PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. For a given single electron atom, ratio of shortest wavelengths in Balmer and Lyman series is
(1) $4: 1$
(2) $1: 4$
(3) $1: 2$
(4) $2: 1$

Answer (1)

Sol. $\frac{1}{\lambda_{L}}=R Z^{2}\left\{1-\frac{1}{\infty}\right\}$
$\frac{1}{\lambda_{B}}=R Z^{2}\left[\frac{1}{4}-\frac{1}{\infty}\right]$
$\frac{\lambda_{B}}{\lambda_{L}}=4$
2. The value of unknown resistance x for which potential difference between point B and D is zero is

(1) 12Ω
(2) 6Ω
(3) 3Ω
(4) 2Ω

Answer (2)

Sol. $V_{D}-V_{B}=0$, i.e., it is condition of Wheatstone bridge.
$\frac{12}{6+x}=\frac{0.5}{0.5}$
$x=6 \Omega$
3. Which of the following does not depend on the wave nature of light?
A. Reflection
B. Diffraction
C. Photoelectric effect
D. Polarization
E. Interference
(1) C only
(2) A, B
(3) A, B, C
(4) D, E

Answer (1)
Sol. Theoretical
4. Four particles A, B, C, D have masses $\frac{m}{2}, m, 2 m$ and $4 m$. They have equal momentum. The particle that has highest kinetic energy is
(1) A
(2) B
(3) C
(4) D

Answer (1)
Sol. $\mathrm{KE}=\frac{p^{2}}{2 m}$
$\Rightarrow \quad \mathrm{KE} \propto \frac{1}{m}$

RISHIS SHUKLA
TWO YEAR CLASSROOM PROGRAM
two year classhoom program

Aakashians Fonquer JEE (Main) 2024 SESSION-1
"936 99+ pereminules
"4155 ${ }^{\text {95 }}$ - eemerarleras
 *
se sheet and NTA answer key.

5. Which of the following is not a semiconductor?
(1) Silicon
(2) Germanium
(3) Copper oxide
(4) Graphite

Answer (4)

Sol. Theoretical.
6. Find the truth table for the following circuit.

	A	B	Y		A	B	
	0	0	1		0	0	
(1)	0	1	1	(2)	0	1	
	1	0	0		1	0	0
	1	1	0		1	1	
	A	B	Y		A	B	Y
	0	0	0		0	0	0
(3)	0	1	1	(4)	0	1	0
	1	0	0		1	0	0
	1	1	1		1	1	

Answer (2)

Sol. $Y=A B+A^{\prime}$
$=A^{\prime}+B$
7. A bullet of mass 50 gm enters a metal sheet with speed of $100 \mathrm{~m} / \mathrm{s}$ and emerges with speed of $40 \mathrm{~m} / \mathrm{s}$. The loss in kinetic energy of bullet is
(1) 105 J
(2) 42 J
(3) 210 J
(4) 140 J

Answer (3)

Sol. $|\Delta K|=\frac{1}{2} \times \frac{50}{100}\left\{100^{2}-40^{2}\right\}=\frac{50}{2000} \times 140 \times 60$

$$
=210 \mathrm{~J}
$$

8. A ball of mass m and density ρ made to free fall into viscous liquid of density $\rho 0$. The viscous force on ball is
(1) $m g\left(1-\frac{\rho}{\rho_{0}}\right)$
(2) $m g\left(1-\frac{\rho_{0}}{\rho}\right)$
(3) $\frac{m g}{1-\frac{\rho}{\rho_{0}}}$
(4) $\frac{m g}{1-\frac{\rho_{0}}{\rho}}$

Answer (2)
Sol. $\vec{W}+\vec{B}+\vec{F}_{\text {viscous }}=\vec{O}$
$\vec{F}_{v}=W+B$
$=m g-\rho_{0} v g$
$=m g-\rho_{0} \frac{m}{\rho} g$
$=m g\left(1-\frac{\rho_{0}}{\rho}\right)$
9. For a spring block system, the error in time period calculation is 2% and the error in mass calculation is 1%. Find the percentage error in spring constant k.
(1) 2%
(2) 4%
(3) 5%
(4) 10%

Answer (3)
Sol. $k=4 \pi^{2} \cdot \frac{m}{T^{2}}$

$$
\frac{d k}{k} \times 100= \pm\left(\frac{d m}{m} \times 100+2 \cdot \frac{d T}{T} \times 100\right)
$$

$\frac{d k}{k} \times 100=1+2 \times 2=5$

Aakashians Fonquer JEE (Main) 2024 SEssion-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

10. Match the dimensions:

a.	Torque	i.	$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{AT}$
b.	Magnetic moment	ii.	$\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{0}$
c.	Magnetic field	iii.	$\mathrm{MLT}^{-3} \mathrm{~A}^{-2}$
d.	Permeability	iv.	$\mathrm{ML}^{0} \mathrm{~T}^{-2} \mathrm{~A}^{-1}$

(1) a-i, b-ii, c-iii, d-iv
(2) a-ii, b-iv, c-i, d-iii
(3) a-ii, b-i, c-iv, d-iii
(4) a-ii, b-iii, c-i, d-iv

Answer (3)
Sol. $\tau=F \ell \equiv \mathrm{ML}^{2} \mathrm{~T}^{-2}$
$\mu=i A \equiv \mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~A} T$
$B \equiv \frac{F}{q V} \equiv \frac{\mathrm{MLT}^{-2}}{\mathrm{ATLT}^{-1}} \equiv \mathrm{MT}^{-2} \mathrm{~A}^{-1}$
$\mu_{0} \equiv \frac{B r}{i} \equiv \frac{\mathrm{MT}^{-2} \mathrm{~A}^{-1} \cdot \mathrm{~L}}{\mathrm{AT}} \equiv \mathrm{MLT}^{-3} \mathrm{~A}^{-2}$
11. Kinetic energy to move a body of mass m from surface of earth to infinite distance form the earth is (g is acceleration due to gravity on surface of earth $\& R$ is radius of earth)
(1) $2 m g R$
(2) $\frac{1}{2} m g R$
(3) $m g R$
(4) $\frac{1}{4} m g R$

Answer (3)
Sol. $K+U=0$
$\Rightarrow K=\frac{G M m}{R}=m g R$
12. Find the ratio of root mean square speed of oxygen and helium molecules at same temperature.
(1) $\frac{2 \sqrt{2}}{1}$
(2) $\frac{1}{2 \sqrt{2}}$
(3) $\frac{1}{4}$
(4) $\frac{1}{32}$

Answer (2)

Sol. $V_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}$
$\frac{\left(V_{\mathrm{rms}}\right)_{\mathrm{O}_{2}}}{\left(V_{\mathrm{rms}}\right)_{\mathrm{He}}}=\frac{M \mu_{e}}{M_{\mathrm{O}_{2}}}=\sqrt{\frac{4}{32}}$
$=\frac{1}{2 \sqrt{2}}$
13. The specific heat capacity for a gas following the relation $P V^{2}=R T$ is (C_{V} is heat capacity at constant volume and R is gas constant)
(1) C_{v}
(2) $C_{V}+R$
(3) $\frac{R}{3}+C_{V}$
(4) R

Answer (1)

Sol. $\frac{P V^{2}}{P V}=C \Rightarrow V=$ constant

$$
\Rightarrow C_{V}
$$

14. A screw gauge has circular scale 100 divisions with pitch 1 mm . Upon keeping a wire between studs, main scale reading is 1 mm and circular scale divisions $42^{\text {th }}$ coincide with reference line.
Find the diameter of circular cross-section wire in mm .
(1) 1.42
(2) 1.40
(3) 1.38
(4) 0.39

Answer (1)
Sol. . Diameter $=$ Main scale reeding + circular scale reading \times least count
$d=1 \mathrm{~mm}+(42 \times 0.01) \mathrm{mm}$
$d=1.42 \mathrm{~mm}$
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Ratio of angle of prism and minimum deviation is one for a prism whose refractive index is $\sqrt{3}$ then angle of prism (in degrees) is \qquad -.
Answer (60)
Sol. $A=\delta$
$\frac{\sin \left(\frac{A+\delta}{2}\right)}{\sin \frac{A}{2}}=\frac{\sin A}{\sin \frac{A}{2}}=\sqrt{3}$
$2 \cos \frac{A}{2}=\sqrt{3}$
$\Rightarrow A=60^{\circ}$
22. Time period of a simple harmonic motion is 3.14 seconds, with amplitude 0.06 m . The maximum velocity of particle is $k \times 10^{-2} \mathrm{~m} / \mathrm{s}$. Find the value of k.

Answer (12)

Sol. $V_{\max }=A \omega=A . \frac{2 \pi}{T}$
$V_{\text {max }}=0.06 \times \frac{2 \pi}{3.14}$
$V_{\text {max }}=0.12 \mathrm{~m} / \mathrm{s}$
23. A body uniformly accelerates [starting from rest] to speed of $80 \mathrm{~km} / \mathrm{hr}$ in time t and then maintains this speed for time interval of $3 t$. Average speed for whole motion is \qquad $\mathrm{km} / \mathrm{hr}$.
Answer (70)
Sol. $\langle v\rangle=\frac{40 \times t+80 \times 3 t}{4 t}=\frac{40+240}{4}=70$
24. Radiation of energy 3.5 eV is incident on a metal. The stopping potential required is 0.5 V . The work function of the metal is \qquad eV.
Answer (3)

Sol. $n f-\phi=e V$
$\Rightarrow \phi=3.5-0.5=3 \mathrm{eV}$
25. If the radius of earth is reduced to $\frac{3}{4}$ th of its original radius, then the time period of earth's rotation becomes K hours 30 minutes. Find the value of K.

Answer (13)

Sol. $\vec{\tau}_{\text {ext }}=0 \Rightarrow$ Angular momentum is conserved
$\frac{2}{5} m R^{2} \cdot \omega=\frac{2}{5} m\left(\frac{3 R}{4}\right)^{2} \cdot \omega_{1}$
$\omega_{1}=\frac{16 \omega}{9}$
$T_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi}{\omega} \cdot \frac{9}{16}=24 \times \frac{9}{16}$ hours
$T_{1}=13$ hours 30 minutes
26. Two masses m_{1} and m_{2} are attached through a thin string passing over frictionless and massless pulley. The acceleration of masses is as shown.
Then $\frac{m_{1}}{m_{2}}$ is \qquad

Answer (2)
Sol. $a=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} g=\frac{g}{3}$

$$
\Rightarrow \frac{m_{1}}{m_{2}}=2
$$

27.
28.
29.
30.

Our Stars

RISHIS SHUKLA
TWO YEAR CLASSROOM PROGRAM
As per student response sheet and NTA answer key.

