Medical|IIT-JEE|Foundations
Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based

Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2024 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300 .
(3) This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A (01-20) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section-B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4} \mathbf{~ m a r k s}$ for correct answer and -1 mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 SEssion-1

Our Stars

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. A block of mass 50 kg is moving with speed of $10 \mathrm{~m} / \mathrm{s}$ on rough horizontal surface.
(Friction coefficient of 0.3)

Find of the kinetic friction acting on the object.
(1) 500 N
(2) 150 N
(3) 167 N
(4) 16 N

Answer (2)
Sol. $f=\mu \mathrm{N}=0.3 \times 500=150 \mathrm{~N}$
2. A truck is moving from rest with constant power P. If the displacement of the truck is proportional to t^{n}, where t is time, find n.
(1) 2
(2) $\frac{3}{2}$
(3) $\frac{1}{2}$
(4) $\frac{5}{2}$

Answer (2)
Sol. $P t=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& v=\sqrt{\frac{2 P t}{m}} \\
& v=\frac{d s}{d t} \\
& \therefore \quad s=\int \sqrt{\frac{2 P t}{m}} d t \\
& \quad s \propto t^{3 / 2}
\end{aligned}
$$

3. The van der Waals gas equation is expressed as $\left(P-\frac{a}{V^{2}}\right)(V-b)=n R T$, where symbols have their usual meaning, then dimension of $\frac{a}{b^{2}}$ is
(1) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(2) $\left[M^{2} L^{2} T^{-2}\right]$
(3) $\left[\mathrm{MLT}^{-2}\right]$
(4) $\left[\mathrm{ML}^{3} \mathrm{~T}^{-2}\right]$

Answer (1)
Sol. $[P]=\left[\frac{a}{V^{2}}\right]$
$\mathrm{ML}^{-1} \mathrm{~T}^{-2}=\frac{a}{\mathrm{~L}^{6}}$
$a=\mathrm{ML}^{+5} \mathrm{~T}^{-2}$
and $[V]=[b]=\left[L^{3}\right]$
$\left[\frac{a}{b^{2}}\right]=\frac{\mathrm{ML}^{5} \mathrm{~T}^{-2}}{\mathrm{~L}^{3}}$

$$
=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]
$$

4. In a hydraulic lift force F is applied to balance 10 N load, diameter of effort arm is 14 cm and load arm is 1.4 cm . The F is equal to

(1) 500 N
(2) 100 N
(3) 2000 N
(4) 1000 N

Answer (4)

"936 99+ percenuluers
*4145 95+ PERCENTILERS

Sol. $P_{1}=P_{2}$

$$
\frac{10}{\frac{\pi}{4}(1.4)^{2}}=\frac{F}{\frac{\pi}{4}(14)^{2}}
$$

$F=1000 \mathrm{~N}$
5. A hollow sphere is rolling without slipping. Find ratio of rotational kinetic energy to total kinetic energy of sphere
(1) $\frac{4}{7}$
(2) $\frac{3}{7}$
(3) $\frac{2}{7}$
(4) $\frac{5}{7}$

Answer (3)

Sol. $K_{\text {rot }}=\frac{1}{2}\left(\frac{2}{5} M R^{2}\right) \omega^{2}$

$$
\begin{aligned}
& K_{\text {total }}=\frac{1}{2} M v^{2}+\frac{1}{2}\left(\frac{2}{5} M R^{2}\right) \omega^{2} \\
& v=R \omega \\
& \therefore \quad K_{\text {total }}=\frac{1}{2}\left(\frac{7}{5} M R^{2}\right) \omega^{2} \\
& \frac{K_{\text {rot }}}{K_{\text {total }}}=\frac{2}{7}
\end{aligned}
$$

6. Shortest wavelength in Lyman series has wavelength of $915 \AA$. Longest wavelength of Balmer series has a value of?
(1) $5296 \AA$
(2) $3647 \AA$
(3) $6588 \AA$
(4) $7294 \AA$

Answer (3)
Sol. Lyman : $\frac{1}{915}=R Z^{2}\left(\frac{1}{1}-\frac{1}{\infty}\right)$

$$
R Z^{2}=\frac{1}{915}
$$

Balmer : Transition from $n=3$ to $n=2$

$$
\begin{aligned}
& \frac{1}{\lambda}=R Z^{2}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \\
& \frac{1}{\lambda}=\frac{1}{915}\left(\frac{5}{36}\right) \\
& \lambda=6588 \AA
\end{aligned}
$$

7. In sonometer, fundamental frequency changes from 400 Hz to 500 Hz keeping same tension. Find percentage change in length.
(1) 5%
(2) 10%
(3) 20%
(4) 40%

Answer (3)
Sol. $f=\frac{v}{2 l_{1}}=400$
$\frac{v}{2 I_{2}}=500$

$$
\frac{I_{2}-I_{1}}{I_{1}} \times 100=\frac{\frac{V}{1000}-\frac{V}{800}}{\frac{V}{800}} \times 100=\left(\frac{8}{10}-1\right) \times 100
$$

$$
=-20 \%
$$

8. For what boolean values of $A, B \& C$ the given logic gate gives output of zero?

(1) $A=1, B=0, C=1$
(2) $A=0, B=0, C=1$
(3) $A=0, B=1, C=1$
(4) $A=1, B=1, C=1$

Answer (2)
Sol. Putting values gives option (2).

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

9. $20 R$ resistance wire is cut into 10 equal parts. Now each part first is connected in series and then in parallel. Find ratio of equivalent resistance in both cases ($R_{\text {series }}$: $\left.R_{\text {parallelel }}\right)$
(1) $100: 1$
(2) $50: 1$
(3) $25: 1$
(4) $5: 1$

Answer (1)

Sol. Series : $R_{\text {eq }}=20 R$
Parallel : $R_{\text {eq }}^{\prime}=\frac{R}{5}$
Ratio : $R_{\text {eq }}: R_{\text {eq }}^{\prime}=20 R: \frac{20 R}{100}=1: \frac{1}{100}=100: 1$
10. On vehicles containing inflammable fluid, metallic chains are provided touching of the earth, then correct option is
(1) It is custom
(2) Alert for another vehicle
(3) For discharging the statics charges developed due to friction
(4) It is fashion

Answer (3)

Sol. Because of friction, metallic body gets changed.
11. 400Ω series resistance is required to convert a galvanometer of 100Ω to a voltameter of range 10 V . To convert same galvanometer, in ammeter of 10 A , what should be the shunt resistance
(1) 4Ω
(2) 0.4Ω
(3) 0.2Ω
(4) 5Ω

Answer (3)

Sol.

$I_{g}=\frac{10}{500}=\frac{1}{50} \mathrm{~A}$

$\Rightarrow \quad 10 r=\frac{1}{50} \times 100$
$r=0.2 \Omega$
12. A particle is moving in circular path of radius 9 m such that it completes 120 rev in 3 minutes. Find centripetal acceleration.
(1) $8 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
(2) $16 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
(3) $32 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$
(4) $16 \pi \mathrm{~m} / \mathrm{s}^{2}$

Answer (2)

Sol. $\omega=\frac{\Delta \theta}{\Delta t}=\frac{120 \times 2 \pi}{3 \times 60}=\frac{4 \pi}{3} \mathrm{rad} / \mathrm{s}$

$$
a_{c}=\omega^{2} r
$$

$$
\begin{aligned}
& =\left(\frac{16}{9} \pi^{2}\right) \times 9 \\
& =16 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

13. The current flowing through an inductor vary with time as $i=(3 t+2) A$ and back emf induced in it is 12 V at an instant. Find inductance
(1) 1 H
(2) 2 H
(3) 4 H
(4) 5 H

Answer (3)
two Year classhoom program
As per student response sheet and NTA answer key [PHY. OR CHEM. OR MATHS]
\qquad
\qquad

Sol. $\varepsilon=\left|L \frac{d i}{d t}\right|$
$12=L(3)$
$L=4 \mathrm{H}$
14. In thermodynamics adiabatic process, pressure is directly proportional to cube of absolute temperature. Find $\frac{C_{p}}{C_{v}}$ for the gas
(1) $\frac{4}{3}$
(2) $\frac{7}{5}$
(3) $\frac{3}{2}$
(4) $\frac{8}{7}$

Answer (3)

Sol. $P \propto T^{3} \Rightarrow \frac{P^{3} V^{3}}{P} \propto P^{2} V^{3} \propto P V^{3 / 2}=P V^{\gamma}$
15. Find the ratio of power dissipated in 5Ω and 10Ω resistor.

(1) $1: 2$
(2) $1: 4$
(3) $2: 1$
(4) $4: 1$

Answer (3)

Sol. $P=i^{2} R=\frac{V^{2}}{R}$
\therefore Voltage across 5Ω and 10Ω is same
$P \propto \frac{1}{R}$
$\frac{P_{1}}{P_{2}}=\frac{R_{2}}{R_{1}} \Rightarrow P_{1}: P_{2}=10: 5$

$$
P_{1}: P_{2}=2: 1
$$

16. Angular momentum of revolving electron of hydrogen atom in a given orbit is dependent on radius r as
(1) $\frac{1}{r}$
(2) $\frac{1}{r^{2}}$
(3) $\frac{1}{\sqrt{r}}$
(4) \sqrt{r}

Answer (4)

Sol. $L=\frac{n h}{2 \pi}$ (i) $r=\frac{n^{2}}{2} r_{0}$ (ii)

$$
\Rightarrow L \propto \sqrt{r} .
$$

17. In a photoelectric effect, stopping potential of photoelectrons does not depend on
(1) Intensity of radiation
(2) Frequency of radiation
(3) Material or metal
(4) Kinetic energy of electrons

Answer (1)

Sol. $e V_{S}=h v-\phi_{0}$
$e V_{S}=K E$

As per student
100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

18. If F_{1} is electrostatic force, F_{2} is magnetic force on a charge particle of charge q, where E is electric field, B is magnetic field and v is velocity of particle. Mark correct option.
(1) $\vec{F}_{1}=q(\vec{V} \times \vec{E})$
(2) $\vec{F}_{2}=q \vec{B}$
(3) $\vec{F}_{1}=\vec{q}(\vec{E} \times \vec{v})$
(4) $\vec{F}_{2}=q(\vec{v} \times \vec{B})$

Answer (4)

Sol. $\vec{F}_{1}=q \vec{E}$

$$
\vec{F}_{2}=q(\vec{v} \times \vec{B})
$$

19.

(A)	X-Ray	(P)	$\lambda>700 \mathrm{~nm}$
(B)	UV Ray	(Q)	$100 \mathrm{~nm}<\lambda<400 \mathrm{~nm}$
(C)	γ-Ray	(R)	$\lambda<0.3 \mathrm{~nm}$
(D)	Infrared	(S)	$0.3 \mathrm{~nm}<\lambda<10 \mathrm{~nm}$

(1) $(\mathrm{A}) \rightarrow(\mathrm{S}),(\mathrm{B}) \rightarrow(\mathrm{Q}),(\mathrm{C}) \rightarrow(\mathrm{P}),(\mathrm{D}) \rightarrow(\mathrm{R})$
(2) $(A) \rightarrow(S),(B) \rightarrow(Q),(C) \rightarrow(R),(D) \rightarrow(P)$
(3) (A) $\rightarrow(P),(B) \rightarrow(Q),(C) \rightarrow(R),(D) \rightarrow(S)$
(4) (A) $\rightarrow(P),(B) \rightarrow(R),(C) \rightarrow(Q),(D) \rightarrow(S)$

Answer (2)

Sol. Most energetic gamma rays and less energetic are Infrared.
20. A conducting sphere is given a charge Q on it. The ratio of potential at points at a distance $\frac{R}{2}$ and $\frac{3 R}{2}$ from the centre of the sphere is
(1) $1: 3$
(2) $3: 2$
(3) $3: 1$
(4) $2: 3$

Answer (2)

Sol. $V_{1}=\frac{K Q}{R}$

$$
\begin{aligned}
& V_{2}=\frac{2 K Q}{3 R} \\
& \therefore \quad \frac{V_{1}}{V_{2}}=\frac{3}{2}
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. A particle is projected with some speed and it is observed that it achieves a maximum height of 64 m . If the same particle is projected with initial speed half to the first value, then new maximum height achieved by particle will be \qquad m.

Answer (16)

Sol. $H_{\max }=\frac{u^{2}}{2 g}=64 \mathrm{~m}$
$H_{\max }^{\prime}=\frac{u^{2}}{4(2 g)}=\frac{64}{4}=16 \mathrm{~m}$
22. If a body is moving with a momentum. $\vec{P}=\sin k t \hat{i}-\cos k t \hat{j}$, then angle between \vec{F} and \vec{P} is \qquad degrees.

Answer (90)

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

Sol. We know that $\vec{F}=\frac{d \vec{P}}{d t}$

$$
\begin{aligned}
& \vec{F}=(\cos k t \times k) \hat{i}-(-\sin k t \times k) \hat{j} \\
& \vec{F}=(k \cos k t) \hat{i}+(k \sin k t) \hat{j} \\
& \therefore \quad \cos \theta=\frac{\vec{F} \cdot \vec{P}}{|\vec{F}||\vec{P}|}=0 \\
& \quad \theta=90^{\circ}
\end{aligned}
$$

23. Electric field due to the dipole at P is E and at point Q is $\frac{E}{K}$, find K.

Answer (16)

Sol. $E_{P}=\frac{2 K_{P}}{r^{3}}$
$E_{Q}=\frac{K_{P}}{(2 r)^{3}}$
$\therefore \quad E_{Q}=\frac{1}{16} E_{P}$
24. The least count of a vernier calliper is 0.1 mm and 20 vernier scale division coincides with 19 main scale division, then one main scale division is
\qquad mm .

Answer (2)
Sol. 20 VSD = 19 MSD
$V S D=\frac{19}{20} M S D$
$L C=M S D-\frac{19}{20} M S D$
$0.1 \mathrm{~mm}=\frac{M S D}{20}$
MSD $=2 \mathrm{~mm}$
25. Find the current i (upto nearest integer), in the circuit.

Answer (10)

Sol. $V_{L}=i X_{L}$
$31.5=(i) \times(\omega L)$
$31.5=i \times 2 \pi F L$
$i=\frac{31.5}{2 \pi \times 50 \times 10^{-2}}=\frac{31.5}{3.14}$
$i \approx 10 \mathrm{~A}$
26.
27.
28.
29.
30.

Aakashians Fonquer JEE (Main) 2024 SEssion-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

