{C})+\Delta \mathrm{H}(\mathrm{H}-\mathrm{H})-\Delta \mathrm{H}(\mathrm{C}-\mathrm{C})$

$$
\begin{align*}
& =600+400-350-2(410) \tag{C-H}\\
& =-170 \mathrm{~kJ} / \mathrm{mol}
\end{align*}
$$

16. Find out wavelength of a photon having frequency equal to $900 \mathrm{sec}^{-1}$.
(1) $3.33 \times 10^{5} \mathrm{~m}$
(2) $3.33 \times 10^{5} \mathrm{~cm}$
(3) $3.33 \times 10^{7} \mathrm{~m}$
(4) $3.33 \times 10^{4} \mathrm{~m}$

Answer (1)

Aakashians Conquer JEE (Main) 2024 session-1

two Year classroom program

Our Stars

Sol. $v=\frac{C}{\lambda}$
$\lambda=\frac{C}{v}$
$\lambda=\frac{3 \times 10^{8} \mathrm{msec}^{-1}}{900 \mathrm{sec}^{-1}}$
$=\frac{3 \times 10^{8}}{900}$
$=\frac{3 \times 10^{6}}{9}$
$=\frac{1}{3} \times 10^{6}$
$=0.333 \times 10^{6}$
$=3.33 \times 10^{5} \mathrm{~m}$
17. Why $\mathrm{NH}_{4} \mathrm{Cl}$ is added before $\mathrm{NH}_{4} \mathrm{OH}$ for the ppt. of Fe^{3+} ions?
(1) To decrease OH^{-}ion concentration
(2) To increase Cl^{-}ion concentration
(3) To increase NH_{4}^{+}ion concentration
(4) To decrease H^{+}ion concentration

Answer (1)
Sol. $\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{NH}_{4} \mathrm{Cl} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
Solid $\mathrm{NH}_{4} \mathrm{Cl}$ is added to $\mathrm{NH}_{4} \mathrm{OH}$ solution to decrease the OH^{-}ion concentration due to common ion effect.
18. Consider the following sequence of reactions and identify the unknown reagents (A) and (B) respectively.

(1) (A) :Dil. aq NaOH at $20^{\circ} \mathrm{C}$
(B) : $\mathrm{HBr}, \mathrm{CH}_{3} \mathrm{COOH}$
(2) (A) : Dil. aq NaOH at $20^{\circ} \mathrm{C}$
(B) : $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$
(3) (A) : Alc. NaOH at $80^{\circ} \mathrm{C}$ (B) : $\mathrm{HBr}, \mathrm{CH}_{3} \mathrm{COOH}$
(4) (A) : Alc. NaOH at $80^{\circ} \mathrm{C}$
(B) : $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$

Answer (3)
Sol.

19. Match the following

(i)	Nitrobenzene	(a)	+R
(ii)	Aniline	(b)	-R
(iii)		(c)	+E
(iv)		(d)	-E

(1) (i) \rightarrow (b), (ii) \rightarrow (a), (iii) \rightarrow (c), (iv) \rightarrow (d)
(2) (i) \rightarrow (a), (ii) \rightarrow (b), (iii) \rightarrow (c), (iv) \rightarrow (d)
(3) (i) \rightarrow (c), (ii) \rightarrow (b), (iii) \rightarrow (a), (iv) \rightarrow (d)
(4) (i) \rightarrow (d), (ii) \rightarrow (c), (iii) \rightarrow (a), (iv) \rightarrow (b)

Answer (1)
Sol. (i) \rightarrow (b), (ii) \rightarrow (a), (iii) \rightarrow (c), (iv) \rightarrow (d)
20. Which of the following is not possible major product?
(1)

(2)
$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{2} \xrightarrow[H \mathrm{XX}]{\mathrm{NaNO}_{2}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NO}_{2}+\mathrm{N}_{2}$
(3)

(4)

Answer (2)

Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. How many of the following compounds are $s p^{3}$ hybridised?

$$
\mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NO}_{2}
$$

Answer (3)

Sol.

22. Total number of structural isomers possible for a compound with molecular formula $\mathrm{C}_{7} \mathrm{H}_{16}$ are:

Answer (5)

Sol. $\mathrm{C}_{7} \mathrm{H}_{16}$ has $\mathrm{DoU}=0$

(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3}-\mathrm{C}_{\mathrm{CH}}^{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

23. The de-Broglie wavelength of an electron in $4^{\text {th }}$ orbit of hydrogen atom is \qquad $\pi \mathrm{a}_{0}$ ($\mathrm{a}_{0}=$ Bohr radius).

Answer (8)
Sol. $\because \quad \lambda_{\text {de-Broglie }}=\frac{2 \pi r}{n}=\frac{2 \pi}{n} \times 0.529 \frac{n^{2}}{z} \AA$

$$
\text { or, } \begin{aligned}
\lambda_{\text {de-Broglie }} & =2 \pi \times \mathrm{n} \times \mathrm{a}_{0} \AA \\
& =2 \pi \times 4 \times \mathrm{a}_{0} \AA \\
& =8 \pi \mathrm{a}_{0} \AA
\end{aligned}
$$

24. 50 mL of KMnO_{4} solution is used for titration with 20 mL of 2 M oxalic acid solution in Acidic medium. The molarity of KMnO_{4} solution is $x \times 10^{-2} \mathrm{M}$. The value of x is

Answer (32)

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Sol. $\underset{\substack{\text { n.f. }=5}}{\mathrm{MnO}_{4}^{\ominus}}(\mathrm{aq})+\underset{\substack{\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \\ \text { n.f. }=2}}{\mathrm{H}^{+}}(\mathrm{aq}) \xrightarrow{\mathrm{Mn}^{2+}}+\mathrm{CO}_{2} \uparrow$
$5 \times \mathrm{M}_{\mathrm{KMNO}_{4}} \times 50=2 \times 20 \times 2$
$\mathrm{M}_{\mathrm{KMnO}}^{4}-1=\frac{8}{25}=32 \times 10^{-2} \mathrm{M}$
$x=32$
25. A solution having non-volatile solute in water shows elevation in boiling point of $2^{\circ} \mathrm{C}$. Find out vapour pressure of solution (in mm Hg) (Nearest integer)
Vapour pressure of pure water $=760 \mathrm{~mm} \mathrm{Hg}$ K_{b} of water $=0.52 \mathrm{~K} . \mathrm{kg} \mathrm{mole}^{-1}$
Answer (711)
Sol. $\Delta \mathrm{T}_{\mathrm{b}}=\left(\mathrm{K}_{\mathrm{b}}\right)(\mathrm{m})$
$2=(0.52)(m)$
$\mathrm{m}=3.846$
$X_{\text {Solute }}=\frac{m}{m+55.5}=0.0648$
$\frac{760-X}{760}=0.0648$
$\Rightarrow P_{\text {solution }}=710.74 \mathrm{~mm} \mathrm{Hg}$
$\approx 711 \mathrm{~mm} \mathrm{Hg}$
26. $\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{O}_{2} \longrightarrow \mathrm{~A}$
' A ' disproportionate into ' B ' and ' C '. Find the sum of magnetic moment (spin only) (in B.M.) of B and C (Nearest integer)

Answer (4)

Sol. $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ (A)
$3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \xrightarrow{\text { Disproportionation }} 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(A)

B and C are MnO_{4}^{-}and MnO_{2}
Mn in MnO_{2} has +4 oxidation state hence it has $(n-1) d^{3} n s^{0}$ electronic configuration unpaired e $=3$
Mag. moment : 3.87 B.M. by $\sqrt{n(n+2)}$
$\mathrm{KMnO}_{4} / \mathrm{MnO}_{4}^{-}$is diamagnetic hence magnetic moment $=0$ because it has no unpaired electron.
Hence, sum of mag. moment $=3.87$ B.M.
Nearest integer $=4$
27. How many of the following coordination compounds have even number of unpaired electrons?
$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
Answer (3)
Sol. $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow d^{2} s p^{3} \Rightarrow \mathrm{n}=3$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} a^{2} \Rightarrow \mathrm{n}=4$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{2} \Rightarrow \mathrm{n}=1$
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{R} \Rightarrow \mathrm{n}=2$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow s p^{3} d^{2} \Rightarrow \mathrm{n}=4$
28. Consider the following reaction sequence :
$A \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} B \xrightarrow{\mathrm{k}_{3}} C$
Overall $k=\frac{k_{1} k_{2}}{k_{3}}$
if $\mathrm{E}_{\mathrm{a}_{1}}=300 \mathrm{~kJ} /$ mole

$$
\mathrm{E}_{\mathrm{a}_{2}}=200 \mathrm{~kJ} / \mathrm{mole}
$$

Overall, $\left(E_{a}\right)_{\text {eff }}=400 \mathrm{~kJ} / \mathrm{mole}$
Find out $\mathrm{E}_{\mathrm{a}_{3}}$ (in $\mathrm{kJ} /$ mole)

Answer (100)

Sol. $\left(E_{a}\right)_{\text {eff }}=E_{a_{1}}+E_{a_{2}}-E_{a_{3}}$
$400=300+200-E_{a_{3}}$
$\mathrm{E}_{\mathrm{a}_{3}}=100 \mathrm{~kJ} / \mathrm{mole}$
29. xg of ethylamine on reaction with NaNO_{2} and HCl , produces 2.24 L of $\mathrm{N}_{2}(\mathrm{~g})$ at NTP. The value of 2 x will be
Answer (9)
Sol. $\mathrm{NaNO}_{2}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{HNO}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
Mole of $\mathrm{N}_{2}(\mathrm{~g})$ produced $=\frac{2.24}{22.4}=0.1 \mathrm{~mol}$
So, mole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ used $=0.1 \mathrm{~mol}$
Mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}=45 \times 0.1=4.5 \mathrm{~g}$
So, $2 \mathrm{x}=2 \times 4.5$

$$
=9
$$

30.

Aakashians Gonquer JEE (Main) 2024 sEssion-1

two Year classkoom program

"936 9 spereamulus

Our Stars

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If $f(x)=\left\{\begin{array}{ll}x-2, & 0<x \leq 2 \\ -2, & -2 \leq x \leq 0\end{array}\right.$ and
$h(x)=f(|x|)+|f(x)|$ then
find $\int_{0}^{k} h(x) d x$ is equal to $(k>0)$
(1) 0
(2) $\frac{k}{2}$
(3) $2 k$
(4) k

Answer (1)

Sol. Graph of $f(x)$

$$
f(|x|)
$$

$|f(x)|= \begin{cases}2, & x<0 \\ 2-x, & x>0\end{cases}$
$\Rightarrow h(x)=f(|x|)+|f(x)|= \begin{cases}-x, & x<0 \\ 0, & x>0\end{cases}$
$\Rightarrow \int_{0}^{k} h(x) d x=\int_{0}^{k} 0 d x=0$
2. Let three urn $\mathrm{A}, \mathrm{B}, \mathrm{C}: \mathrm{A}=7$ red, 5 black

$$
\begin{aligned}
& B=5 \text { red, } 7 \text { black } \\
& C=6 \text { red, } 6 \text { black }
\end{aligned}
$$

Urn is selected and black ball is taken. Then the probability that the selected urn is A is equal to
(1) $\frac{7}{18}$
(2) $\frac{5}{17}$
(3) $\frac{7}{19}$
(4) $\frac{5}{18}$

Answer (4)

Sol. Urn A has 7 red, 5 black balls Urn B has 5 red, 7 black balls. Urn C has 6 red, 6 black balls
If ball drawn is black then probability that it is chosen from urn A .

$$
=\frac{\frac{1}{3} \times \frac{5}{12}}{\frac{1}{3} \times \frac{5}{12}+\frac{1}{3} \times \frac{7}{12}+\frac{1}{3} \times \frac{6}{12}}
$$

$$
=\frac{\frac{5}{36}}{\frac{5}{36}+\frac{7}{36}+\frac{6}{36}}
$$

$$
5
$$

$$
=\frac{\frac{36}{18}}{\frac{18}{36}}=\frac{5}{18}
$$

3. $\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2} x}{1+2^{x}} d x=$
(1) $\left(\frac{\pi}{4}\right)$
(2) $\frac{\pi}{8}$
(3) 4π
(4) $\frac{\pi}{2}$

Answer (1)

Aakashians Conquer JEE (Main) 2024 sEsSION-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Sol. $I=\int_{0}^{\pi / 2}\left(\frac{\sin ^{2} x}{1+2^{x}}+\frac{\sin ^{2}(x)}{1+2^{-x}}\right) d x$
$I=\int_{0}^{\pi / 2} \sin ^{2} x d x$
$I=\int_{0}^{\pi / 2} \cos ^{2} x d x$
$2 I=\int_{0}^{\pi / 2} 1 d x$
$I=\frac{\pi}{4}$
4. If $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$ then sum of maximum and minimum values of $f(x)$ is
(1) $\frac{136}{55}$
(2) $\frac{146}{55}$
(3) $\frac{146}{11}$
(4) $\frac{136}{11}$

Answer (2)

Sol. $y=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}, \quad 2 x^{2}+3 x+8>0 \forall x \in R$
$\Rightarrow x^{2}(2 y-2)+x(3 y+3)+8 y-8=0$
Since $x \in R$, the equation has real roots
\Rightarrow Discriminant is greater than or equal to 0
$\Rightarrow(3 y+3)^{2}-4(2 y-2)(8 y-8) \geq 0$
$\Rightarrow 9(y+1)^{2}-64 y(y-1)^{2} \geq 0$
$\Rightarrow(3 y+3)^{2}-(8 y-8)^{2} \geq 0$
$\Rightarrow(11 y-5)(-5 y+11) \geq 0$
$\Rightarrow\left(y-\frac{5}{11}\right)\left(y-\frac{11}{5}\right) \leq 0$
$\Rightarrow y \in\left[\frac{5}{11}, \frac{11}{5}\right]$
\Rightarrow Sum of $y_{\text {max }}$ and $y_{\text {min }}=\frac{5}{11}+\frac{11}{5}$

$$
\begin{aligned}
& =\frac{121+25}{55} \\
& =\left(\frac{146}{55}\right)
\end{aligned}
$$

5. The coefficient of x^{7} in
$\left(1-x-x^{2}+x^{3}\right)^{6}$ equals to
(1) 132
(2) 144
(3) -132
(4) -144

Answer (4)

Sol. Coefficient of x^{7} in $(1-x)^{6}\left(1-x^{2}\right)^{6}$
${ }^{6} C_{1}{ }^{6} C_{3}-{ }^{6} C_{3}{ }^{6} C_{2}+{ }^{6} C_{5}{ }^{6} C_{1}$
$120-15 \times 20+6 \times 6$
$120-300+36$
$=-144$
6. If $(\bar{z})^{2}+|z|=0$ and if α is sum of roots and β is product of non-zero roots, then $4\left(\alpha^{2}+\beta^{2}\right)$ is
(1) $\frac{1}{4}$
(2) 1
(3) 4
(4) 2

Answer (3)

Sol. $(\bar{z})^{2}+|z|=0$
Let $z=x+i y$
$\Rightarrow(x-i y)^{2}+\sqrt{x^{2}+y^{2}}=0$
$\Rightarrow\left(x^{2}-y^{2}\right)+\sqrt{x^{2}+y^{2}}-2 x y i=0$
$\Rightarrow x^{2}-y^{2}+\sqrt{x^{2}+y^{2}}=0$ and $2 x y=0$
$\Rightarrow x=0$ and $y \neq 0$

Case I

$\Rightarrow-y^{2}+|y|=0 \Rightarrow|y|=y^{2} \Rightarrow y= \pm 1$

Cas II

$x \neq 0$ and $y=0$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

$\Rightarrow x^{2}+|x|=0 \Rightarrow x=0$ only not possible
$\Rightarrow x=0, y=0$ satisfies
$\Rightarrow z=i,-i, 0$ are solution
$\alpha=i-i=0$
$\beta=$ (i) $(-i)=-1 \Rightarrow 4\left(\alpha^{2}+\beta^{2}\right)=4$
7. If $\alpha \& \beta$ are roots of $a x^{2}+b x+c=0$ then equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ is
(1) $c x^{2}+b x+a=0$
(2) $b x^{2}+a x+c=0$
(3) $a x^{2}+b x+c=0$
(4) $c x^{2}+a x+b=0$

Answer (1)
Sol. $a x^{2}+b x+c=0<\beta$
$\alpha+\beta=\frac{-b}{a}$
$\alpha \beta=\frac{c}{a}$
Now $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=-\frac{b}{c}$
$\frac{1}{\alpha \beta}=\frac{a}{c}$
$x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) x+\frac{1}{\alpha \beta}=0$
$x^{2}+\frac{b}{c} x+\frac{a}{c}=0$
$c x^{2}+b x+a=0$
8. Let $f(x)= \begin{cases}\frac{1-\cos \alpha x}{x^{2}} ; & x<0 \\ 2^{2} ; & x=0 \\ \frac{\beta \sqrt{1-\cos x}}{x} ; & x>0\end{cases}$
is continuous at $x=0$. Then $\alpha^{2}+\beta^{2}$ equals to
(1) 10
(2) 12
(3) 13
(4) 9

Answer (2)

Sol. Given $f(x)$ is continuous at $x=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
When $x<0, x=0-h$
$\therefore \lim _{h \rightarrow 0} \frac{1-\cos (\alpha(0-h))}{(0-h)^{2}}$
$=\lim _{h \rightarrow 0} \frac{1-\cos (h \alpha)}{h^{2}}$
$=\lim _{h \rightarrow 0}\left(\frac{1-\cos (\alpha h)}{\alpha^{2} . h^{2}}\right) \alpha^{2}$
$=\alpha^{2} \lim _{h \rightarrow 0} \frac{1-\cos (\alpha h)}{(\alpha h)^{2}}$
$=\frac{\alpha^{2}}{2}$
When $x>0$
$x=0+h$

$$
\begin{align*}
\lim _{h \rightarrow 0} \frac{\beta \sqrt{1-\cos h}}{h} & =\lim _{h \rightarrow 0} \frac{\beta \sqrt{\frac{1-\cosh }{h^{2}} \cdot h^{2}}}{h} \\
& =\frac{\beta}{\sqrt{2}} \quad \ldots(2) \tag{2}
\end{align*}
$$

as $f(0)=2$
\therefore From (1), (2) and (3)
$\frac{\alpha^{2}}{2}=2, \quad \frac{\beta}{\sqrt{2}}=2$
$\alpha=2, \quad \beta=2 \sqrt{2}$
$\alpha^{2}+\beta^{2}=4+8=12$
9. If the length of focal chord of $y^{2}=12 x$ is 15 and if the distance of the focal chord from origin is P then $10 P^{2}$ is equal to
(1) 36
(2) 25
(3) 72
(4) 144

Answer (3)

Sol.

$\Rightarrow A B=15$
$\left(3 t^{2}-\frac{3}{t^{2}}\right)^{2}+\left(6 t+\frac{6}{t}\right)^{2}=225$
$\Rightarrow 9\left(t^{2}-\frac{1}{t^{2}}\right)^{2}+36\left(t+\frac{1}{t}\right)^{2}=225$
$\Rightarrow 9\left(t+\frac{1}{t}\right)^{2}\left[\left(t-\frac{1}{t}\right)^{2}+4\right]=225$
$\Rightarrow 9\left(t+\frac{1}{t}\right)^{2}\left(t+\frac{1}{t}\right)^{2}=225$
$\Rightarrow t+\frac{1}{t}=\left(\frac{225}{9}\right)^{1 / 4}=(25)^{1 / 4}=\sqrt{5}$
Equation of $A B \equiv(y-0)=\frac{2}{\left(t-\frac{1}{t}\right)}(x-3) \Rightarrow\left|t-\frac{1}{t}\right|=1$
$\Rightarrow y=2 x-6 \Rightarrow y-2 x+6=0$
Distance from origin $\Rightarrow P=\frac{6}{\sqrt{5}} \Rightarrow 10 P^{2}=\frac{10 \times 36}{5}$ $=72$
10. Numbers $-3,4,7,-6, \alpha, \beta$

Mean $=2$, Variance $=23$, then
Mean deviation about mean equals to
(1) $\frac{13}{8}$
(2) $\frac{13}{3}$
(3) $\frac{13}{7}$
(4) $\frac{13}{9}$

Answer (2)

Sol. Mean $=\frac{-3+4+7+(-6)+\alpha+\beta}{6}=2$
$=2+\alpha+\beta=2 \times 6$
$\Rightarrow \alpha+\beta=10$
Variance $=\frac{\Sigma x i^{2}}{n}-\left(\frac{\bar{x}}{n}\right)^{2}=23$
$=\frac{\Sigma x i^{2}}{n}=23+4$
$=\Sigma x i^{2}=27 \times 6$
$=9+16+49+36+\alpha^{2}+\beta^{2}=162$
$\Rightarrow \alpha^{2}+\beta^{2}=52$
\Rightarrow We get α and β as 4 and 6
So, mean deviation about mean
$=\frac{|-3-2|+|4-2|+|7-2|+|-6-2|+|4-2|+|6-2|}{6}$
$=\frac{5+2+5+8+2+4}{6}$
$=\frac{26}{6}=\frac{13}{3}$
11. If $\frac{d y}{d x}=\frac{2 x^{2}+2 x+3}{x^{4}+2 x^{3}+3 x^{2}+2 x+2}$
and $y(-1)=-\frac{\pi}{4}$
then $y(0)$ is
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{2}$
(4) $\frac{\pi}{6}$

Answer (2)
Sol. $\int d y=\int \frac{2 x^{2}+2 x+3}{x^{4}+2 x^{3}+3 x^{2}+2 x+2} d x$

$=\int \frac{2 x^{2}+2 x+3}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)} d x$
$=\int \frac{1}{x^{2}+2 x+2} d x+\int \frac{1}{x^{2}+1} d x$
$=\int \frac{1}{1+(x+1)^{2}} d x+\tan ^{-1} x+C$
$y=\tan ^{-1}(x+1)+\tan ^{-1} x+C$
$y(-1)=-\frac{\pi}{4}$
$-\frac{\pi}{4}=0-\frac{\pi}{4}+C$
$\Rightarrow C=0$
$\therefore \quad y=\tan ^{-1}(x+1)+\tan ^{-1}(x)$
Now $y(0)=\tan ^{-1}(1)+\tan ^{-1}(0)=\frac{\pi}{4}$
12. If \vec{c} is a variable unit vector and \vec{c} makes angle of 45° with \vec{b} and 60° with \vec{a} with $\vec{b}=\hat{i}-\hat{k}$ and $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}$ then $|\vec{c}+2 \vec{a}-3 \vec{b}|$ is
(1) 19
(2) 20
(3) $\sqrt{19}$
(4) $\sqrt{20}$

Answer (3)

Sol. \bar{c} is unit vector

$$
\begin{aligned}
& \vec{b}=\hat{i}-\hat{k} \\
& \vec{a}=2 \hat{i}+2 \hat{j}-\hat{k} \\
& |\vec{a}|=3,|\vec{b}|=\sqrt{2},|\vec{c}|=1 \\
& |\vec{c}+2 \vec{a}-3 \vec{b}|^{2}=|\vec{c}|^{2}+4|\vec{a}|^{2}+9|\vec{b}|^{2}+4 \vec{a} \cdot \vec{c} \\
& -12 \vec{a} \cdot \vec{b}-6 \vec{b} \cdot \vec{c}
\end{aligned}
$$

$$
=1+36+18+4|\vec{a}||\vec{c}| \cos 60^{\circ}-12[3]
$$

$$
-6|\vec{b}||\vec{c}| \cos 45^{\circ}
$$

$$
=55+12 \times \frac{1}{2}-36-6 \sqrt{2} \times \frac{1}{\sqrt{2}}
$$

$=55+6-36-6$
$=19$
$|\vec{c}+2 \vec{a}-3 \vec{b}|=\sqrt{19}$
13. If the system of equations
$A+\sqrt{2} \sin x B+\sqrt{2} \cos x C=0$
$A+\sin x B-\cos x C=0$
$A+\cos x B+\sin x C=0$ has non-trivial solution then the value of $x, x \in\left(0, \frac{\pi}{2}\right)$ is
(1) $\frac{5 \pi}{12}$
(2) $\frac{\pi}{12}$
(3) $\frac{5 \pi}{24}$
(4) $\frac{\pi}{8}$

Answer (3)

Sol. For non-trivial solution

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & \sqrt{2} \sin x & \sqrt{2} \cos x \\
1 & \sin x & -\cos x \\
1 & \cos x & \sin x
\end{array}\right| \text { is zero } \\
& \Rightarrow \quad 1-1\left(\sqrt{2} \sin ^{2} x-\sqrt{2} \cos ^{2} x\right)+1(-2 \sqrt{2} \sin x \cos x)=0 \\
& \Rightarrow 1+\sqrt{2}(\cos 2 x)-\sqrt{2} \sin 2 x=0 \\
& \Rightarrow \quad \sqrt{2}(\cos 2 x-\sin 2 x)=-1 \\
& \Rightarrow \cos \left(2 x+\frac{\pi}{4}\right)=\frac{-1}{2} \\
& x \in\left(0, \frac{\pi}{2}\right) \\
& 2 x \in(0, \pi) \\
& 2 x+\frac{\pi}{4} \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right) \\
& \Rightarrow \cos \left(2 x+\frac{\pi}{4}\right)=\frac{-1}{2} \Rightarrow 2 x+\frac{\pi}{4}=\frac{2 \pi}{3} \\
& \Rightarrow \quad x=\frac{5 \pi}{24}
\end{aligned}
$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

14. A line L_{1} having equation $y=x+3$. A square is inscribed in a circle $x^{2}+y^{2}-10 x-6 y+30=0$ such that one side of square is parallel to L_{1}. Find $\sum_{i=1}^{4}\left(x_{i}^{2}+y_{i}^{2}\right)$ where $\left(x_{i}, y_{i}\right) i \in\{1,2,3,4\}$ are the vertices of square.
(1) 152
(2) 162
(3) 172
(4) 182

Answer (1)

Sol.

Distance of $(5,3)$ to the line $y=x+c$ is $\sqrt{2}$

$$
\begin{aligned}
& \Rightarrow \frac{|3-5-c|}{\sqrt{2}}=\sqrt{2} \\
& |c+2|=2 \\
& \Rightarrow c=0 \\
& \quad c=-4
\end{aligned}
$$

So, the lines are $y=x$ and $y=x-4$
Now, solving these lines with the circle
$y=x$ and $x^{2}+y^{2}-10 x-6 y+30=0$
$2 x^{2}-16 x+30=0$
$x^{2}-8 x+15=0$
$x=3, y=3$
$x=5, y=5$
$y=x-4$ and $x^{2}+y^{2}-10 x-6 y+30=0$
$2 x^{2}-24 x+70=0$
$x^{2}-12 x+35=0$
$x=5, y=1$
$x=7, y=3$
$\sum_{i=1}^{4} x_{i}^{2}+y_{i}^{2}=9+9+25+25+25+1+49+9=152$
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. The number of rational numbers in the expansion of $\left(2^{1 / 5}+5^{1 / 3}\right)^{15}$ is
Answer (02)
Sol. $\mathrm{T}_{r+1}={ }^{15} C_{r}\left(5^{1 / 3}\right)^{r}\left(2^{1 / 5}\right)^{15-r}, r \in\{0,1, \ldots .15\}$
$={ }^{15} C_{r} 5^{\left(\frac{r}{3}\right)} \cdot 2^{\left(3-\frac{r}{5}\right)}, \quad r \in\{0,1, \ldots 15\}$
For rational terms,
$\frac{r}{3} \in$ integer and $\frac{r}{5} \in$ integer
$\Rightarrow 3$ and 5 divides $r \Rightarrow 15$ divides r
$\Rightarrow r=0$ and 15
\Rightarrow only 2 rational terms.
22. In $\triangle A B C$ there are 18 points, on side $A B$ there are $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ points, on $B C$ there are P_{6}, P_{7} $\ldots P_{11}$ points and on $C A P_{12} \ldots P_{18}$ points. By joining any three points from $P_{1}, P_{2} \ldots P_{18}$ form a triangle. Then number of triangles possible are

Answer (751)

Sol. Total ways to select three points out of 18 points $=$ ${ }^{18} \mathrm{C}_{3}$

Total ways to select 3 points from $P_{1} \ldots P_{5}={ }^{5} C_{3}$
Total ways to select 3 points from $P_{6} \ldots P_{11}={ }^{6} C_{3}$
Total ways to select 3 points from $P_{12} \ldots P_{18}={ }^{7} C_{3}$
Total number of triangles possible

$$
\begin{aligned}
& ={ }^{18} C_{3}-{ }^{5} C_{3}-{ }^{6} C_{3}-{ }^{7} C_{3} \\
& =751
\end{aligned}
$$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

RISHIS SHUKLA
two Year classroom program

Perfect Score!
300/300
IUD
eet and NTA answer key.
"936 99+ ревсеницевs
*4145 ${ }^{95+\text { PERCENTILERS }}$

Our Stars

23. If $\operatorname{limit}_{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{m(5)^{1 / 2}}{n(2 n)^{2 / 3}}$

Then $8 m+12 n$ is

Answer (100)

Sol. $\operatorname{limit}_{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}$
$\operatorname{limit}_{x \rightarrow 1} \frac{\frac{1}{3}(5 x+1)^{-2 / 3} \cdot 5-\frac{1}{3}(x+5)^{-2 / 3}}{2 \times \frac{1}{2}(2 x+3)^{-1 / 2}-\frac{1}{2}(x+4)^{-1 / 2}}$
$=\frac{\frac{1}{3} \times \frac{5}{(6)^{2 / 3}}-\frac{1}{3} \times \frac{1}{(6)^{2 / 3}}}{\frac{1}{2} \times \frac{2}{(5)^{1 / 2}}-\frac{1}{2} \times \frac{1}{(5)^{1 / 2}}}$
$=\frac{\frac{4}{3 \times(6)^{2 / 3}}}{\frac{1}{2 .(5)^{1 / 2}}}=\frac{8(5)^{1 / 2}}{3(6)^{2 / 3}}=\frac{m(5)^{1 / 2}}{n(2 n)^{2 / 3}}$
$\Rightarrow m=8, n=3$
$8 m+12 n=64+36=100$
24. In a G.P. $T_{1}=2, T_{2}=P, T_{3}=Q$, these are also terms of A.P $\left(7^{\text {th }}, 8^{\text {th }}\right.$ and $13^{\text {th }}$ term $)$.
If $5^{\text {th }}$ term of $\mathrm{G} . \mathrm{P}=n^{\text {th }}$ term of A.P3. Then n is
Answer (27)
Sol. $T_{1}=2$

$$
a=2
$$

$$
\begin{array}{ll}
T_{2}=P & 2 r=P \Rightarrow r=\frac{P}{2} \\
T_{3}=Q & 2 r^{2}=Q \Rightarrow r^{2}=\frac{Q}{2} \\
a^{\prime}+6 d=2 & \ldots(1) \\
a^{\prime}+7 d=P & \ldots(2) \\
a^{\prime}+12 d=Q & \ldots(3)
\end{array}
$$

$d=2(r-1)$
$2 r(r-1)=5 d$
$\frac{5 d}{d}=\frac{-2 r(r-1)}{2(r-1)}$
$r=5 \Rightarrow d=8$
$a+48=2$
$a=-46$
$2.3^{4}=-46+(n-1) \times 8$
$\Rightarrow n=27$
25. Domain of $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$
is $(\alpha, \beta]$. Then $3 \alpha+10 \beta$ equals to

Answer (97)

Sol. $-1 \leq \frac{3 x-22}{2 x-19} \leq 1$
$\frac{3 x-22-2 x+19}{2 x-19} \leq 0$
$\frac{x-3}{2 x-19} \leq 0$

$\left[3, \frac{19}{2}\right)$
$\frac{3 x-22+2 x-19}{2 x-19} \geq 0$
$\frac{5 x-41}{2 x-19} \geq 0$

$\left(-\infty, \frac{41}{5}\right] \cup\left(\frac{19}{2}, \infty\right)$
Taking intersection

Aakashians Conquer Jee (Main) 2024 session-1

Taking intersection of individual domains

$\left(5, \frac{41}{5}\right]$
$3 \alpha+10 \beta=3 \times 5+10 \times \frac{41}{5}$
$=15+82=97$
26. If $a=\frac{1}{2!}+\frac{{ }^{2} C_{2}}{3!}+\frac{{ }^{3} C_{2}}{4!}+\frac{{ }^{4} C_{2}}{5!}+\ldots$.

$$
b=1+\frac{{ }^{1} C_{0}+{ }^{1} C_{1}}{1!}+\frac{{ }^{2} C_{0}+{ }^{+2} C_{1}+{ }^{2} C_{2}}{2!}+\ldots .
$$

Then $\frac{2 b}{a^{2}}$ equals to

Answer (8)

Sol. $a=\frac{1}{2}+\sum_{n=2}^{\infty} \frac{{ }^{n} C_{2}}{(n+1)!}$

$$
=\frac{1}{2}+\sum_{n=2}^{\infty} \frac{\frac{n(n+1)}{2}}{(n+1)!}
$$

$=\frac{1}{2}+\sum_{n=2}^{\infty} \frac{1}{2} \times \frac{1}{(n-1)!}$
$=\frac{1}{2}+\frac{1}{2}(e-1)$
$=\frac{e}{2}$
$b=1+\frac{2^{1}}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\ldots .$.
$b=e^{2}$
$\frac{2 b}{a^{2}}=\frac{2 \times e^{2}}{\frac{e^{2}}{4}}=8$
27. If $A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$ and $\operatorname{Det}\left(\operatorname{Adj}\left(A-2 A^{\top}\right) \operatorname{Adj}(2 A-\right.$ $\left.A^{\top}\right)$) $=^{8}$ then $\operatorname{det}(A)^{2}$ is

Answer (16.00)

Sol. $\left|\operatorname{Adj}\left(A-2 A^{T}\right) \operatorname{Adj}\left(2 A-A^{T}\right)\right|=2^{8}$
$P=A-2 A^{T}$
$Q=2 A^{T}-A \Rightarrow Q^{T}=2 A^{T}-A=-P$
$\mid \operatorname{adj}(P)$ adj $Q\left|=2^{8}, \Rightarrow\right| Q^{\top}|=|-P| \Rightarrow| Q|=-|P|$
$|P|^{2}|Q|^{2}=2^{8} \Rightarrow|P Q|=-2^{4}$
$\Rightarrow|P|(-|P|)=-2^{4} \Rightarrow|P|=4$ and $|Q|=-4$
$\left|A-2 A^{T}\right|=4$
$A-2 A^{T}=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]-2\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 0 & 1 \\ \alpha & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & \alpha \\ -3 & 0 & -1 \\ -2 \alpha & -1 & -2\end{array}\right]$
$\Rightarrow\left|A-2 A^{\top}\right|=1+3 \alpha=4 \Rightarrow \alpha=1 \Rightarrow|A|=-4 \Rightarrow$ $|A|^{2}=16$
28.
29.
30.

Aakashians Gonquer JEE (Main) 2024
SESSION-1

