Vedantu

JEE-Main-04-04-2024 (Memory Based) [EVENINGSHIFT]

Maths

Question: Team A has 4 men and 5 women. Team B has 4 women and 5 men. In how many ways can we pick 4 from each team such that there are 4 men and 4 women (integer type question)
Answer: 5626
Question: $\frac{1 \times 2^{2}+2 \times 3^{2}+3 \times 4^{2}+\ldots \ldots . .100 \times 101^{2}}{1^{2} \times 2+2^{2} \times 3+3^{2} \times 4+\ldots . .100^{2} \times 101}=$
Options:
(a) $305 / 302$
(b) $305 / 301$
(c) $301 / 305$
(d) $302 / 301$

Answer: (b)

Question:

$\int_{-1}^{1} \frac{\cos a x}{\left(1+3^{x}\right)} d x=\frac{2}{\pi}$
Find a

Options:

(a) $\pi / 4$
(b) $\pi / 3$
(c) $\pi / 2$
(d) $\pi / 5$

Answer: (c)
Question: Coeff of $\mathrm{x}^{4}, \mathrm{x}^{5}, \mathrm{x}^{6}$ was in AP in expansion of $(1+\mathrm{x})^{\mathrm{n}}$ Find maxm Options:
(a) 14
(b) 7
(c) 21
(d) 0

Answer: (a)

Question: $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in A.P., $\mathrm{a}, \mathrm{b}, \mathrm{c}$ AM was 8, find the cube of their GM such that $\mathrm{a}+1, \mathrm{~b}, \mathrm{c}+3$ were in GP

Options:

(a) 120
(b) 240
(c) 360
(d) 540

Answer: (a)

Vedanta

Question: If $\cos ^{-1} x-\sin ^{-1} y=\theta$ Find minimum of $x^{2}+y^{2}+2 x y \sin \theta$ Options:
(a) 0
(b) 1
(c) 2
(d) 3

Answer: (a)
Question: Let $y=y(x)$ be the solution of differential equation $\left(x^{2}+4\right) 2 d y+\left(2 x^{3} y+8 x y-\right.$ $2) d x=0$ If $y(0)=0$, then $y(2)$ is equal to.

Options:

(a) $\pi / 2$
(b) $\pi / 4$
(c) $\pi / 8$
(d) $\pi / 32$

Answer: (d)

Question: Let
$A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
and $B=I+\operatorname{adj}(A)+\operatorname{adj}(A)+(\operatorname{adj} A)^{2}+(\operatorname{adi} A)^{10}$. Then the sum
of all elements of the matrix B is -
Options:
(a) 88
(b) -88
(c) 99
(d)-99

Answer: (b)

Question: A parabola $y^{2}=12 x$ has a chord $P Q$ with $P Q$ with mid-point $(4,1)$ then equation of PQ passes through:
Options:
(a)
$\left(\frac{1}{2},-20\right)$
(b)
$\left(\frac{1}{2},-10\right)$
(c)
$\left(-10,-\frac{1}{2}\right)$
(d)
$\left(-10, \frac{1}{2}\right)$
Answer: (a)

Question: The area (in sq. units) of the region described by $\left\{(x, y): y^{2} \leq 2 x\right.$, and $y \geq 4 x$ - 1\} is

Options:
(a) $9 / 31$
(b) $8 / 33$
(c) $9 / 32$
(d) $2 / 31$

Answer: (c)
Question: A relation defined as $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{R}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right): \mathrm{x}_{1} \leq \mathrm{x}_{2} \& \mathrm{y}_{1} \leq \mathrm{Y}_{2}$ and given that
(a) R is reflexive but not symmetric
(b) R is transitive. Then,

Options:

(a) (a) is true and (b) is false
(b) (a) is false and (b) is true
(c) Both (a) and (b) are true
(d) Both (a) and (b) are false

Answer: (c)
Question: Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, \bar{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and
$\bar{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in R$, If $\bar{d}_{\text {is unit vector in the direction }} \bar{b}+\bar{c}$ of such that $\bar{a} \cdot \bar{d}=1$, then $(\bar{a} \times \bar{b}) \cdot \bar{c}$ is equal to

Options:

(a) 9
(b) 10
(c) 11
(d) 12

Answer: (c)

Question: Let P be the POI of the lines, find the distance of P from the given plane $\frac{x-2}{1}=\frac{y-4}{5}=\frac{z-2}{1}, \frac{x-2}{2}=\frac{y-2}{3}=\frac{z-3}{2}$
$4 x=2 y=z$

Options:

(a)
(b)
(c)
(d)

Answer: ()

Question: Let
$f(x)=\int_{0}^{x} t+\sin \left(1-e^{t}\right) d t, f(0)=0$, then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}$

Options:

(a) $1 / 6$
(b) $-1 / 6$
(c) $1 / 2$
(d) $-1 / 2$

Answer: (b)

Question: If
$f(x)=3 \sqrt{x-2}+\sqrt{4-x}$
maximum value $\boldsymbol{\alpha}$ and minimum value is β, then $\boldsymbol{\alpha}^{2}+\beta^{2}$
Options:
(a) 20
(b) 21
(c) 22
(d) 23

Answer: (c)

