A. A moving coil galvanometer is converted into an ammeter of range 0 to 5 mA . The galvanometer resistance is 90Ω and the shunt resistance has a value of 10Ω. If there are 50 divisions in the galvanometer-turned ammeter on either side of zero, its current sensitivity is-

1. $1 \times 105 \mathrm{~A} / \mathrm{div}$
2. $2 \times 104 \mathrm{~A} / \mathrm{div}$
3. $\mathbf{2 \times 1 0 4} \mathbf{~ d i v} / \mathrm{A}$
4. $1 \times 105 \mathrm{div} / \mathrm{A}$
B. Sound travels in a mixture of two moles of helium and n moles of hydrogen If rms speed of gas molecules in the mixture is $\sqrt{ } 2$ times the speed of sound, then the value of n will be -
5. 1
6. 2
7. 3
8. 4
C. The speed of sound in an ideal gas at a given temperature T is v. The rms speed of gas molecules at that temperature is vrms. The ratio of the velocities v and vrms for helium and oxygen gases are X and X^{\prime} respectively. Then X / X^{\prime} is equal to -
9. $5 / \sqrt{ } 21$
10. $\sqrt{ } 5 / \sqrt{ } 21$
11. $21 / 5$
12. $21 / \sqrt{ } 5$
D. Consider the two statements (Assume the density of water to be constant):

Statement 1: A capillary tube is first dipped in hot water and then dipped in cold water. The rise is higher in hot water.
Statement 2: The capillary tube is first dipped in cold water and then in hot water. The rise is higher in cold water.

1. Statement 1 is true and Statement 2 is false
2. Statement 1 is false and Statement 2 is true
3. Both Statements are true
4. Both Statements are false
E. The charge flowing in a conductor changes with time as $Q(T)=\alpha t+\beta t 2+\gamma 3$ where α, β, γ are constants. The minimum value of the current is -
5. $\alpha-3 y / \beta 2$
6. $\alpha-y 2 / 3 \beta$
7. $\alpha-3 \beta 2 / \gamma$
F. In a thermodynamic process work done by the gas is $1000 \mathrm{~J} \&$ heat supplied is 200 J . Find the change in the internal energy of the gas.
8. 800 J
9. - 800 J
10. 1200 J
11. -1200 J

Explanation -
$Q=\Delta U+\Omega$
Therefore, 200= $\Delta U+1000$
Therefore, $\Delta U=-800 \mathrm{~J}$
G. Given below are two statements: one is labeled as Assertion A and the other is labeled as Reason R

- Assertion A: The efficiency of a reversible heat engine will be highest at $-273{ }^{\circ} \mathrm{C}$ temperature of the cold reservoir.
- Reason R: The efficiency of Carnot's engine depends not only on the temperature of the cold reservoir but it depends on the temperature of the hot reservoir too and is given as $n=(1-T 1 / T 2)$
In the light of the above statements, choose the correct answer from the options given below

1. A is true but R is false
2. Both A and R are true and R is the correct explanation of A
3. Both A and R are true but R is NOT the correct explanation of A
4. A is false but R is true

Explanation - Assertion A claims that the efficiency of a reversible heat engine is maximized at $-273^{\circ} \mathrm{C}$ (0 Kelvin), the temperature of the cold reservoir.
Reason R is also valid as it describes the efficiency of Carnot's engine using the formula: $\eta=1$ $-T 2 / T 1$, where $T c$ is the temperature of the cold reservoir and Th is the temperature of the hot reservoir. However, Reason R does not directly address why the efficiency is highest at $-273^{\circ} \mathrm{C}$ as stated in Assertion A. The formula in Reason R does demonstrate how the efficiency is influenced by the temperatures of both the hot and cold reservoirs, but it does not directly relate to the statement in Assertion A about the temperature of $-273^{\circ} \mathrm{C}$ being the point of highest efficiency. Therefore, the correct option is (B): Both A and R are true and R is the correct explanation of A.
H. A moving coil galvanometer is converted into an ammeter of range 0 to 5 mA . The galvanometer resistance is 90Ω and the shunt resistance has a value of 10Ω. If there are 50 divisions in the galvanometer-turned ammeter on either side of zero, its current sensitivity is -

1. $1 \times 105 \mathrm{~A} / \mathrm{div}$
2. $2 \times 104 \mathrm{~A} / \mathrm{div}$
3. $\mathbf{1 \times 1 0 5 \mathrm { div } / \mathrm { A }}$
4. $2 \times 104 \mathrm{div} / \mathrm{A}$
I. For the given figures, choose the correct options:

5. At resonance, the current in (b) is less than that in (a)
6. The rms current in the circuit (b) can never be larger than that in (a)
7. The rms current in Figure (a) is always equal to that in Figure (b)
8. The rms current in the circuit (b) can be larger than that in (a)
J. A cell of emf 90 V is connected across a series combination of two resistors each of 100Ω resistance A voltmeter of resistance 400Ω is used to measure the potential difference across each resistor The reading of the voltmeter will be -
9. 45 V
10. 40 V
11. 80 V
12. 90 V \qquad
