Vedantu

JEE-Main-04-04-2024 (Memory Based) [MORNING SHIFT]

Maths

Question: In a triangle ABC , side AB has 5 points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{5}$ excluding a dnd $\mathrm{b}, 6$ points on side BC and 7 points on side AC then total number of triangle that can be formed without using the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$

Options:

(a)
(b)
(c)
(d)

Answer: ()
Question: $f(x)\left\{\begin{array}{cc}-2 & x \in(-2,0) \\ x-2 & x \in(0,2)\end{array}\right\} \mathrm{h}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|$. Find value $\int_{-2}^{2} h(x) d x$
Question: $(\bar{z})^{2}+|z|=0$ Sum of the non zero solutions is α and product is β. Find $4\left(\alpha^{2}+\beta^{2}\right)$ $=$?

Question: Find the number of rational numbers in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$.
Question: $f(x)\left[\begin{array}{cl}\frac{1-\cos 2 x}{x^{2}} & x<0 \\ \frac{\beta}{\alpha-\cos x} & x=0\end{array}\right.$ Continuous at $\mathrm{x}=0$, find $\alpha^{2}+\beta^{2}$
Question: Urns A,B,C with 5 red , 7 black; 5 black, 7 red; and 6 red, 6 black respectively. A ball is drawn randomly and is found to be black. Then probability of Black ball drawn from A is

Question: If 2 and 6 are the roots of the equation $a x^{2}+b x+1=0$ have roots 2 and 6 . Find quadratic whose roots are $\frac{1}{2 a+b}$ and $\frac{1}{6 a+b}$ is
Options:
(a) $4 x^{2}+14 x+12=0$
(b) $2 x^{2}+11 x+12=0$
(c) $x^{2}+10 x+16=0$
(d) $x^{2}+8 x+12=0$

Answer: ()
Question: $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$ if $\operatorname{GCD}(\mathrm{m} . \mathrm{n})=1$ and $\frac{f_{\text {min }}}{f_{\text {max }}}=\frac{m}{n}$ Find $(\mathrm{m}+\mathrm{n})$
Question: $f(x)=x^{5}+2 e^{\frac{x}{4}}$ if $\operatorname{gof}(\mathrm{x})=\mathrm{x}$ for all x , find $8 \mathrm{~g}^{\prime}(2)$.
Question: A square is inscribed in the circle $x^{2}+y^{2}-10 x-6 y+30=0$. One side of this square is parallel to $y=x+3$. If $\left(x_{1} . y_{1}\right)$ are the vertices of the Square, then
$\Sigma\left(x_{i}^{2}+y_{i}^{2}\right)$ is equal to:

Options:

(a) 148
(b) 156
(c) 152
(d) 160

Answer: ()
Question: Let $\alpha, \beta \in \mathrm{R}$. Let the mean and the variance of 6 observations $-3,4,7,-6 \alpha, \beta$ be 2 and 23 respectively. The mean deviation about the means of these 6 observations is
Options:
(a) $\frac{11}{3}$
(b) $\frac{16}{3}$
(c) $\frac{13}{3}$
(d) $\frac{14}{3}$

Answer: ()

Question: If the domain of the function $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log \left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$ is $[\alpha, \beta]$ then $3 \alpha+$
10β is equal to

Options:

(a) 100
(b) 95
(c) 97
(d) 98

Answer: ()
Question: Find $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{1+2^{x}} d x$
Question: The coefficient of x^{7} in $\left(1-x-x^{2}+x^{3}\right)^{6}$
Question: If the length of focal chord of $y^{2}=12 x$ is 15 and if the distance of the focal chord from origin is p then $10 p^{2}$ is equal to

Question: If $\lim _{x \rightarrow 1} \frac{(5 x+1)^{\frac{1}{3}}-(x+5)^{\frac{1}{3}}}{(2 x+3)^{\frac{1}{2}}-(x+4)^{\frac{1}{2}}}-\frac{m \sqrt{5}}{n(2 n)^{\frac{2}{3}}}$ where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$ then $8 \mathrm{~m}+12 \mathrm{n}$ is equal to
Question: Let a unit vector which makes an angle 60° with $2 \hat{i}+2 \hat{j}-\hat{k}$ and an angle of 45° with $\hat{i}-\hat{k}$ be \vec{c}. Then $\vec{c}+\left(-\frac{1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{i}-\frac{\sqrt{2}}{3} \hat{k}\right]$

Options:

(a)
$\frac{\sqrt{2}}{3} \hat{i}-\frac{1}{2} \hat{k}$
(b)
$\frac{\sqrt{2}}{3} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{1}{2} \hat{k}$
(c)
$-\frac{c_{2}}{3} \hat{i}+\frac{\sqrt{2}}{3} \hat{j}+\left(\frac{1}{2}+\frac{2 \sqrt{2}}{3}\right) \hat{k}$

Vedantu

(d)

$$
\left(\frac{1}{\sqrt{3}}+\frac{1}{2}\right) \hat{i}+\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{2}}\right) \hat{j}+\left(\frac{1}{\sqrt{3}}+\frac{\sqrt{2}}{3}\right] \hat{k}
$$

Question: In a G.P., $T_{1}=2, T_{2}=P, T_{3}=Q$. These are also terms of an A.P. $\left(7^{\text {th }}, 8^{\text {th }}, \& 13^{\text {th }}\right.$ terms). If 5 th term of G.P. $=n^{\text {th }}$ term of A.P., then find n.

