CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Among the given molecules, identify the one which undergoes nucleophilic addition reaction at fastest rate?
(1) HCHO
(2) $\mathrm{CH}_{3} \mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

Answer (1)

Sol. Rate of N.A.R. a electrophilicity of C -atom

$$
\alpha \frac{1}{\text { Steric Hinderance }}
$$

(Most electrophilic and least hindered)

2. Which compound will absorb light of highest frequency?
(1) $\left[\mathrm{Cr}\left[\mathrm{H}_{2} \mathrm{O}\right]_{6}\right]^{3+}$
(2) $\left[\mathrm{CrCl}_{6}\right]^{3-}$
(3) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(4) $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$

Answer (3)
Sol. More the crystal field splitting energy more will be the frequency of absorbed light.
Crystal field splitting energy depends on ligand strength here
Order of ligand strength
$\mathrm{Cl}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CN}^{-}$; So splitting energy will also follow same order
3. Find the ratio of shortest wavelengths in Lyman and Balmer series of H -atom.
(1) $\frac{1}{4}$
(2) $\frac{4}{1}$
(3) $\frac{1}{2}$
(4) $\frac{2}{1}$

Answer (1)

Sol. $\left(\lambda_{\text {shortest }}\right)_{\text {Lyman }}=\frac{1}{R} ;\left(\lambda_{\text {shortest }}\right)_{\text {Balmer }}=\frac{4}{R}$
$\frac{\lambda_{\text {Lyman }}}{\lambda_{\text {Balmer }}}=\frac{\frac{1}{\mathrm{R}}}{\frac{4}{\mathrm{R}}}=\frac{1}{4}$
4. Which of the following is not the intermediate observed in Reimer Tiemann Reaction?
(1)

(2) $: \mathrm{CCl}_{2}$
(3)

(4) CHCl_{3}

Answer (4)

Sol. $\mathrm{CHCl}_{3}+\mathrm{NaOH} \longrightarrow: \mathrm{CCl}_{2}$

CHCl_{3} is the reagent.

Aakashians Conquer JEE (Main) 2024 SESSION-1

Our Stars

Perfect Score!

300/300
101

As per student response theet and NTA answer her

5. Correct metamer of the following compound is

(1)

(2)

(3)

(4)

Answer (3)

Sol. Metamers have the same functional group but differ in the alkyl/aryl groups attached to it keeping the molecular formula unchanged. Therefore, metamer of the given compound is

6. How many of the following do not belong to Lanthanoids?
$\mathrm{Eu}, \mathrm{Er}, \mathrm{Lu}, \mathrm{Cm}, \mathrm{Yb}, \mathrm{Tb}$
(1) 5
(2) 4
(3) 3
(4) 1

Answer (4)

Sol. ${ }_{63} \mathrm{Eu},{ }_{65} \mathrm{~Tb},{ }_{68} \mathrm{Er},{ }_{70} \mathrm{Yb}$ and ${ }_{71} \mathrm{Lu}$ belong to Lanthanoids.
${ }_{96} \mathrm{Cm}$ belongs to actinoids.
7. Density of x M solution of NaOH is $1.12 \mathrm{~g} / \mathrm{mL}$ and molality is 3 m , then the value of x is
(1) 3
(2) 2.8
(3) 3.8
(4) 3.5

Answer (1)

Sol. Given molality of $\mathrm{NaOH}=3 \mathrm{~m}$
It means 3 moles of NaOH present in 1000 g of solvent.

Mass of solute $(\mathrm{NaOH})=3 \times 40=120 \mathrm{~g}$
Mass of solution $=1000+120=1120 \mathrm{~g}$
Density of solution $=1.12=\frac{1120}{\text { volume }}$
Volume of solution $=\frac{1120}{1.12}=1000 \mathrm{~mL}$
Molarity of solution $=\frac{3}{1000} \times 1000$

$$
=3 \mathrm{M}
$$

8. Which of the following is not a semiconductor?
(1) Si
(2) Graphite
(3) CuO
(4) Ge

Answer (2)

Sol. Graphite is not a semiconductor, it is an allotrope of carbon and good conductor of electricity.

CuO is a p-type semiconductor.
Si and Ge are also semiconductors.

Aakashians Conquer JEE (Main) 2024 SESSION-1

Our Stars

300/300
101

As per student response sheet and NTA onower ken.

*(Includes Students from Clossroom, Distance \& Digital Courses) ${ }^{\text {is }}$

9. Match List-I with List-II and choose the correct option.

	List-I (Reagent)		List-II (Radical)
(i)	dil. HCl	(A)	Pb^{2+}
(ii)	$\mathrm{NH} \mathrm{N}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}+$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	(B)	Al^{3+}
(iii)	$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{~S}$	(C)	Mn^{2+}
(iv)	$\mathrm{NH} 4 \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$	(D)	Sr^{2+}

(1) (i)-(A), (ii)-(D), (iii)-(C), (iv)-(B)
(2) (i)-(D), (ii)-(A), (iii)-(C), (iv)-(B)
(3) (i)-(A), (ii)-(D), (iii)-(B), (iv)-(C)
(4) (i)-(B), (ii)-(C), (iii)-(D), (iv)-(A)

Answer (1)

Sol. (i) dil. HCl
Group-I: Pb^{2+}
(ii) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Group-V: $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ca}^{2+}$
(iii) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{~S}$

Group-IV: $\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}$
(iv) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$

Group-III: $\mathrm{Al}^{3+}, \mathrm{Fe}^{3+}$
10. Choose the correct option based on matching.

	Hybridization		Shape
A	$s p^{3}$	I	Octahedral
B	$s p^{3} d$	II	Tetrahedral
C	$s p^{2}$	III	Trigonal bipyramidal
D	$s p^{3} d^{2}$	IV	Trigonal planar

(1) $A(I) ; B(I I) ; C(I I I) ; D(I V)$
(2) $\mathrm{A}(\mathrm{II}) ; \mathrm{B}(\mathrm{III}) ; \mathrm{C}(\mathrm{IV}) ; \mathrm{D}(\mathrm{I})$
(3) $\mathrm{A}(\mathrm{II}) ; \mathrm{B}(\mathrm{III}) ; \mathrm{C}(\mathrm{I}) ; \mathrm{D}(\mathrm{IV})$
(4) $\mathrm{A}(\mathrm{III}) ; \mathrm{B}(\mathrm{II}) ; \mathrm{C}(\mathrm{IV})$; $\mathrm{D}(\mathrm{I})$

Answer (2)

Sol.

Hybridization	Shape
$s p^{3}$	Tetrahedral
$s p^{3} d$	Trigonal bipyramidal
$s p^{2}$	Trigonal planar
$s p^{3} d^{2}$	Octahedral

11. Which of the following will have positive electron gain enthalpy?
(A) $\mathrm{Na}+\mathrm{e}^{\ominus} \rightarrow \mathrm{Na}^{\ominus}$
(B) $\mathrm{O}+2 \mathrm{e}^{\ominus} \rightarrow \mathrm{O}^{2} \Theta$
(C) $\mathrm{Be}+\mathrm{e}^{\ominus} \rightarrow \mathrm{Be}^{\ominus}$
(D) $\mathrm{F}+\mathrm{e}^{\ominus} \rightarrow \mathrm{F}^{\ominus}$
(E) $\mathrm{N}+\mathrm{e}^{\ominus} \rightarrow \mathrm{N} \ominus$
(1) (B, C, E)
(2) (A, B, E)
(3) (A, C, D)
(4) (A, B, C)

Answer (1)
Sol. Be \& N have stable fully filled \& half-filled electronic configuration respectively
$\mathrm{O}+\mathrm{e} \rightarrow \mathrm{O}^{-}+$
$\Delta \mathrm{H}_{\mathrm{e}_{\mathrm{g} 1}}=-141 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}^{-}+\mathrm{e} \rightarrow \mathrm{O}^{2-}$
$\Delta \mathrm{H}_{\mathrm{eg} 2}=+780 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}+2 \mathrm{e} \rightarrow \mathrm{O}^{2-}$
$\Delta \mathrm{H}=+639 \mathrm{~kJ} / \mathrm{mol}$
12. Consider the given reaction :
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
If equal number of molecules of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI are present at equilibrium. Then $\mathrm{K}_{\mathrm{p}}=\mathrm{t} \times 10^{-1}$
Find out t
(1) 10
(2) 0.01
(3) 0.1
(4) 1

Answer (1)

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

Sol. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{HI}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)\left(\mathrm{P}_{\mathrm{I}_{2}}\right)}=1 \\
& \mathrm{~K}_{\mathrm{p}}=\mathrm{t} \times 10^{-1} \\
& \mathrm{t}=10
\end{aligned}
$$

13. Statement-I: Gallium has low melting point, so it is used in thermometers.

Statement-II: A substance having 253 K can be measured by Ga thermometer.
(1) Statement-I and Statement-II both correct
(2) Statement-I and Statement-II both incorrect
(3) Statement-I correct and Statement-II incorrect
(4) Statement-II correct and Statement-I incorrect

Answer (3)

Sol. Melting point of Gallium is nearly 302 K so , it can't measure temperature of 253 K .
14. Choose the correct option regarding the following statements:

Statement-I: 2, 4, 6-Trinitrotoluene is picric acid.
Statement-II: Reaction of 4-hydroxybenzene-1, 3-disulphonic acid with conc. HNO_{3} gives picric acid.
(1) Both statement-I and statement-II are true
(2) Both statement-I and statement-II are false
(3) Statement-I is true but statement-II is false
(4) Statement-I is false but statement-II is true

Answer (4)

Sol. 2, 4, 6-Trinitrotoluene is an explosive and not picric acid. Therefore statement-l is false

2, 4, 6-Trinitrotophenol is called picric acid. It is synthesised by the reaction of 4-hydroxybenzene-1,3-disulphonic acid with conc. HNO_{3}.

\therefore Statement-ll is true.
15. Among the following which is not a base of DNA?
(1) Adenine
(2) Uracil
(3) Guanine
(4) Cytosine

Answer (2)

Sol. Uracil is present in RNA. Instead of uracil, thymine is present in DNA.
16. Identify the correct match among the given species and respective shape of molecule

Species
(A) NH_{4}^{+}
(B) SF_{4}
(C) ClF_{3}
(D) XeF_{6}
(1) A
(3) C

Shape

See-Saw
Tetrahedral
T-shaped
Square planar
(2) B
(4) D

Answer (3)

Sol. NH_{4}^{+}: Tetrahedral
SF4: See-Saw
CIF_{3} : T-shaped
XeF6 : Distorted Octahedral

Our Stars

$41555^{\text {sprpenamuluss }}$

Aakashians Conquer JEE (Main) 2024 sEssion-1

tudent response sheet and NTA answer key.

17. Which of the following statement is incorrect?
(1) Glycerol is purified by vacuum distillation
(2) Aniline is purified by steam distillation
(3) Chloroform and aniline can be separated by distillation
(4) Ethanol and water are azeotropic mixture can be separated by distillation

Answer (4)

Sol. Ethanol and water are azeotropic mixture and can't be separated by distillation
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Find out ratio of to9 and too for first order

Answer (2)

Sol. $\mathrm{t}_{99}=\frac{2.303}{\mathrm{k}} \log \frac{100}{1}$

$$
\mathrm{t}_{90}=\frac{2.303}{\mathrm{k}} \log \frac{100}{10}
$$

22. How many of the following show(s) H -bonding.
(i)

(ii) $\mathrm{H}_{2} \mathrm{O}$
(iv) HF
(v) NH_{3}
(vi)

NO_{2}
H-bonding.
(iii) $\mathrm{CH}_{3} \mathrm{OH}$

Answer (6)

Sol. In acidic medium KMnO_{4} goes to Mn^{2+} e.g. MnSO_{4}.
The KMnO_{4} has zero unpaired electrons (hence it is diamagnetic) because it has Mn at +7 oxidation state (electronic configuration $\left.(n-1) d^{0} n s^{0}\right)$.
Mn^{2+} has 5 unpaired electrons as it has $(\mathrm{n}-1) \mathrm{d}^{5}$ ns^{0} electronic configuration so it has 5.92 B.M. magnetic moment so difference will be 5.92 B.M. Nearest integer $=6$.

24. 9.3 g of aniline was treated with NaNO_{2} and HCl at $0^{\circ} \mathrm{C}$ to get product A which reacts with phenol to form a product B. Assuming 100\% yield in each step, what is the weight of product B obtained?

Answer (20)

Sol.

9.3 g
$\frac{9.3}{93}=0.1 \mathrm{~mole}$.
Final product formed $=0.1 \mathrm{~mol}$.

$$
\begin{aligned}
& =0.1 \times 198 \\
& =19.8 \mathrm{gm} \\
& =20
\end{aligned}
$$

25. Consider the following sequence of reactions

Find the number of oxygen in B (1 molecule)

Answer (2)

Sol.

(B)

Hence the number of O atom in one molecule of B is 2 .
26. According to the reaction,

$$
\mathrm{HX}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{X}_{(\mathrm{aq})}^{-} \mathrm{K}_{\mathrm{a}}=\left(1.2 \times 10^{-5}\right)
$$

Find out osmotic pressure of 0.03 M HX solution at 300 K (in atm).

Answer (1)

Sol. $\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$
$1.2 \times 10^{-5}=\left(3 \times 10^{-2}\right)\left(\alpha^{2}\right)$
$\alpha^{2}=0.4 \times 10^{-3}$
$\alpha^{2}=4 \times 10^{-4}$
$\alpha=0.02$
$\pi=\mathrm{iCRT}$
$\mathrm{i}=1+\alpha=1.02$
$\pi=(1.02)(0.03)(0.0821)(300)$
$=0.7536 \mathrm{~atm}$

$$
\approx 1
$$

27.
28.
29.
30.

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

