CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Consider following statements:

1, 3-dinitrobenzene.

Statement-II:

 IUPAC name is 2-methylaniline.
(1) Both statement-I and statement-II are correct
(2) Statement-I is correct, statement-II is incorrect
(3) Statement-I is incorrect, statement-II is correct
(4) Both statement-I and statement-II are incorrect

Answer (3)

Sol. Statement-I

2,4-dinitrobenzene

\Rightarrow Statement-I is incorrect

\Rightarrow Statement-II is correct
2. We have two complexes $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, the magnetic properties respectively are
(1) Diamagnetic and Diamagnetic
(2) Paramagnetic and Paramagnetic
(3) Diamagnetic and Paramagnetic
(4) Paramagnetic and Diamagnetic

Answer (2)
Sol. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Fe}^{2+} \Rightarrow 3 d^{6} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{eg}^{2} \Rightarrow \mathrm{n}=4$ Paramagnetic
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Cu}^{+2} \Rightarrow 3 d^{9} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{eg}^{3} \Rightarrow \mathrm{n}=1$ paramagnetic
3. Match the following

	Column-I (Molecule)		Column-II (Shape)
(i)	NH_{3}	(p)	Trigonal bipyramidal
(ii)	BrF_{5}	(q)	Tetrahedral
(iii)	PCl_{5}	(r)	Pyramidal
(iv)	CCl_{4}	(s)	Square pyramidal

(1) (i)-(q), (ii)-(p), (iii)-(s), (iv)-(r)
(2) (i)-(s), (ii)-(r), (iii)-(q), (iv)-(p)
(3) (i)-(r), (ii)-(s), (iii)-(p), (iv)-(q)
(4) (i)-(r), (ii)-(s), (iii)-(q), (iv)-(p)

Answer (3)
Sol. $\mathrm{NH}_{3} \rightarrow$ Pyramidal $\left(s p^{3}\right)$
$\mathrm{BrF}_{5} \rightarrow$ Square pyramidal $\left(s p^{3} d^{2}\right)$
$\mathrm{PCl}_{5} \rightarrow$ Trigonal bipyramidal $\left(s p^{3} d\right)$
$\mathrm{CCl}_{4} \rightarrow$ Tetrahedral $\left(s p^{3}\right)$

Aakashians Conquer JEE (Main) 2024 SESSION-1

As per student response sheet and NTA answer ken
4. Statement-I : Stability of +1 oxidation state increases as $\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
Statement-II : Stability of +1 oxidation state increases down the group due to inert pair effect.
(1) Statement-I and Statement-II both are correct
(2) Statement-I and Statement-II both are incorrect
(3) Statement-I is correct and Statement-II is incorrect
(4) Statement-I is incorrect and Statement-II is correct
Answer (1)
Sol. +1 oxidation state for group 13 elements increases down the group due to inert pair effect.
5. $\mathrm{CoCl}_{3} . \mathrm{xNH}_{3}$ on reaction with excess AgNO_{3} (aq.) gives two mole of AgCl as precipitate. Summation of oxidation state of Co in $\mathrm{CoCl}_{3} \cdot \mathrm{xNH}_{3}$ and x is :
(1) 7
(2) 8
(3) 9
(4) 10

Answer (2)
Sol. $\mathrm{CoCl}_{3} . \mathrm{xNH}_{3} \xrightarrow{\mathrm{AgNO}_{3}} 2 \mathrm{AgCl} \downarrow$
So , one Cl -atom is inside co-ordination sphere.

$\Rightarrow \mathrm{x}=5$
So, $(\mathrm{O} . \mathrm{N} .+\mathrm{x})=5+3=8$
6. The molecule which will undergo $S_{N} 2$ reaction with the fastest rate?
(1)

(2)

(3)

(4)

Answer (3)
Sol. Rate of $\mathrm{S}_{\mathrm{N}} 2$ increases with decrease in steric hinderance near the leaving group.
$\square)^{\mathrm{Br}}: 1^{\circ}$ halide : least hindered
7. $x \rightleftharpoons y ; k_{1}=1$
$\mathrm{y} \rightleftharpoons \mathrm{z} ; \mathrm{k}_{2}=2$
$\mathrm{z} \rightleftharpoons \mathrm{w} ; \mathrm{k}_{3}=4$
Find $\mathrm{k}_{\text {eq }}$ for $\mathrm{x} \rightleftharpoons \mathrm{w}$
(1) 12
(2) 8
(3) 2
(4) 4

Answer (2)
Sol. $\mathrm{x} \rightleftharpoons \mathrm{y}$; $\mathrm{k}_{1}=1$
$\mathrm{y} \rightleftharpoons \mathrm{z} ; \mathrm{k}_{2}=2$
$\mathrm{z} \rightleftharpoons \mathrm{w} ; \mathrm{k}_{3}=4$
On adding equation (i), (ii) and (iii)

$$
\begin{aligned}
& x \rightleftharpoons w \\
& k_{\text {eq }}=k_{1} \times k_{2} \times k_{3} \\
& =1 \times 2 \times 4=8
\end{aligned}
$$

8. Which of the following compounds will not give Hinsberg's Test?
(1)

(2)

(3) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(4) $\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{3}$

Answer (2)

Sol. Hinsberg's Test is

9. Electron and proton have same de-Broglie wavelength. What is the ratio of their kinetic energy (i.e. $\frac{K E_{e}}{K E_{p}}=$? $)\left(\operatorname{Given} \frac{M_{e}}{M_{p}}=\frac{1}{1836}\right)$
(1) 1836
(2) $\sqrt{1836}$
(3) $\frac{1}{1836}$
(4) $\frac{1}{\sqrt{1836}}$

Answer (1)

Sol. $\lambda_{e}=\lambda_{P}$

$$
\begin{aligned}
& \Rightarrow \frac{h}{\sqrt{2 M_{e} K E_{e}}}=\frac{h}{\sqrt{2 M_{P} K E_{P}}} \\
& \Rightarrow\left(M_{e} \times K E_{e}\right)=\left(M_{P} \times K E_{P}\right) \\
& \frac{K E_{e}}{K E_{P}}=\frac{M_{p}}{M_{e}}=1836
\end{aligned}
$$

10. Total number of secondary carbon atom present in given compound is

(1) 1
(2) 2
(3) 3
(4) 4

Answer (1)

Sol.

11. Which one of the following statements regarding D-Glucose is incorrect?
(1) It does not give Schiff's test.
(2) It has asymmetrical C-atoms.
(3) It forms a dicarboxylic acid on reaction with Br_{2} water
(4) In aqueous solution it exists as an equilibrium mixture of two anomeric forms.

Answer (3)

Sol. D-Glucose is an aldohexose which mainly exists in two cyclic anomeric forms. Since aldehyde group is not free, it does not give Schiff's test.

It has asymmetrical C -atom and is dextrorotatory. Br_{2} water oxidises glucose to monocarboxylic acid called gluconic acid. In aqueous solution it exists as an equilibrium mixture of α - and β-anomers.
12. One mole of monoatomic gas and one mole of diatomic gas is present in a mixture. Find out ratio of heat capacities at constant volume and constant pressure $\left(\right.$ i.e. $\left.\frac{C_{v}}{C_{P}}\right)$
(1) $\frac{2}{3}$
(2) $\frac{7}{5}$
(3) $\frac{5}{7}$
(4) $\frac{3}{5}$

Answer (1)
Sol. $C_{v}=\frac{1\left(\frac{3 R}{2}\right)+1\left(\frac{5 R}{2}\right)}{2}$

$$
\begin{aligned}
& =\frac{8 R}{4}=2 R \\
C_{p} & =\frac{1\left(\frac{5 R}{2}\right)+1\left(\frac{7 R}{2}\right)}{2} \\
& =\frac{12 R}{4}=3 R \\
\frac{C_{v}}{C_{P}} & =\frac{2 R}{3 R} \\
& =\frac{2}{3}
\end{aligned}
$$

13. Which of the following has all paired electrons in t_{2} ?
(1) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer (3)

Sol. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \Rightarrow \mathrm{Cr}^{+3} \Rightarrow 3 d^{3} \Rightarrow d^{2} s p^{3} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{0}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Co}^{+2} \Rightarrow 3 d^{7} \Rightarrow \mathrm{sp}^{3} d^{2} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}^{2}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \Rightarrow \mathrm{Co}^{3+} \Rightarrow 3 d^{6} \Rightarrow d^{2} s p^{3} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Fe}^{2+} \Rightarrow 3 d^{6} \Rightarrow s p^{3} d^{2} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
In $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ all electron are present in $\mathrm{t}_{2 \mathrm{~g}}$ set $\mathrm{t}_{2 \mathrm{~g}}$ set have all paired electrons.
14. Which of the following will undergo disproportionation reaction in aqueous alkaline medium?
(1) $\mathrm{I}_{2}, \mathrm{Cl}_{2}$ only
(2) $\mathrm{F}_{2}, \mathrm{Cl}_{2}$ only
(3) $\mathrm{I}_{2}, \mathrm{Br}_{2}$ only
(4) $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$ only

Answer (4)

Sol. $\stackrel{\circ}{\mathrm{X}}_{2}(\mathrm{aq})+\underset{\text { (Cold and diluted) }}{\mathrm{OH}^{\ominus}} \longrightarrow \mathrm{X}^{-1}(\mathrm{aq})+{\stackrel{+1}{\mathrm{X}} \mathrm{O}^{\ominus}(\mathrm{aq})}_{\text {(aq }}$
$\stackrel{\circ}{\mathrm{X}}_{2}+\underset{(\text { Hot and Conc.) }}{\mathrm{OH}^{\ominus}} \longrightarrow \stackrel{-1}{\mathrm{X}}^{\ominus}(\mathrm{aq})+\stackrel{+5}{\mathrm{XO}_{3}^{\ominus}}(\mathrm{aq})$
[$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I]
15. Match the List-I (Complexes) with List-II (Colour) and choose the correct option.

	List-I (Complex)		List-II (Colour)
(i)	$\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$	(A)	Red
(ii)	$[\mathrm{Fe}(\mathrm{SCN})]^{2+}$	(B)	Green
(iii)	$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	(C)	Prussian blue

(1) (i)-(C), (ii)-(A), (iii)-(B)
(2) (i)-(B), (ii)-(A), (iii)-(C)
(3) (i)-(A), (ii)-(B), (iii)-(C)
(4) (i)-(C), (ii)-(B), (iii)-(A)

Answer (1)

Sol. (i)-(C), (ii)-(A), (iii)-(B)
16. Which of the following molecules is aromatic?
(1)

(2)

(3)

(4)

Answer (4)

Sol. In (1) \& (2) there is no cyclic delocalisation in (3) the two ring changes its plane due to hinderance of the two

H -atoms:

In (4) all conditions are present for aromaticity.
17.

Product (A) and (B) are respectively:
(1)

(2)

(3)

(4)

Answer (1)

Sol.

(A)

(B)
18.

$\xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{Br}_{2}, \operatorname{Red} \mathrm{P}}$ Product (P)
The product (P) is :
(1)

(2)

(3)

(4)

Answer (1)

Sol.

This is HVZ reaction
19. Which of the following reaction(s) is/are correct?
(a) $\mathrm{Fe}^{3+}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+\mathrm{Fe}^{2+}$
(b) $\mathrm{Fe}^{3+}+\mathrm{I}^{-} \longrightarrow \mathrm{Fel}_{3}$
(c) $\mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \longrightarrow \mathrm{Fe}+2 \mathrm{SO}_{4}^{2-}$
(d) $\mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \longrightarrow \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-}$
(1) (a) only
(2) (b) and (c) only
(3) (a) and (d) only
(4) (b) and (d) only

Answer (3)

Sol. Fe^{3+} ions oxidises I^{-}ions to I_{2} and itself gets reduced to Fe^{2+} ions
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Fe}^{2+}$
Fe^{2+} ions are oxidised by $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$ to Fe^{3+} ions and Itself gets reduced to SO_{4}^{2-} ions
$2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \longrightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-}$
20. Match the following

Column-I

Column-II
(i) Borax bead test
(a) $\mathrm{MCO}_{3} \xrightarrow[\Delta]{\mathrm{HCl}} \mathrm{MCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(ii) Cobalt nitrate test
(b) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+\mathrm{Co}^{2+} \rightarrow \mathrm{Co}\left(\mathrm{BO}_{2}\right)_{2}$
(iii) Flame test
(c) $\mathrm{HgO}+\mathrm{C} \rightarrow \mathrm{Hg}+\mathrm{CO}$
(iv) Charcoal cavity
(d) $\mathrm{CoO}+\mathrm{ZnO} \rightarrow \mathrm{CoO} . \mathrm{ZnO}$ test
(1) i-(d), ii-(c), iii-(b), iv-(a)
(2) i-(b), ii-(d), iii-(a), iv-(c)
(3) i-(a), ii-(b), iii-(c), iv-(d)
(4) i-(d), ii-(b), iii-(a), iv-(c)

Answer (2)

Sol. Borox bead test :

$$
\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+\mathrm{Co}^{2+} \xrightarrow{\Delta} \mathrm{Co}\left(\mathrm{BO}_{\text {Blue }}^{2}\right)_{2}
$$

Cobalt nitrate test :

$$
\mathrm{CoO}+\mathrm{ZnO} \longrightarrow \mathrm{CoO} . \mathrm{ZnO}
$$

Flame test :
$\mathrm{MCO}_{3} \xrightarrow[\Delta]{\mathrm{HCl}} \mathrm{MCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$: Flame test

Charcoal cavity test :

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

Aakashians Conquer JEE (Main) 2024 sEssion-1

21. Find the spin only magnetic moment (nearest integer) of M in $\mathrm{MO}_{4}^{2-}, \mathrm{M}$ being the atom having least atomic radii among $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Zn}$

Answer (0)
Sol. Radii $\rightarrow \mathrm{Sc}>\mathrm{Ti}>\mathrm{Mn} \simeq \mathrm{Zn}>\mathrm{V}>\mathrm{Cr}$
So, M is Cr .
$\stackrel{+6}{\mathrm{C}} \mathrm{rO}_{4}^{2-}: \stackrel{+6}{\mathrm{C}} \mathrm{r} \rightarrow[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 d^{0} \Rightarrow$ zero unpaired electron
$\mu_{\text {spin }}=0$
22. A solution contains 100 g water and 10 g of AB_{2}. The boiling point of solution was found to be $100.52^{\circ} \mathrm{C}$. The degree of dissociation of $\mathrm{AB}_{2}(\alpha)=$ \qquad $\times 10^{-1}$
$\left[\mathrm{MW}\right.$ of $\left.\mathrm{AB}_{2}=\frac{200 \mathrm{~g}}{\mathrm{~mol}} ; \mathrm{K}_{\mathrm{b}}=0.52 \frac{\mathrm{~K} \cdot \mathrm{~kg}}{\mathrm{~mole}}\right]$

Answer (5)

Sol. $\Delta \mathrm{T}_{\mathrm{b}}=(\mathrm{i})(.52)(\mathrm{m})$
$0.52=$ (i) $(0.52)\left(\frac{10(10)}{(200)(1)}\right)$
$\mathrm{i}=2$
$2=1+2 \alpha$
$1=2 \alpha$
$\alpha=0.5$
23. Find the mass (in g) of O_{2} required for the complete combustion of 900 g glucose.

Answer (960)

Sol. Glucose has molecular formula $=\mathrm{C}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ or $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Moles of glucose $=\frac{900}{180}=5$
Hence moles of O_{2} required $=5 \times 6=30$
Mass (in g) of O_{2} required $=30 \times 32=960$
24.

The number of π-bonds in product (B) is

Answer (5)

Sol.

No. of π-bonds $=5$
25. Find out magnitude of work done on the gas at $18^{\circ} \mathrm{C}$ when 1 mole of an ideal gas undergoes compression from 9 litre to 1 litre through a reversible isothermal process (in joule) (Nearest integer). (Take log3 $=0.48$)
Answer (5349)
Sol. W $=2.303 \times(1) \times(8.314) \times(291) \log 9$

$$
\begin{aligned}
& =(2.303)(8.314)(291)(0.48)(2) \\
& =4981.2 \text { joule } \\
& \approx 5349 \mathrm{~J}
\end{aligned}
$$

26. Find the number of optical isomers of the following compound.

Answer (4)

Sol. The given structure has two chiral centres without possibility of symmetry hence optical isomers $2^{n}=2^{2}=4$
27. Consider the reaction.

$$
A+B \rightarrow C
$$

Time taken by A to become $\frac{1}{4^{\text {th }}}$ of initial concentration is twice the time taken by it to become $\frac{1}{2}$ of its same concentration. Rate of change of $[B]$ with time gives an equation, whose slope is negative and intercept is positive. The overall order of reaction is
Answer (1)
Sol. For I order kinetics, $\mathrm{t}_{75 \%}=2 \times \mathrm{t}_{50} \%$
Therefore, order w.r.t. $[A]=1$
For zero order kinetics,

$$
[R]_{\mathrm{t}}=[\mathrm{R}]_{0}-\mathrm{kt}
$$

Negative slope and positive intercept
Therefore, order w.r.t. $[B]=0$
Overall order $=0+1=1$
28. How many of the given compounds follow(s) octet rule?
$\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{NO}_{2}, \mathrm{HNO}_{3}$
Answer (2)

Sol.

SO_{2} :

$\mathrm{H}_{2} \mathrm{SO}_{3}$

NO_{2}

Only CO_{2} and HNO_{3} follow octet rule.
29. Consider the following reaction

What is the mass of nitrogen (ing) in one mole A?

Answer (42)

Sol.

One mole A has three mole nitrogen atoms hence mass of nitrogen in 1 mole $A=14 \times 3=42 \mathrm{~g}$
30. Frequency of following electromagnetic wave is given by \qquad $\times 10^{6} \mathrm{~Hz}$.

Answer (25)

Sol. $\lambda=12 \mathrm{~m}$

$$
\begin{aligned}
v=\frac{c}{\lambda} & =\frac{3 \times 10^{8}}{12} \\
& =\frac{1}{4} \times 10^{8} \\
& =0.25 \times 10^{8} \\
= & 25 \times 10^{6} \mathrm{~Hz}
\end{aligned}
$$

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

As per student response theet and NTA onswer ber
-936 эянаеаниня

[PHY. OR CHEM. OR MATHS]

