MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. If $A_{r}=\left|\begin{array}{lll}r & 1 & \frac{n^{2}}{2}+\alpha \\ 2 r & 2 & n^{2}-\beta \\ 3 r-1 & 3 & \frac{n}{2}(3 n-1)\end{array}\right|$ t
A_{8} is equal to
(1) $4 \alpha+2 \beta$
(2) $2 n$
(3) 0
(4) $2 \alpha+4 \beta$

Answer (1)
Sol. $A_{r}=\left|\begin{array}{lll}r & 1 & \frac{n^{2}}{2}+\alpha \\ 2 r & 2 & n^{2}-\beta \\ 3 r-2 & 3 & \frac{3 n^{2}}{2}-\frac{n}{2}\end{array}\right|$

$$
A_{r}=\left|\begin{array}{ccc}
0 & 1 & \frac{n^{2}}{2}+\alpha \\
0 & 2 & n^{2}-\beta \\
-2 & 3 & \frac{3 n^{2}}{2}-\frac{n}{2}
\end{array}\right|
$$

$$
A_{r}=-2\left[\left(n^{2}-\beta\right)-2\left(\frac{n^{2}}{2}+\alpha\right)\right]=-2\left[n^{2}-\beta-n^{2}-2 \alpha\right]
$$

$$
\Rightarrow \quad A_{r}=(\beta+2 \alpha) \cdot 2
$$

$$
\Rightarrow \quad 2 A_{10}-A_{8}=4(\beta+2 \alpha)-2(\beta+2 \alpha)
$$

$$
=2(\beta+2 \alpha)=4 \alpha+2 \beta
$$

2. The value of $\int_{0}^{\pi / 4} \frac{\cos ^{2} x \sin ^{2} x}{\left(\cos ^{3} x+\sin ^{3} x\right)^{2}} d x$ is equal to
(1) $\frac{1}{6}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) 1

Answer (1)

Sol. $\int_{0}^{\pi / 4} \frac{\tan ^{2} x \sec ^{2} x}{\left(1+\tan ^{3} x\right)^{2}} d x$
Put $1+\tan ^{3} x=t$
$\Rightarrow 3 \tan ^{2} x \sec ^{2} x d x=d t$
$\frac{1}{3} \int_{1}^{2} \frac{d t}{t^{2}}$
$\frac{1}{3}\left[\frac{t^{-1}}{-1}\right]_{1}^{2}$
$=\frac{1}{6}$
3. Let α, β be the distinct roots of the quadratic equation $x^{2}-\left(t^{2}-5 t+6\right) x+1=0, a_{n}=\alpha^{n}+\beta^{n}$, then the minimum value of $\frac{a_{2023}+a_{2025}}{a_{2024}}$ is
(1) $-\frac{1}{4}$
(2) $\frac{1}{4}$
(3) $-\frac{1}{2}$
(4) $\frac{1}{2}$

Answer (1)

Sol. Given equation
$x^{2}-\left(t^{2}-5 t+6\right) x+1=0$
$\therefore a_{2025}-\left(t^{2}-5 t+6\right) a_{2024}+a_{2023}=0$

Aakashians Conquer JEE (Main) 2024
 SESSION-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS〕

Our Stars

$$
\begin{aligned}
\Rightarrow \frac{a_{2025}+a_{2023}}{a_{2024}} & =\left(t^{2}-5 t+6\right) \\
& =t^{2}-5 t+\frac{25}{4}+6-\frac{25}{4} \\
& =\underbrace{\left(t+\frac{5}{2}\right)^{2}}_{\geq 0}+\left(-\frac{1}{4}\right)
\end{aligned}
$$

\therefore Minimum value is $-\frac{1}{4}$
4. The shortest distance between two lines $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$ and $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$ is
(1) $4 \sqrt{3}$
(2) $8 \sqrt{3}$
(3) $6 \sqrt{3}$
(4) $2 \sqrt{3}$

Answer (1)

Sol. $L_{1}: \frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$

$$
L_{2}: \frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}
$$

$$
\begin{aligned}
\text { Shortest distance } & =\frac{\left|\begin{array}{ccc}
-4 & 16 & 0 \\
2 & -7 & 5 \\
2 & 1 & -3
\end{array}\right|}{\sqrt{256+256+256}} \\
& =\frac{192}{16 \sqrt{3}} \\
& =\frac{12}{\sqrt{3}} \\
& =4 \sqrt{3}
\end{aligned}
$$

5. R is defined on set $X=\{1,2, \ldots, 20\}$
$R_{1}=\{(x, y): 2 x-3 y=2\}$
$R_{2}=\{(x, y): 5 x-4 y=0\}$
If M, N represent the number of elements to be added to make R_{1} and R_{2} symmetric respectively. Then value of $M+N$ equals to
(1) 10
(2) 8
(3) 12
(4) 11

Answer (1)
Sol. R is defined on $X=\{1,2,3, \ldots, 20\}$
$R_{1}=\{(x, y): 2 x-3 y=2\}$
$R_{2}=\{(x, y): 5 x+4 y=0\}$
As $2 x-3 y=2$
So $2 x$ and $3 y$ both has to be even or odd simultaneously and $2 x$ can't be odd so $2 x$ and $3 y$ both will be even.

So $R_{1}=\{(4,3),(7,4),(10,6),(13,8),(16,10),(19$, 12) $\}$
for symmetric we need to add 6 elements here as $(3,4),(4,7)$ and $(6,10),(8,13),(10,16),(12,19)$
So $M=6$
For $R_{2} 5 x-4 y=0$
So $5 x$ and $4 y$ has to be equal. $4 y$ is always even so $5 x$ will also be even
$R_{2}=\{(4,5),(8,10),(12,15),(16,20)\}$
So 4 elements $(5,4),(10,8)(15,12),(20,16)$ need to be added
$N=4$
$M+N=10$
6. If $\frac{d y}{d x}+\frac{y}{x \ell n x}=\frac{1}{x^{2} \ell n x}$ and $y\left(e^{-1}\right)=0$. Then $y(e)$ equals to
(1) $\frac{e^{2}+1}{e}$
(2) $\frac{e^{2}-1}{e}$
(3) $\frac{e^{2}+2}{e}$
(4) $\frac{e^{2}-2}{e}$

Answer (2)

Sol. I.F $=e^{\int \frac{1}{x \ell n x} d x}$
Put $\ell n x=t$

$$
\begin{align*}
& \frac{1}{x} d x=d t . \\
& \begin{aligned}
\text { I.F } & =e^{\int \frac{1}{t} d t} \\
& =e^{\ell n t} \\
= & t \\
& =\ell n x . \\
\therefore \quad & y \cdot \ell n x=\int \ell n x \cdot\left(\frac{1}{x^{2} \ell n x}\right) d x \\
& y \cdot \ell n x=\int \frac{1}{x^{2}} d x \\
& y \ell n x=\frac{-1}{x}+c
\end{aligned} .
\end{align*}
$$

Given y $\left(e^{-1}\right)=0$

$$
\begin{aligned}
& 0=-e+c \\
& c=e
\end{aligned}
$$

\therefore From (2)
We get,

$$
y \ell n x=\frac{-1}{x}+e
$$

$\therefore \quad$ Put $x=e$

$$
\begin{aligned}
& y=\frac{-1}{e}+e \\
& y=\frac{e^{2}-1}{e}
\end{aligned}
$$

Option (b) is correct
7. Interval in which x^{x} is strictly increasing is
(1) $(0, \infty)$
(2) $\left(0, \frac{1}{e}\right]$
(3) $\left[\frac{1}{C^{2}}, \infty\right)$
(4) $\left[\frac{1}{e}, \infty\right)$

Answer (4)

Sol. Let $f(x)=x^{x}$
$\Rightarrow f^{\prime}(x)=x^{x}(1+\ln x)$
For strictly increasing, $f(x)>0$
$\Rightarrow 1+\ln x>0$
$\Rightarrow \quad x>\frac{1}{e}$
8. If $\frac{d y}{d x}+\frac{y}{1+x^{2}}=e^{-\tan ^{-1} x}$, then which of the following is true
(1) $y e^{\tan ^{-1} x}=\frac{x^{2}}{2}+c$
(2) $y e^{\tan ^{-1} x}=\frac{1}{x}+c$
(3) $y e^{\tan ^{-1} x}=x+c$
(4) $y e^{\tan ^{-1} x}=-x+c$

Answer (3)
Sol. $\frac{d y}{d x}+\frac{y}{1+x^{2}}=e^{-\tan ^{-1} x}$

$$
\begin{aligned}
\text { I.F } & =e^{\int \frac{1}{1+x^{2}} d x} \\
& =e^{\tan ^{-1} x}
\end{aligned}
$$

Now,
$y e^{\tan ^{-1} x}=\int e^{\tan ^{-1} x} \cdot e^{-\tan ^{-1} x} d x$
$\Rightarrow y e^{\tan ^{-1} x}=\int d x$
$\Rightarrow y e^{\tan ^{-1} x}=x+c$
9. A company produces automobiles. It has two factories factory ' A ' produces 60% of the automobiles and rest is produced by factory $B .80 \%$ of the automobiles produced by ' A ' is upto the standards and 90% of the automobiles by ' B ' is upto the standards. If an automobile is selected we found it as standard, the probability it came from B is P. Then $126 P$ equals to
(1) 54
(2) 52
(3) 48
(4) 27

Answer (1)

300/300

RISHI S SHUKLA
two year classroom program

Sol. $P($ standard automobile from $A)=\frac{6}{10} \times \frac{8}{10}=\frac{12}{25}$ $P($ standard automobile from $B)=\frac{4}{10} \times \frac{9}{10}=\frac{9}{25}$

Required probability $=\frac{\frac{9}{25}}{\frac{12}{25}+\frac{9}{25}}$
$P=\frac{9}{21}=\frac{3}{7}$
$126 P=54$
10. If $\sigma=4$ (standard deviation) and $\bar{x}=10$ (mean) of 20 observations. One term was taken wrong i.e, instead of 12 they have taken 8 . Then the correct standard deviation is
(1) 1.8
(2) $\sqrt{3.96}$
(3) $\sqrt{3.84}$
(4) 1.93

Answer (2)

Sol. Mean $=\bar{x}=10$
$\sigma=4, n=20$
Take observations as $x_{1}, x_{2}, \ldots x_{20}$
$\frac{x_{1}+x_{2}+\ldots+x_{20}}{20}=200$
$x_{1}+x_{2}+\ldots+x_{20}=200$
One term, say x_{20} is wrongly written as 8
So, $x_{1}+x_{2}+\ldots+x_{19}=200-8$

$$
x_{1}+x_{2}+\ldots+x_{19}=192
$$

Now ($\left.x_{20}\right)_{\text {new }}=12$
So, $\bar{x}_{\text {new }}=\frac{192+12}{20}=\frac{204}{20}=\frac{102}{10}=10.2$
$\sigma^{2}=\frac{\sum x_{1}^{2}}{n}-(\bar{x})^{2}=4$
$\frac{x_{1}^{2}+x_{2}^{2}+\ldots+x_{20}^{2}}{20}=4+100$
$\Rightarrow \frac{x_{1}^{2}+x_{2}^{2}+\ldots+x_{19}^{2}+64}{20}=104$
$\Rightarrow \quad x_{1}^{2}+x_{2}^{2}+\ldots+x_{19}^{2}+64=2080$
$\Rightarrow x_{1}^{2}+x_{2}^{2}+\ldots+x_{19}^{2}=2016$
Now $\sigma_{\text {new }}^{2}=\frac{2016+144}{20}-(10.2)^{2}$
$\sigma_{\text {new }}^{2}=108-104.04$
$\sigma=\sqrt{3.96}$
11. A point $P(10,-2,-1)$ and $R(1,7,6)$, if Q is a foot of perpendicular from R to the line joining points $(2,-5,11)$ and $(6,-7,5)$. Then $(P Q)^{2}$ is
(1) $\frac{3509}{14}$
(2) $\frac{3600}{7}$
(3) $\frac{3509}{7}$
(4) $\frac{3409}{7}$

Answer (1)

Sol.

$\left(\frac{6 \lambda+2}{\lambda+1}, \frac{-7 \lambda-5}{\lambda+1}, \frac{5 \lambda+11}{\lambda+1}\right)$
$\vec{L}=4 \hat{i}-2 \hat{j}-6 \hat{k}$
$\overrightarrow{R Q} \perp \vec{L}=4\left(\frac{6 \lambda+2}{\lambda+1}-1\right)-2\left(\frac{-7 \lambda-5}{\lambda+1}-7\right)$

$$
-6\left(\frac{5 \lambda+11}{\lambda+1}-6\right)
$$

$\overrightarrow{R Q} \cdot \vec{L}=\frac{4(5 \lambda+1)-2(-14 \lambda-12)-6(-\lambda+5)}{(\lambda+1)}=0$
$=\frac{\lambda(20+28+6)+(4+24-30)}{\lambda+1}=0$

$$
\begin{aligned}
& =\lambda(54)-2=0 \Rightarrow \lambda=\frac{1}{27} \\
& Q=\left(\frac{\frac{6}{27}+2}{\frac{1}{27}+1}, \frac{\frac{-7}{27}-5}{\frac{1}{27}+1}, \frac{\frac{5}{27}+11}{\frac{1}{27}+1}\right) \\
& \equiv\left(\frac{60}{28}, \frac{-142}{28}, \frac{302}{28}\right) \\
& =R^{\prime}=\left(\frac{15}{7}, \frac{71}{14}, \frac{151}{14}\right) \\
& \Rightarrow(Q P)=\sqrt{\left(10-\frac{15}{7}\right)^{2}+\left(-2-\frac{71}{14}\right)^{2}+\left(-1-\frac{151}{14}\right)^{2}} \\
& =\sqrt{\frac{3509}{14}}
\end{aligned}
$$

12.
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. If $\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{-1} n=\frac{\pi}{4}$, value of n is

Answer (47)

Sol. $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{n}\right)=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{7}{12}}{1-\frac{1}{12}}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{n}\right)=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{7}{11}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{n}\right)=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{23}{24}\right)+\tan ^{-1}\left(\frac{1}{n}\right)=\frac{\pi}{4}$
$\Rightarrow \frac{\frac{23}{24}+\frac{1}{n}}{1-\frac{23}{24 \cdot n}}=1$
$\Rightarrow \frac{23 n+24}{24 n-23}=1$
$\Rightarrow n=47$
22. If $A=[100,700]$, how many numbers are in A which are neither multiple of 3 nor 4 ?

Answer (300)

Sol. Let A_{1} denotes multiple of 3 , B_{1} denotes multiple of 4
\therefore We need to find $\bar{A}_{1} \cap \bar{B}_{1}$

$$
\begin{aligned}
& \because\left|A_{1} \cap B_{1}\right|=\left|\overline{A_{1} \cup B_{1}}\right| \\
& \begin{aligned}
\left|A_{1} \cup B_{1}\right| & =n\left(A_{1}\right)+n\left(B_{1}\right)-n\left(A_{1} \cap B_{1}\right) \\
& =200+151-50 \\
& =301
\end{aligned}
\end{aligned}
$$

$\therefore \quad\left|\overline{A_{1} \cup B_{1}}\right|=601-301=300$
23. If the second, third, fourth terms of the expression $(x+y)^{n}$ is $135,30, \frac{10}{3}$ respectively, then the value of $9\left(n^{3}+x^{2}+y\right)$ is

Answer (1153)

Sol. $(x+y)^{n}={ }^{n} C_{0} x^{0} y^{n}+{ }^{n} C_{1} x^{1} y^{n-1}+{ }^{n} C_{2} x^{2} y^{n-2}$

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

First term $\Rightarrow{ }^{n} C_{1} x^{1} y^{n-1}=135$.
Second term $\Rightarrow{ }^{n} C_{2} x^{2} y^{n-2}=30$..
Third term $\Rightarrow{ }^{n} C_{3} x^{3} y^{n-3}=\frac{10}{3}$.
Dividing equation (1) by (2)
$\frac{2 n}{n(n-1)} \times \frac{1}{x y}=\frac{135}{30}$
$\frac{2}{(n-1) x y}=\frac{9}{2}$
$(n-1) x y=\frac{4}{9}$
Dividing equation (2) by (3)
$\frac{3}{(n-2) x y}=9$
$(n-2) x y=\frac{1}{3}$
Dividing equation (4) by (5)
$\frac{n-1}{n-2}=\frac{4}{3}$
$\Rightarrow 3 n-3=4 n-8$
$\Rightarrow n=5$
Now equation (1) becomes
$5 \times y^{4}=135 \Rightarrow x=\frac{27}{y^{4}}$
And equation (2) becomes
$10 x^{2} y^{3}=30$
$\Rightarrow x^{2} y^{3}=3$
From equation (6) and (7)

$$
\begin{aligned}
& \Rightarrow \frac{3^{6}}{y^{8}} x y^{3}=3 \\
& \Rightarrow y^{5}=3^{5} \\
& \Rightarrow y=3
\end{aligned}
$$

$\Rightarrow \quad x=\frac{1}{3}$
$\Rightarrow 9\left(n^{3}+x^{2}+y\right)$
$=9\left(5^{3}+\frac{1}{3^{2}}+3\right)$
$=9\left(\frac{1153}{9}\right)$
$=1153$
24. Find the number of triangles formed whose vertices are also a vertices of regular octagon but the side of triangle is not common with sides of octagon is

Answer (56)

Sol.

\Rightarrow Total triangles $={ }^{8} C_{3}$
Triangles with all 3 sides common with octagon = 0
Triangle with 2 sides common

$$
\begin{aligned}
\text { with octagon } & \Rightarrow \text { Choose vertex } \\
& =\left({ }^{8} G_{1}\right) \Rightarrow 8 \text { triangles }
\end{aligned}
$$

Triangle with exactly 1 side common $=\left({ }^{8} G_{1}\right)$ ways to choose a side, remaining vertex can be selected in 4 vertices $={ }^{4} C_{1}$ ways $={ }^{8} C_{1} \cdot{ }^{4} C_{1}$ $=32$
$\Rightarrow 56-(8+0+32)=16$ triangles
25. The number of real solutions of $x|x+5|+2|x+7|$ $-2=0$ is equal to
Answer (3)
Sol. (I) $x \geq-5$
$x^{2}+5 x+2 x+14-2=0$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

RISHIS SHUKLA
two year classroom program
100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

$x^{2}+7 x+12=0$
$x=3,4$
(II) $-7<x<-5$
$-x^{2}-5 x+2 x+14-2=0$
$-x^{2}-3 x+12=0$
$x^{2}+3 x-12=0$
$x=2.275,-5.275$, here $x \neq 2.275$
So, $x=-5.275$
(III) $x \leq-7$
$-x^{2}-5 x-2 x-14-2=0$
$-x^{2}-7 x-16=0$
$x^{2}+7 x+16=0$
$D<0 \rightarrow$ no real roots
Only 3 solutions possible
26. The number of points of discontinuities of $f(x)=2 x^{2}$ $+\left[x^{2}\right]-[x]$ where $[\cdot]$ is greatest integer function and $x \in[-1,2]$ is equals to

Answer (4)

Sol. $f(x)=2 x^{2}+\left[x^{2}\right]-[x], x \in[-1,2]$
This function may be discontinuous at $x=-1,0,1$, $\sqrt{2}, \sqrt{3}$ and 2 .

For continuity at $x=-1$
$f(-1)=4$
$\lim _{h \rightarrow 0} f(-1+h)=\lim _{h \rightarrow 0} 2(-1+h)^{2}+\left[(-1+h)^{2}\right]-[-1+h]$

$$
=3
$$

$\therefore f(x)$ is discontinuous at $x=-1$

For continuity at $x=0, f(0)=0$

$$
f\left(0^{-}\right)=1
$$

$\therefore f(x)$ is discontinuous at $x=0$
Continuity at $x=1$

$$
\begin{gathered}
\text { L.H.L }=\lim _{h \rightarrow 0} f(1-h)=2(1-h)^{2}+\left[(1-h)^{2}\right]-[1-h] \\
=2 \\
f(1)=2 \cdot 1^{2}+1-1=2 \\
\text { R.H.L }=\lim _{h \rightarrow 0} f(1+h)=2(1+h)^{2}+\left[(1+h)^{2}\right]-[1+h] \\
\\
=2
\end{gathered}
$$

$\therefore f(x)$ is continuous at $x=1$
For continuity, at $x=\sqrt{2}$ and $\sqrt{3}$ similarly it is discontinuous

For continuity at $x=2$

$$
f(2)=2.2^{2}+\left[2^{2}\right]-[2]=10
$$

L.H.L $=\lim _{h \rightarrow 0} 2(2-h)^{2}+\left[(2-h)^{2}\right]-[2-h]$
$=8+3-1$
$=10$
$\therefore f(x)$ is continuous at $x=2$
$f(x)$ is discontinuous at $x=-1,0, \sqrt{2}$ and $\sqrt{3}$.
No. of points of discontinuity $=4$

