PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The ratio of radius of gyration of uniform hollow sphere and uniform solid sphere about its diameter is \qquad . (Both having same radius)
(1) $\sqrt{\frac{4}{3}}$
(2) $\sqrt{\frac{5}{3}}$
(3) $\sqrt{\frac{3}{2}}$
(4) $\sqrt{\frac{3}{5}}$

Answer (2)

Sol. For hollow sphere, $l_{1}=\frac{2}{3} m R^{2}=m k_{1}^{2}, k_{1}=\sqrt{\frac{2}{3}} R$ For solid sphere, $I_{2}=\frac{2}{5} m R^{2}=m k_{1}^{2}, k_{2}=\sqrt{\frac{2}{5}} R$
$\frac{k_{1}}{k_{2}}=\sqrt{\frac{2}{3} \times \frac{5}{2}}=\sqrt{\frac{5}{3}}$.
2. In closed rigid chamber, collision frequency of molecules of ideal gas at $27^{\circ} \mathrm{C}$ is v. The collision frequency of gas at temperature $127^{\circ} \mathrm{C}$ becomes
(1) $\frac{\sqrt{3}}{2} v$
(2) $\sqrt{\frac{127}{27}} v$
(3) $\frac{2}{\sqrt{3}} v$
(4) $\frac{27}{127} v$

Answer (3)

Sol. $\tau=\frac{\lambda}{v_{\text {th }}}=\frac{1 \mathrm{~V}}{\sqrt{2} \pi d^{2} N v_{\text {th }}}$
$v \propto \frac{v_{\text {th }}}{V}$
$v \propto \frac{\sqrt{T}}{V}$
$\Rightarrow \frac{v_{1}}{v_{2}}=\frac{\sqrt{300}}{\sqrt{400}} \quad$ (at constant volume)

$$
v_{l}=\frac{2}{\sqrt{3}} v
$$

3. If the time period of a pendulum at height R (where R is radius of earth) from surface of earth is T_{1} and at height $2 R$ it is T_{2}, then
(1) $3 T_{1}=2 T_{2}$
(2) $2 T_{1}=3 T_{2}$
(3) $T_{1}=3 T_{2}$
(4) $3 T_{1}=4 T_{2}$

Answer (1)
Sol. $T=2 \pi \sqrt{\frac{l}{g}}$
at $R, g^{\prime}=\frac{G M}{(2 R)^{2}}=\frac{g}{4}$
$2 R, g^{\prime}=\frac{G M}{(3 R)^{2}}=\frac{g}{9}$
$\therefore \quad T_{1}=2\left(2 \pi \sqrt{\frac{l}{g}}\right)$
$T_{2}=3\left(2 \pi \sqrt{\frac{1}{g}}\right)$
$3 T_{1}=2 T_{2}$

Aakashians Fonquer JEE (Main) 2024 SEssion-1

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

4. A point source of light is placed at focus of convex lens, then what is the shape of wavefront after passing through the lens?
(1) Planar
(2) Cylindrical
(3) Spherical
(4) Elliptical

Answer (1)

Sol.

\therefore As the source is at focus, rays get parallel after passing through the lens, hence planar wavefront.
5. A block of mass $m=50 \mathrm{~kg}$ is lifted from ground to a height 20 m in two different ways as shown in figure (1) and (2). The ratio of work done in these two will be

(1) $1: 1$
(2) $1: 2$
(3) $2: 1$
(4) $1: 5$

Answer (1)
Sol. For I $\rightarrow W_{1}=m g h$
For II $\rightarrow W_{2}=m g h$
6. Two concentric conducting coplanar rings of radius a and b are placed as shown in diagram $(a \ll b)$. Find coefficient of mutual inductance of rings.

(1) $\frac{\mu_{0} \pi b^{2}}{a}$
(2) $\frac{\mu_{0} \pi a^{2}}{2 b}$
(3) $\frac{\mu_{0} a^{2}}{2 b}$
(4) $\frac{\mu_{0} a^{3}}{2 \pi b^{2}}$

Answer (2)
Sol. $\phi_{a b}=\frac{\mu_{0} i}{2 b} \times \pi a^{2}$

$$
M=\frac{\mu_{0} \pi a^{2}}{2 b}
$$

7. Find current l in the given circuit

(1) $\frac{12}{13} \mathrm{~A}$
(2) $\frac{6}{7} \mathrm{~A}$
(3) $\frac{5}{6} \mathrm{~A}$
(4) $\frac{7}{8} \mathrm{~A}$

Answer (2)

Sol. $R_{\text {eq. }}=12+2=14 \Omega$

$$
I=\frac{12}{14}=\frac{6}{7} \mathrm{~A}
$$

8. Find dimension of $\sqrt{G . \mu}$, where G is universal gravitational constant and μ is energy gradient.
(1) $\left[\mathrm{LT}^{-2}\right]$
(2) $\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
(3) $\left[\mathrm{LT}^{3}\right]$
(4) $\left[\mathrm{LT}^{-1}\right]$

Answer (2)
Sol. Dimension of $\sqrt{G . \mu}=\sqrt{M^{1} L^{3} T^{-2} \frac{M^{1} L^{2} T^{-2}}{L^{1}}}$

$$
\begin{aligned}
& =\sqrt{\mathrm{M}^{0} \mathrm{~L}^{4} \mathrm{~T}^{-4}} \\
& =\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

9. The correct relation between kinetic energy (K.E) and total energy (T.E) of a satellite orbiting around the planet is
(1) $K . E=|T . E|$
(2) $K . E=2|T \cdot E|$
(3) $K \cdot E=\frac{|T \cdot E|}{2}$
(4) $|T . E|=3 K . E$

Answer (1)

Sol. $T . E=-\frac{G m m}{2 R}$
$K . E=\frac{G m m}{2 R}$
10. Given two circuits. Find the ratio of energy stored in capacitor system. $E_{1}: E_{2}$

(1) $2: 1$
(2) $4: 1$
(3) $9: 1$
(4) $1: 1$

Answer (3)

Sol. $E_{1}: C_{\text {eq }}=3 C$
$E_{1}=\frac{1}{2} \times 3 C \times V^{2}=\frac{3}{2} C V^{2}$
$E_{2}: C_{\text {eq }}=\frac{C}{3}$

$$
E_{2}=\frac{1}{2} \times\left(\frac{C}{3}\right) \times V^{2}=\frac{C V^{2}}{6}
$$

$E_{1}: E_{2}=9: 1$
11. Match the column :
[Given : Mass of sun $=M_{s}$

$$
\begin{aligned}
& \text { Mass of earch }=M_{e} \\
& \text { Radius of earth }=R
\end{aligned}
$$

Distance between sun and earth =a]

(a)	Kinetic energy of earth	(i)	$-\frac{G M_{s} M_{e}}{a}$
(b)	Potential energy of earth and sun	(ii)	$\frac{G M_{s} M_{e}}{2 a}$
(c)	Total energy of earth and sun	(iii)	$\frac{G M_{e}}{R}$
(d)	Escape energy from surface of earth per unit mass	(iv)	$-\frac{G M_{s} M_{e}}{2 a}$

(1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
(2) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)
(3) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(4) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)

Answer (3)
Sol. $U=-\frac{G M_{s} M_{e}}{a}$
$K: U: E=1:-2:-1$
Escape energy from earth surface per unit mass = $\frac{G M_{e}}{R}$

As per student response sheet and NTA answer key
100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

12. Three helium atoms form carbon at high temperature due to fusion. Masses of helium and carbon nuclei in a.m.u. are 4.0002 and 12 respectively. Find energy released in the process.
(1) 0.18 MeV
(2) 0.56 MeV
(3) 0.10 MeV
(4) 21.3 KeV

Answer (2)
Sol. $3 \mathrm{He} \rightarrow \mathrm{C}$
$\Delta m=0.0006$
$\Delta E=0.0006 \times 931$
$=0.56 \mathrm{MeV}$
13. For the graph $\left(v_{0}-v\right)$ for photoelectric effect given below for two metal, M_{1} and M_{2}
Stopping potential $\left(v_{0}\right)$

Statement-I : For the incident light of same frequency, kinetic energy of ejected electron from metal M_{1} will be more than that of metal M_{2}.

Statement-II : Slope of the graph is equal to $\frac{h}{e}$, where h is planck's constant and e is electronic charge.
(1) Both statements are correct
(2) Statement-I is correct while statement-II is incorrect
(3) Statement-II is correct while statement-I is incorrect
(4) Both are incorrect

Answer (1)

Sol. $h v=e v_{0}+\phi$
$e v_{0}=h v-\phi$
$v_{0}=\frac{-\phi}{e}+\frac{h}{e} v$

Slope of curve $=\frac{h}{e}$
$K . E=E-\phi$
$(K \cdot E)_{1}>(K \cdot E)_{2}$ for same light.
14. Figure shows two long co-axial cylindrical cables, carrying same current along their wall in opposite directions. The magnetic field will be zero at

(1) None of the points
(2) A and B
(3) A and C
(4) B and C

Answer (3)

Sol. By applying ampere's-circuital law magnetic field is zero at A and C.

As per student response sheet and NTA answer key.

**(Includes Students from Classroom, Distance \& Digital Courses) is

Our Stars

15. Find the normal force between the table and 5 kg block as shown in the diagram (take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) 306 N
(2) 303 N
(3) 296 N
(4) 297 N

Answer (4)

Sol.

$$
\begin{gathered}
m g-\mathrm{N}=m \mathrm{a} \\
\mathrm{~N}=m(g-a) \\
=30 \times 9.9 \\
=297 \mathrm{~N}
\end{gathered}
$$

16. Find net heat exchanged in the given cyclic process,

(1) 81.5 J
(2) 61.5 J
(3) 100.2 J
(4) 40.2 J

Answer (2)

Sol. In cyclic process $\Delta Q=\Delta \mathrm{W}$ as $\Delta U=0$

$$
\Rightarrow \pi \times \frac{280}{2} \times \frac{280}{2} \times 10^{-6} \times 10^{3}
$$

17. Find kinetic energy of O_{2} at temperature 300 K ?
(1) $10.35 \times 10^{-21} \mathrm{~J} /$ molecule
(2) $9.35 \times 10^{-22} \mathrm{~J} /$ molecule
(3) $20.70 \times 10^{-21} \mathrm{~J} /$ molecule
(4) $10.70 \times 10^{-21} \mathrm{~J} /$ molecule

Answer (1)

Sol. Total KE of O_{2} molecule $=$ Translational $\mathrm{KE}+$ Rotational KE

$$
\begin{aligned}
& =\frac{3}{2} \mathrm{KT}+\frac{2}{2} \mathrm{KT} \\
& =\frac{5}{2} \mathrm{KT} \\
& =\frac{5}{2} \times 1.38 \times 10^{-23} \times 300 \\
& =10.35 \times 10^{-21} \mathrm{~J} / \text { molecule }
\end{aligned}
$$

18. The speed of electron in the first orbit of hydrogen atom is
(1) $1.2 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(2) $2.2 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(3) $2.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(4) $2.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer (4)

Sol. For $n^{\text {th }}$ orbit,

$$
\begin{aligned}
V_{n} & =\frac{2.186 \times 10^{6}}{n} \mathrm{~m} / \mathrm{s} \\
& \approx 2.2 \times 10^{6} \mathrm{~m} / \mathrm{s} \text { for } n=1
\end{aligned}
$$

Aakashians Gonquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

19. An electron and a proton are placed at a certain distance apart. Then the ratio of coulombic force and gravitational force between them is of order
(1) 10^{32}
(2) 10^{39}
(3) 10^{36}
(4) 10^{42}

Answer (2)
Sol. $\frac{F_{c}}{F_{g}}=\frac{k q_{1} q_{2}}{G m_{1} m_{2}}$

$$
\begin{aligned}
& =\frac{9 \times 10^{9} \times(1.6)^{2} \times 10^{-38}}{6.67 \times 10^{-11} \times 9.1 \times 10^{-31} \times 1.67 \times 10^{-27}} \\
& =2.27 \times 10^{39}
\end{aligned}
$$

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. In YDSE; for wavelength $\lambda=5000 \AA$, slit distance $d=3 \mathrm{~mm}$ and screen distance of 2 m . The intensity at a point which is 3 cm away from central maxima (Assume intensity of light for each source is l_{0}) is $x \%_{0}$ then x is \qquad .

Answer (4)

Sol. $\Delta x=\frac{d y}{D}=\frac{3 \times 10^{-3} \times 3 \times 10^{-2}}{2}$

$$
\begin{aligned}
& \Delta d=\frac{2 \pi}{5000 \times 10^{-10}} \times \frac{9 \times 10^{-5}}{2} \\
& =\frac{2 \pi}{10^{-6}} \times 9 \times 10^{-5} \\
& \Delta d=180 \pi
\end{aligned}
$$

$$
\Rightarrow \text { maxima }
$$

\therefore Intensity $=4 / 0$
$x=4$
22. What is angle (in degrees) between resultant of $2 \vec{q}-2 \vec{p}$ and $2 \vec{q}+2 \vec{p}$ with \vec{q} ?

Answer (0)

Sol. $\vec{r}=(2 \vec{q}-2 \vec{p})+(2 \vec{q}+2 \vec{p})$

$$
\vec{r}=2 \times 2 \vec{q}=4 \vec{q}
$$

Angle of \vec{r} with $\vec{q}=$ angle between $4 \vec{q}$ and $\vec{q}=0^{\circ}$
23. In a LCR series AC circuit as given, the voltage across the capacitor is $25 \sqrt{x}$ volts then x is

$$
V=50 \sqrt{2} \sin (100 t)
$$

Answer (8)

Sol. $Z=\sqrt{\left(L \omega-\frac{1}{\omega C}\right)^{2}+R^{2}}$

$$
=\sqrt{\left(100-\frac{1}{100 \times 20 \times 10^{-6}}\right)^{2}+300^{2}}
$$

$$
=\sqrt{(400)^{2}+300^{2}}
$$

$$
Z=500 \Omega
$$

$$
i=\frac{50 \sqrt{2}}{500} \mathrm{~A}
$$

$$
\chi_{C}=\frac{1}{100 \times 20 \times 10^{-6}}=\frac{1000}{2}=500 \Omega
$$

$$
V_{C}=50 \sqrt{2}=25 \sqrt{8}
$$

\qquad **(Includes Students from Classroom, Distance δ Digital Courses) is

24. The magnetic field at centre O is $k \times 10^{-7} \mathrm{~T}$. Radius given. Find k.

Answer (3)

Sol. B due to section $B C$ and $D A$ of wire $=0$

$$
\begin{aligned}
& B_{\text {net }}=B_{A B}+B_{C D} \\
& B_{\text {net }}=\frac{\mu_{0} i \pi}{4 \pi \cdot 4 \pi}+\frac{\mu_{0} i \pi}{4 \pi \cdot 2 \pi}=\frac{\mu_{0} i}{\pi}\left(\frac{1}{16}+\frac{1}{8}\right) \\
& B_{\text {net }}=\frac{3 \mu_{0} i}{\pi \times 16}=\frac{\mu_{0}}{4 \pi} \times \frac{3 i}{4}=10^{-7} \times \frac{3 \times 4}{4} \\
& B_{\text {net }}=3 \times 10^{-7} \mathrm{~T} \otimes
\end{aligned}
$$

25. A particle is moving in straight line with constant acceleration with initial velocity of zero. The ratio of distance travelled by particle in $(n-1)^{\text {th }}$ second to that in $n^{\text {th }}$ second, where $n=10$ is $\frac{A}{B}$ then $(A+B)$ is \qquad . (A and B are co-prime number)

Answer (36)

Sol. $S_{n}=u+\frac{a}{2}(2 n-1) \Rightarrow \frac{S_{9}}{S_{10}}=\frac{17}{19}$
26. Find the tension (T) in the given string (in N).

Answer (192)

Sol. $T=(6+10)(g+a)$

$$
\begin{aligned}
& =16 \times 12 \\
& =192 \mathrm{~N}
\end{aligned}
$$

27. An alternating voltage applied to a series $L R C$ circuit as shown in figure.

The current the circuit is \qquad Ampere

Answer (20)

Sol. $z=\sqrt{R^{2}+\left(x_{C}-x_{L}\right)^{2}}=R$

$$
i=\frac{200}{z}=20 \text { Ampere }
$$

28.
29.
30.

As per student response sheet and NTA answer key.

