ledantu

JEE-Main-05-04-2024 (Memory Based) [EVENING SHIFT]

Maths

Question: If $S = (2, 4, 8, \dots, 512)$ divided in 3 set A, B, C into equal no. of elements the n(AUBUC) is equal to S then AUB=BUC=CUA= ϕ then probability of ABC

Question: The 50th word in the dictionary using the letters B, B, H, J, O is: **Options:** (a) OBBJH (b) OBBHJ (c) JHBBO (d) BBHOJ Answer: (a) Question: $\left(\frac{3^{\frac{1}{2}}}{x} + \frac{2x}{5^{\frac{1}{3}}}\right)^{1^2}$. Find which term is constant. **Options:** $(a) 4^{th}$ (b) 5th (c) 6th (d) 7th Answer: (d) $4^{1+x} + 4^{1-x}, rac{k}{2}, 16^x + 16^{-x}$ Let **Question:** are in A.P. then least value of k is Answer: (10) Question: Let image of point (8, 5, 7) with respect to line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{5}$ is (α, β, γ) . Then, $\alpha + \beta + \gamma$ is equal to **Options:** (a) 10 (b) 12 (c) 9 (d) 14 Answer: (d) **Question:** Area bounded by y = -2|x| and y = x|x| is: **Options:** (a) $\frac{2}{3}$ (b) ¹/₃ (c) $\frac{1}{2}$ (d) 4/3Answer: (d) **Question:** The number of real solution x|x + 5| + 2|x + 7| - 2 = 0 is

Vedantu

Options:

(a) 1 (b) 2 (c) 3 (d) 4 **Answer: (c)**

Question: $_{A=\begin{bmatrix} \alpha & \alpha & \alpha \\ \beta & \alpha & -\beta \end{bmatrix} \cdot B}$. B is formed by cofactor of A, matrix then f out determinant of AB.

Options:

(a) $4 \alpha^3 (2\alpha + \beta)^5$ (b) $12 \alpha^3 (2\alpha + \beta)^2$ (c) $8 \alpha^6 (\alpha + \beta)^3$ (d) $18 \alpha^8 (\alpha + \beta)^3$ Answer: (c)

Question: Consider the equation $P(x) = ax^2 + bx + C = 0$. If a, b, $c \in A$ where $A = \{1, 2, 3, 4, 5, 6\}$, then the probability that P(x) has real and distinct roots?

Question: If $f : R \to R$ and $g : R \to R$ defined such that f(x) = |x| - 1 and

 $g(x) = \begin{cases} e^x, & x > 0\\ x - 1, & x \le 0 \end{cases}$ then,

Options:

(a) Both f and g are one-one(b) f is one-one and g is many one(c) f is many-one and g is one-one

(d) Both f and g are many-one

Answer: (c)

Question: A line L is perpendicular to y = 2x + 10 such that it touches the parabola $y^2 = 4(x - 9)$. Find distance between point of contact and origin.

Options:

 $\sqrt{165}$ (a) $\sqrt{175}$ (b) $\sqrt{185}$ (c) $\sqrt{190}$ (d)

Answer: (c)

Question: If S = {2, 3, 8, 16,...,512}. If S is broke in 3 equal subsets A, B and C such than A \cap B = B \cap C = C \cap A = ϕ and A \cup B \cup C = S, then maximum number of ways to break is:

Vedantu

Options:

- (a) ${}^{9}C_{3}$
- (b) $\frac{9!}{(3!)^3}$
- (c) $\frac{9!}{(3!)^4}$
- $(d) \quad \frac{9!}{(3!)^2}$

```
Answer: (b)
```

Question: If
$$\frac{dy}{dx} + y + y \cdot \frac{2x}{(1+x^2)^2} = xe^{\frac{1}{1+x^2}} \cdot y(0) = 0$$
, and $f(x) = y(x)e^{-\frac{1}{1+x^2}}$ and $y = x$.

Then the area bounded b/w these two curve equals to:

Options:

(a) ²/₃ (b) ¹/₃ (c) 7/6 (d) 2 **Answer: (a)**

Question: If $y = \frac{2\cos 2\theta + \cos \theta}{\cos 3\theta + \cos^2 \theta + \cos \theta}$, then the value of y" + y' + y is Options: (a) $\sec \theta (1 - \tan^3 \theta)$ (b) $\tan \theta (\sec^3 \theta + 2 \tan^2 \theta)$ (c) $\sec \theta (2 \sec^2 \theta + \tan \theta)$ (d) $\cot \theta (\sec^3 \theta + 2 \tan^2 \theta)$ Answer: (c)

Question: If $2x^2 - x + 2 = 0$ and one root is a, then $\lim_{x \to \frac{1}{a}} \frac{16(1-\cos(2x^2-x+2))}{(ax-1)^2}$ equal to Options:

 $\frac{\frac{32(1-a^2)^2}{a^4}(a)}{\frac{8(1-a^2)^2}{a^3}(b)}$ $\frac{\frac{16(1-a^2)^2}{a^4}}{(c)}$ $\frac{20(1-a^2)^2}{a^3}(d)$

Answer: (a)

Question:
$$\beta(m, n) = \int_0^1 x^m (1 - x^m)^{n-1} dx^{\text{and}}$$

 $a \times \beta(-b, c) = \int_0^1 (1 - x^{10})^{20} dx_{\text{then } (a + b + c) \text{ is equal to:}}$
(a) 210
(b) 230
(c) 250
(d) 270
Answer: (a)

Question:Find the differential equation of circle whose centre lies on y = x and passes through (0, 1)

Options:

$$-x^{2} + y^{2} - 2xy + 2x - 1 + \frac{dy}{dx} (a)$$

$$(x^{2} - y^{2} - 2xy + 2y - 1) = 0$$

$$-x^{2} - y^{2} - 2xy + 2x - 1 + \frac{dy}{dx} (b)$$

$$(x^{2} + y^{2}) = 0$$

$$-x^{2} - y^{2} - 2xy + 2x - 1 + \frac{dy}{dx} (c)$$

$$(x^{2} - y^{2}) = 0$$

$$-x^{2} + y^{2} - 2xy + 2x - 1 + \frac{dy}{dx} (d)$$

$$(x^{2} + y^{2} - 2) = 0$$

Answer: (a)

Question: $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} = \vec{b} \times \vec{c}$, then minimum value of $|\vec{c} - \vec{a}|^2$ (a) 13 (b) 5 $\frac{40}{9}$ (c) $\frac{20}{9}$ (d) Answer: (c)