

CHEMISTRY

is

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Consider following statements:

Statement-I: O IUPAC name is 4-chloro-

1, 3-dinitrobenzene.

Statement-II:

2-methylaniline.

- (1) Both statement-I and statement-II are correct
- (2) Statement-I is correct, statement-II is incorrect
- (3) Statement-I is incorrect, statement-II is correct
- (4) Both statement-I and statement-II are incorrect

Answer (3)

Sol. Statement-I O_{4}^{2} NO₂ 1-chloro-

- 2,4-dinitrobenzene
- \Rightarrow Statement-I is incorrect

Statement-II O 2-methyl aniline

 \Rightarrow Statement-II is correct

- 2. We have two complexes $[Fe(H_2O)_6]^{2+}$ and $[Cu(H_2O)_6]^{2+}$, the magnetic properties respectively are
 - (1) Diamagnetic and Diamagnetic
 - (2) Paramagnetic and Paramagnetic
 - (3) Diamagnetic and Paramagnetic
 - (4) Paramagnetic and Diamagnetic

Answer (2)

Sol. $[Fe(H_2O)_6]^{2+} \Rightarrow Fe^{2+} \Rightarrow 3a^6 \Rightarrow t_{2g}^4 eg^2 \Rightarrow n = 4$ Paramagnetic

$$\label{eq:cu} \begin{split} [Cu(H_2O)_6]^{2*} \Rightarrow Cu^{*2} \Rightarrow 3 \textit{a}^{9} \Rightarrow t^6_{2g} eg^3 \Rightarrow n \ = \ 1 \\ paramagnetic \end{split}$$

3. Match the following

	Column-l (Molecule)	0.	Column-II (Shape)	
(i)	NH ₃	(p)	Trigonal bipyramidal	
(ii)	BrF ₅	(q)	Tetrahedral	
(iii)	PCI ₅	(r)	Pyramidal	
(iv)	CCI ₄	(s)	Square pyramidal	

- (1) (i)-(q), (ii)-(p), (iii)-(s), (iv)-(r)
- (2) (i)-(s), (ii)-(r), (iii)-(q), (iv)-(p)
- (3) (i)-(r), (ii)-(s), (iii)-(p), (iv)-(q)
- (4) (i)-(r), (ii)-(s), (iii)-(q), (iv)-(p)

Answer (3)

- **Sol.** NH₃ \rightarrow Pyramidal (*sp*³)
 - BrF₅ \rightarrow Square pyramidal (sp^3d^2)
 - $PCI_5 \rightarrow Trigonal bipyramidal (sp^3d)$
 - $CCl_4 \rightarrow Tetrahedral (sp^3)$

Aakashians Conquer JEE (Main) 2024 SESSION-1

4. Statement-I : Stability of +1 oxidation state increases as Ga< In < TI

Statement-II : Stability of +1 oxidation state increases down the group due to inert pair effect.

- (1) Statement-I and Statement-II both are correct
- (2) Statement-I and Statement-II both are incorrect
- (3) Statement-I is correct and Statement-II is incorrect
- (4) Statement-I is incorrect and Statement-II is correct

Answer (1)

- Sol. +1 oxidation state for group 13 elements increases down the group due to inert pair effect.
- 5. CoCl₃.xNH₃ on reaction with excess AgNO₃(aq.) gives two mole of AgCl as precipitate. Summation of oxidation state of Co in CoCl₃.xNH₃ and x is :
 - (1) 7 (2) 8
 - (3) 9 (4) 10

Answer (2)

Sol. CoCl₃.xNH₃ $\xrightarrow{\text{AgNO}_3}$ 2AqCl \downarrow

So, one CI-atom is inside co-ordination sphere.

 $\overset{+3}{\text{Co}}(\text{NH}_3)_5 \text{Cl} |\text{Cl}_2|$

The molecule which will undergo S_N2 reaction with 6. the fastest rate?

Answer (3)

Sol. Rate of $S_N 2$ increases with decrease in steric hinderance near the leaving group.

7. $x \rightleftharpoons y; k_1 = 1$ $y \rightleftharpoons z; k_2 = 2$ z ⇔ w; k₃ = 4 Find k_{eq} for $x \rightleftharpoons w$ (1) 12 (2) 8 (3) 2 (4) 4 Answer (2) **Sol.** $x \rightleftharpoons y; k_1 = 1$...(i)

 $y \rightleftharpoons z; k_2 = 2$...(ii) $z \rightleftharpoons w; k_3 = 4$...(iii)

On adding equation (i), (ii) and (iii)

 $X \rightleftharpoons W$

8. Which of the following compounds will not give Hinsberg's Test?

(1)
$$NH_2$$
— NH_-C — NH_2 (2) CH_3 — C — NH_2
(3) CH_3 — CH_2 — NH_2 (4) CH_3 — NH_-CH_3

Answer (2)

Sol. Hinsberg's Test is

9. Electron and proton have same de-Broglie wavelength. What is the ratio of their kinetic energy

$$\left(\text{i.e.} \frac{\text{KE}_{\text{e}}}{\text{KE}_{\text{P}}} = ?\right) \left(\text{Given} \frac{\text{M}_{\text{e}}}{\text{M}_{\text{P}}} = \frac{1}{1836}\right)$$
(1) 1836 (2) $\sqrt{1836}$

(3)
$$\frac{1}{1836}$$
 (4) $\frac{1}{\sqrt{1836}}$

Aakashians Conquer JEE (Main) 2024 SESSION-1

Answer (1)

Sol. $\lambda_e = \lambda_P$

$$\Rightarrow \frac{h}{\sqrt{2M_e KE_e}} = \frac{h}{\sqrt{2M_P KE_P}}$$
$$\Rightarrow (M_e \times KE_e) = (M_P \times KE_P)$$
$$\frac{KE_e}{KE_P} = \frac{M_P}{M_e} = 1836$$

10. Total number of secondary carbon atom present in given compound is

$$CH_3 - C(CH_3) - CH_2 - CH(CH_3) - CH_3$$

|
H
(1) 1 (2) 2

Answer (1)

- 11. Which one of the following statements regarding D-Glucose is incorrect?
 - (1) It does not give Schiff's test.
 - (2) It has asymmetrical C-atoms.
 - (3) It forms a dicarboxylic acid on reaction with Br₂ water
 - (4) In aqueous solution it exists as an equilibrium mixture of two anomeric forms.

Answer (3)

'As per

Sol. D-Glucose is an aldohexose which mainly exists in two cyclic anomeric forms. Since aldehyde group is not free, it does not give Schiff's test.

It has asymmetrical C-atom and is dextrorotatory. Br2 water oxidises glucose to monocarboxylic acid called gluconic acid. In aqueous solution it exists as an equilibrium mixture of α - and β -anomers.

12. One mole of monoatomic gas and one mole of diatomic gas is present in a mixture. Find out ratio of heat capacities at constant volume and constant

pressure
$$\left(i.e. \frac{C_{v}}{C_{P}}\right)$$

(1) $\frac{2}{3}$ (2) $\frac{7}{5}$
(3) $\frac{5}{7}$ (4) $\frac{3}{5}$

)

Sol.
$$C_{v} = \frac{1\left(\frac{3R}{2}\right) + 1\left(\frac{5R}{2}\right)}{2}$$
$$= \frac{8R}{4} = 2R$$
$$C_{p} = \frac{1\left(\frac{5R}{2}\right) + 1\left(\frac{7R}{2}\right)}{2}$$
$$= \frac{12R}{4} = 3R$$
$$\frac{C_{v}}{C_{p}} = \frac{2R}{3R}$$
$$= \frac{2}{3}$$

- 13. Which of the following has all paired electrons in t_{2g}?
 - (1) $[Cr(H_2O)_6]^{3+}$
 - (3) [Co(H₂O)₆]³⁺

(2) [Co(H₂O)₆]²⁺ (4) [Fe(H₂O)₆]²⁺

Answer (3)

 $\textbf{Sol.} \; [Cr(H_2O)_6]^{3*} \, {\Rightarrow} \, Cr^{*3} \, {\Rightarrow} \, 3\textit{d}^3 \, {\Rightarrow} \, \textit{d}^2\textit{sp}^3 \, {\Rightarrow} \, t^3_{2g} e^0_g$

$$\begin{split} & [\text{Co}(\text{H}_2\text{O})_6]^{2^+} \Rightarrow \text{Co}^{+2} \Rightarrow 3d^7 \Rightarrow sp^3d^2 \Rightarrow t_{2g}^5\text{e}_g^2 \\ & [\text{Co}(\text{H}_2\text{O})_6]^{3^+} \Rightarrow \text{Co}^{3^+} \Rightarrow 3d^6 \Rightarrow d^2sp^3 \Rightarrow t_{2g}^6\text{e}_g^0 \\ & [\text{Fe}(\text{H}_2\text{O})_6]^{2^+} \Rightarrow \text{Fe}^{2^+} \Rightarrow 3d^6 \Rightarrow sp^3d^2 \Rightarrow t_{2g}^4\text{e}_g^2 \end{split}$$

In $[Co(H_2O)_6]^{3+}$ all electron are present in t_{2g} set t_{2g} set have all paired electrons.

14. Which of the following will undergo disproportionation reaction in aqueous alkaline medium?

(1) I ₂ , CI ₂ only	(2) F ₂ , Cl ₂ only
(3) I ₂ , Br ₂ only	(4) Cl_2 , Br_2 , l_2 only

Answer (4)

Sol.
$$\overset{\circ}{X}_{2}(aq) + \underset{(Cold and diluted)}{OH^{\odot}} \longrightarrow \overset{-1}{X^{\odot}}(aq) + \overset{+1}{XO^{\odot}}(aq)$$

$$\overset{\circ}{X}_{2}^{2} + \underbrace{OH^{\odot}}_{(\text{Hot and Conc.})} \xrightarrow{-1} X^{\odot} (aq) + \overset{+5}{XO_{3}^{\odot}} (aq)$$

[X = CI, Br or I]

15. Match the List-I (Complexes) with List-II (Colour) and choose the correct option.

	List-I (Complex)		List-II (Colour)
(i)	Fe4[Fe(CN)6]3	(A)	Red
(ii)	[Fe(SCN)] ²⁺	(B)	Green
(iii)	FeSO ₄ ·7H ₂ O	(C)	Prussian blue

- (1) (i)-(C), (ii)-(A), (iii)-(B)
- (2) (i)-(B), (ii)-(A), (iii)-(C)
- (3) (i)-(A), (ii)-(B), (iii)-(C)
- (4) (i)-(C), (ii)-(B), (iii)-(A)

Answer (1)

Sol. (i)-(C), (ii)-(A), (iii)-(B)

16. Which of the following molecules is aromatic?

Answer (4)

Sol. In (1) & (2) there is no cyclic delocalisation in (3) the two ring changes its plane due to hinderance of the two

17. (B)
$$\leftarrow \underbrace{\bigcirc N \\ CH_3COCI} \longrightarrow \underbrace{\bigcirc CH_3OH}_{\Delta} \xrightarrow{H_2SO_4} (A)$$

Product (A) and (B) are respectively:

Answer (1)

Column-II (i) Borax bead test (a) $MCO_3 \xrightarrow{HCI} MCI_2 + CO_2 + H_2O$ (ii) Cobalt nitrate test (b) $Na_2B_4O_7 + Co^{2+} \rightarrow Co(BO_2)_2$ (c) HgO + C \rightarrow Hg + CO (iv) Charcoal cavity (d) $CoO + ZnO \rightarrow CoO.ZnO$ (1) i-(d), ii-(c), iii-(b), iv-(a) (2) i-(b), ii-(d), iii-(a), iv-(c) (3) i-(a), ii-(b), iii-(c), iv-(d) (4) i-(d), ii-(b), iii-(a), iv-(c) $Na_2B_4O_7 + Co^{2+} \longrightarrow Co(BO_2)_2$ $CoO + ZnO \longrightarrow CoO.ZnO$ $MCO_3 \xrightarrow{HCI} MCI_2 + CO_2 + H_2O$: Flame test M²⁺ : Ca²⁺, Sr²⁺, Ba²⁺ Brick red Crimson red green $HgO(s) + Charcoal \longrightarrow Hg + CO$

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest

Find the spin only magnetic moment (nearest integer) of M in MO₄²⁻, M being the atom having least atomic radii among Sc, Ti, V, Cr, Mn, Zn

Answer (0)

Sol. Radii \rightarrow Sc > Ti > Mn \simeq Zn > V > Cr

So, M is Cr. $^{+6}_{CrO_4^{2-}}: \stackrel{+6}{Cr} \rightarrow [Ar]4s^03a^0 \Rightarrow \text{zero unpaired electron}$ $\mu_{\text{spin}} = 0$

22. A solution contains 100 g water and 10 g of AB₂. The boiling point of solution was found to be 100.52°C. The degree of dissociation of AB₂(α) = ____×10⁻¹

MW of
$$AB_2 = \frac{200 \text{ g}}{\text{mol}}$$
; $K_b = 0.52 \frac{\text{K} \cdot \text{kg}}{\text{mole}}$

Answer (5)

Sol. △T_b = (i) (.52) (m)

$$0.52 = (i) (0.52) \left(\frac{10(10)}{(200)(1)} \right)$$

i = 2

23. Find the mass (in g) of O₂ required for the complete combustion of 900 g glucose.

Answer (960)

Sol. Glucose has molecular formula = $C_6(H_2O)_6$ or $C_6H_{12}O_6$

 $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$

Moles of glucose $=\frac{900}{180}=5$

Hence moles of O_2 required = $5 \times 6 = 30$

Mass (in g) of O_2 required = $30 \times 32 = 960$

24.
$$\underbrace{O}_{KOH, \Delta}^{CH_2CH_3} \xrightarrow{KMnO_4} (A) \xrightarrow{HNO_3}_{H_2SO_4} (B)$$

The number of π -bonds in product (B) is

Answer (5)

Sol.

25. Find out magnitude of work done on the gas at 18°C when 1 mole of an ideal gas undergoes compression from 9 litre to 1 litre through a reversible isothermal process (in joule) (Nearest integer). (Take log3 = 0.48)

Answer (5349)

= (2.303) (8.314) (291) (0.48) (2)

= 4981.2 joule

 $\approx 5349 \; J$

26. Find the number of optical isomers of the following compound.

- **Sol.** The given structure has two chiral centres without possibility of symmetry hence optical isomers $2^n = 2^2 = 4$
- 27. Consider the reaction.

$$A + B \rightarrow C$$

Time taken by A to become $\frac{1}{4^{\text{th}}}$ of initial concentration is twice the time taken by it to become $\frac{1}{2}$ of its same concentration. Rate of change of [B] with time gives an equation, whose slope is negative and intercept is positive. The overall order of reaction is

Answer (1)

Sol. For I order kinetics, $t_{75\%} = 2 \times t_{50\%}$

Therefore, order w.r.t. [A] = 1

For zero order kinetics,

$$[R]_t = [R]_0 - kt$$

Negative slope and positive intercept Therefore, order w.r.t. [B] = 0Overall order = 0 + 1 = 1

28. How many of the given compounds follow(s) octet rule?

H₂SO₄, CO₂, SO₂, SO₃, H₂SO₃, NO₂, HNO₃

Answer (2)

29. Consider the following reaction

What is the mass of nitrogen (in g) in one mole A?

Answer (42)

Sol.

One mole A has three mole nitrogen atoms hence mass of nitrogen in 1 mole A = $14 \times 3 = 42$ g

30. Frequency of following electromagnetic wave is given by $\times 10^6$ Hz.

Answer (25)

Sol. λ = 12 m

$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{12}$$
$$= \frac{1}{4} \times 10^8$$
$$= 0.25 \times 10^8$$
$$= 25 \times 10^6 \text{ Hz}$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

Aakash