JEE-Main-05-04-2024 (Memory Based)
 [MORNING SHIFT]

Maths

Question: $\int_{-\pi}^{\pi} \frac{2 y(1+\sin y)}{1+\cos ^{2} y}$
Options:
(a) π^{3}
(b) π^{2}
(c) π
(d) π^{4}

Answer: (b)

Question: $\lim _{t \rightarrow x} \frac{t^{2} f(x)-x^{2} f(t)}{(t-x)}$
Options:
(a) 8
(b) 16
(c) 24
(d) 32

Answer: (c)
Question: If the function $f(x)=\frac{\sin 3 x+\alpha \sin x-3 \beta \cos 3 x}{x^{3}}, x \in R,{ }^{\text {is continuous at } \mathrm{x}=0 \text {, }}$
then $\mathrm{f}(0)$ is
Options:
(a) 2
(b) -2
(c) 4
(d) -4

Answer: (d)
Question:
$m=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}} \cdots \cdots \frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}$
$n=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4} \cdots \frac{1}{99.100}$
Find $2 m+n$
Options:
(a) 16.99
(b) 17.99
(c) 19.99
(d) 18.99

Answer: (d)

Question: If the length of focal chord of $y^{2}=12 x$ is " 1 "and if the distance of the focal chord from origin is d then ld^{2}

Options:

(a) 102
(b) 104
(c) 106
(d) 108

Answer: (d)

Question: $A x^{2}+b x+c$, taking the value of a, b, c from the set $\{1,2,3,4,5,6,7,8\}$ so that it has repeated roots find probability of it.

Options:

(a) $1 / 64$
(b) $1 / 32$
(c) $1 / 16$
(d) $1 / 8$

Answer: (a)
Question: No. of ways by which sum of the number become 16 by throwing 4 dice Options:
(a) 120
(b) 125
(c) 130
(d) 135

Answer: (b)
Question: ABCD is a rectangle of sides of length 4 and 2 which is inscribed in rectangle PQRS of area of PQRS is min find $(a+b)^{2}$ where a and b are sides of rectangle pqrs Options:
(a) 36
(b) 72
(c) 108
(d) 240

Answer: (b)
Question: $\left.{ }^{(112 x} 3 x^{3 x}\right)\left(\frac{3}{2^{2}} \frac{1}{3 x}^{\frac{1}{x}}\right)^{v}$ Constant term in the expansion of
Options:
(a) 1
(b) $1 / 4$
(c) $1 / 2$
(d) $3 / 4$

Answer: (c)

Question: $y=x^{2}-5 x$
$\mathrm{y}=7 \mathrm{x}-\mathrm{x}^{2}$

Find area bounded by the curve
Options:
(a) 36
(b) 72
(c) 108
(d) 240

Answer: (b)
Question: If $\frac{d y}{d x}+2 y=\sin 2 x$ and $y(0)=\frac{3}{4}$, then $y\left(\frac{\pi}{8}\right)$ is equal to
Options:
(a) $e^{\frac{\pi}{8}}$
(b) $e^{\frac{\pi}{6}}$
(c) $e^{\frac{-\pi}{4}}$
(d) None

Answer: (c)
Question: $\mathrm{f}(\mathrm{x})=\mathrm{x}^{5}+2 \mathrm{x}^{3}+3 \mathrm{x}+1$
$g(x)$ such that $g(f(x))=x$ for all x
Find $g(7) / g^{\prime}(7)$

Options:

(a) $1 / 4$
(b) $1 / 7$
(c) $1 / 14$
(d) $1 / 8$

Answer: (c)
Question: Suppose $\theta \in\left[0, \frac{\pi}{4}\right]$ is a solution at $4 \cos \theta-3 \sin \theta=\mid$ then $\cos \theta$ is equal to

Options:

(a) $\frac{6-\sqrt{6}}{(3 \sqrt{6}-2)}$
(b) $\frac{4}{(\sqrt[{3 \sqrt{6}+2})]{ }}$
(c) $\frac{4}{(3 \sqrt{6}-2)}$
(d) $\frac{6-\sqrt{6}}{(3 \sqrt{6}+2)}$

Answer: (c)
Question: Lines parallel to coordinate axes passing through $(3,2)$ are tangents to a unit circle which is closer to origin. Find the shortest distance between circle and $(5,5)$
Answer: 4
Question: $\operatorname{Sin} x+3 x-\frac{2}{\pi}\left(x^{2}+x\right)$ Check if f is increasing and f^{\prime} is decreasing $\left(0, \frac{\pi}{2}\right)$ Answer: $f(x)$ is increasing and $f^{\prime}(x)$ is decreasing

