Vedantu

JEE-Main-05-04-2024 (Memory Based) [EVENING SHIFT]

Maths

Question: If $S=(2,4,8 \ldots512)$ divided in 3 set A, B, C into equal no. of elements the $n(A U B U C)$ is equal to S then $A U B=B U C=C U A=\phi$ then probability of $A B C$

Question: The $50^{\text {th }}$ word in the dictionary using the letters B, B, H, J, O is:

Options:

(a) OBBJH
(b) OBBHJ
(c) JHBBO
(d) BBHOJ

Answer: (a)
Question: $\left(\frac{3 \frac{b}{x}}{x}+\frac{2 x}{5^{\frac{1}{5}}}\right)^{12}$. Find which term is constant.
Options:
(a) $4^{\text {th }}$
(b) $5^{\text {th }}$
(c) 6^{th}
(d) $7^{\text {th }}$

Answer: (d)

Question:
value of k is

$$
4^{1+x}+4^{1-x}, \frac{k}{2}, 16^{x}+16^{-x} \text { Let }
$$

are in A.P. then least
Answer: (10)
Question: Let image of point $(8,5,7)$ with respect to line
Options: $\quad \frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{5}$ is (α, β, γ). Then, $\alpha+\beta+\gamma$ is equal to
(a) 10
(b) 12
(c) 9
(d) 14

Answer: (d)
Question: Area bounded by $y=-2|x|$ and $y=x|x|$ is:
Options:
(a) $2 / 3$
(b) $1 / 3$
(c) $1 / 2$
(d) $4 / 3$

Answer: (d)

Question:The number of real solution $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is

Options:

(a) 1
(b) 2
(c) 3
(d) 4

Answer: (c)
Question: $A=\left[\begin{array}{ccc}\alpha & \alpha & \alpha \\ \beta & \alpha & -\beta \\ -\alpha & \alpha & \alpha\end{array}\right] B$. B is formed by cofactor of A, matrix then f out determinant of AB .

Options:

(a) $4 \alpha^{3}(2 \alpha+\beta)^{5}$
(b) $12 \alpha^{3}(2 \alpha+\beta)^{2}$
(c) $8 \alpha^{6}(\alpha+\beta)^{3}$
(d) $18 \alpha^{8}(\alpha+\beta)^{3}$

Answer: (c)
Question: Consider the equation $P(x)=a x^{2}+b x+C=0$. If $a, b, c \in A$ where $A=$ $\{1,2,3,4,5,6\}$, then the probability that $P(x)$ has real and distinct roots?

Question: If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined such that $\mathrm{f}(\mathrm{x})=|\mathrm{x}|-1$ and

$$
g(x)=\left\{\begin{array}{cl}
e^{x}, & x>0 \\
x-1, & x \leq 0
\end{array}\right. \text { then, }
$$

Options:

(a) Both f and g are one-one
(b) f is one-one and g is many one
(c) f is many-one and g is one-one
(d) Both f and g are many-one

Answer: (c)

Question: A line L is perpendicular to $y=2 x+10$ such that it touches the parabola $y^{2}=4(x-$ 9). Find distance between point of contact and origin.

Options:

$$
\begin{aligned}
& \sqrt{165}(\mathrm{a}) \\
& \sqrt{175}(\mathrm{~b}) \\
& \sqrt{185}(\mathrm{c}) \\
& \sqrt{190}(\mathrm{~d})
\end{aligned}
$$

Answer: (c)

Question:If $S=\{2,3,8,16, \ldots, 512\}$. If S is broke in 3 equal subsets A, B and C such than A $\cap \mathrm{B}=\mathrm{B} \cap \mathrm{C}=\mathrm{C} \cap \mathrm{A}=\phi$ and $\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{S}$, then maximum number of ways to break is:

Options:

(a) ${ }^{9} \mathrm{C}_{3}$
(b) $\frac{9!}{(3!)^{3}}$
(c) $\frac{9!}{(3!)^{4}}$
(d) $\frac{9!}{(3!)^{2}}$

Answer: (b)

Question: If $\frac{d y}{d x}+y+y \cdot \frac{2 x}{\left(1+x^{2}\right)^{2}}=x e^{\frac{1}{1+x^{2}}} \cdot y(0)=0$, and $f(x)=y(x) e^{-\frac{1}{1+x^{2}}}$ and $\mathrm{y}=\mathrm{x}$.
Then the area bounded b / w these two curve equals to:

Options:

(a) $2 / 3$
(b) $1 / 3$
(c) $7 / 6$
(d) 2

Answer: (a)

Question: If $y=\frac{2 \cos 2 \theta+\cos \theta}{\cos 3 \theta+\cos ^{2} \theta+\cos \theta}$, then the value of $y^{\prime \prime}+y^{\prime}+\mathrm{y}$ is

Options:

(a) $\sec \theta\left(1-\tan ^{3} \theta\right)$
(b) $\tan \theta\left(\sec ^{3} \theta+2 \tan ^{2} \theta\right)$
(c) $\sec \theta\left(2 \sec ^{2} \theta+\tan \theta\right)$
(d) $\cot \theta\left(\sec ^{3} \theta+2 \tan ^{2} \theta\right)$

Answer: (c)
Question: If $2 \mathrm{x}^{2}-\mathrm{x}+2=0$ and one root is a, then $\lim _{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2 x^{2}-x+2\right)\right)}{(a x-1)^{2}}$ equal to Options:

$$
\begin{aligned}
& \frac{32\left(1-a^{2}\right)^{2}}{}(\mathrm{a}) \\
& \frac{8\left(1-a^{4}\right)^{2}}{a^{2}}(\mathrm{~b}) \\
& \frac{16\left(1-a^{2}\right)^{2}}{a^{4}}(\mathrm{c}) \\
& \frac{20\left(1-a^{2}\right)^{2}}{a^{3}} \text { (d) }
\end{aligned}
$$

Answer: (a)

Question: $\beta(m, n)=\int_{0}^{1} x^{m}\left(1-x^{m}\right)^{n-1} d x^{\text {and }}$
$a \times \beta(-b, c)=\int_{0}^{1}\left(1-x^{10}\right)^{20} d x_{\text {then }(\mathrm{a}+\mathrm{b}+\mathrm{c}) \text { is equal to: }}$

Options:

(a) 210
(b) 230
(c) 250
(d) 270

Answer: (a)

Question:Find the differential equation of circle whose centre lies on $\mathrm{y}=\mathrm{x}$ and passes through $(0,1)$

Options:

$$
\begin{aligned}
& -x^{2}+y^{2}-2 x y+2 x-1+\frac{d y}{d x}(\text { a }) \\
& \left(x^{2}-y^{2}-2 x y+2 y-1\right)=0 \\
& -x^{2}-y^{2}-2 x y+2 x-1+\frac{d y}{d x}(\text { b }) \\
& \left(x^{2}+y^{2}\right)=0 \\
& -x^{2}-y^{2}-2 x y+2 x-1+\frac{d y}{d x}(\text { c }) \\
& \left(x^{2}-y^{2}\right)=0 \\
& -x^{2}+y^{2}-2 x y+2 x-1+\frac{d y}{d x}(\text { d }) \\
& \left(x^{2}+y^{2}-2\right)=0
\end{aligned}
$$

Answer: (a)

Question: $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a}=\vec{b} \times \vec{c}$, then minimum value of $|\vec{c}-\vec{a}|^{2}$
Options:
(a) 13
(b) 5
$\frac{40}{9}$ (c)

$$
\frac{20}{9}(\mathrm{~d})
$$

Answer: (c)

