A. For a reaction, the value of the rate constant at 300 K is $6.0 \times 105 \mathrm{~s}-1$. The value of Arrhenius factor $A$ at infinitely high temperature is :

1. $6 \times 105 \times \mathrm{e}-\mathrm{Ea} / 300 \mathrm{R}$
2. e-Ea/300R
3. $6 \times 10-5 / 300$
4. $\mathbf{6 \times 1 0 5}$
$B$. $A \rightarrow B$ The above reaction is of zero order The life of this reaction is 50 min The time taken for the concentration of $A$ to reduce to one-fourth of its initial value is $\qquad$ min (Nearest integer)

Correct Answer: 75
C. For the first-order reaction $A \longrightarrow B$ the half-life is 30 mins , The time taken for $75 \%$ completion of the reaction is min (Nearest integer) Given: log g 2=03010, log 3=04771, log $5=06989$.

The correct answer is 60 .
t $1 / 2=\mathrm{T} 50=30 \mathrm{~min}$
$\mathrm{T} 75=2 \mathrm{t} 1 / 2=30 \times 2=60 \mathrm{~min}$
C. How many statements are correct:

- If there is no relation between the rate constant and temperature, then activation energy is negative.
- If the activation energy is zero, the rate constant is temperature-independent.
- If the rate constant increases with the increase of temperature, activation energy is positive.
- If the rate constant decreases with an increase in temperature, activation energy is negative.

1. 1 and 2
2. 2 and 3
3. 2, 3, and 4
4. 4
$D$. $A$ and $B$ are two substances undergoing radioactive decay in a container The half-life of $A$ is 15 min and that of $B$ is 5 min If the initial concentration of $B$ is 4 times that of $A$ and they both start decaying at the same time, how much time will it take for the concentration of both of them to be same? $\qquad$ min

Correct Answer: 15
E. If compound $A$ reacts with $B$ following first-order kinetics with rate constant $2.011 \times 10-3-12.011 \times 10-3 \mathrm{~s}-1$. The time taken by A (in seconds) to reduce from 7 g to 2 g will be $\qquad$ (Nearest Integer) $[\log 5=0.698, \log 7=0.845, \log 2=0.301]$

Correct Answer: 623
F. Statement I: Sulphanilic acid gives an esterification test for the carboxyl group Statement II: Sulphanilic acid gives a red color in Lassigne's test for extra element detection In light of the above statements, choose the most appropriate answer from the options given below:

1. Both Statement I and Statement II are correct
2. Both Statement I and Statement II are incorrect
3. Statement I is incorrect but Statement II is correct
4. Statement I is correct but Statement II is incorrect
G. ' A ' in the given reaction is


5. 


3.

4.

