JEE-Main-08-04-2024 (Memory Based) [MORNING SHIFT]

Maths

Question: Find the range of $\frac{\sin ^{4} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta+\cos ^{2} \theta}$
Answer: [1, 3]

Question: $A=\left[\begin{array}{lll}2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b\end{array}\right], A^{2}=4 A^{2}-A-21 I$ Find $2 \mathrm{a}+3 \mathrm{~b}=$ Options:
(a) -10
(b) 10
(c) -13
(d) 13

Answer: (c)
Question: $\lim _{x \rightarrow 0} 2\left[\frac{1-\cos x \sqrt{\cos 2 x} \cdot \sqrt[3]{\cos 3 x} \ldots 10 \sqrt{\cos 10 x}}{x^{2}}\right]$ Options:
(a) 55
(b) 65
(c) 56
(d) 66

Answer: (a)

Question: $\sin \theta=-\frac{3}{5}$ and $\theta \in\left[\pi, \frac{3 \pi}{2}\right]$ then find $80\left(\tan ^{2} \theta-\cos \theta\right)$
Answer: (109)
Question: If $I_{n}=\int_{0}^{1}\left(1-x^{k}\right)^{n} d x$ and if $147 \mathrm{I}_{20}=148 \mathrm{I}_{21}$, find k.
Options:
(a) 4
(b) 5
(c) 6
(d) 7

Answer: (d)
Question: $\int \frac{6}{\sin ^{2} x(1-\cot x)^{2}} d x$
Question: Find sum of solutions of the equation $8^{2 a}-16.8^{a}+48=0$
Question: $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$, Sum of diagonal elements of $\mathrm{A}^{13}=3^{\mathrm{n}}$ find $\mathrm{n}=$
Options: (a) 7
(b) 8
(c) 9
(d) 10

Answer: (7)

Question:

In a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, eccentricity is $\sqrt{ } 3$ Length of Latus rectum is $4 \sqrt{ } 3$, If $(\alpha, 6)$ Lies on hyperbola. Product of focal distance from $(\alpha, 6)$ is β, then $\alpha^{2}+\beta=$
Options:
(a) 170
(b) 171
(c) 172
(d) 173

Answer: (b)

Question: $f(x)=4 \cos ^{3} x+3 \sqrt{3} \cos ^{2} x-1$ then find the local maxima at point $[0,2 \pi]$
Question: Let $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}-\mathrm{x}+1, \mathrm{x} \in[0, \pi]$. Let M and m be the maximum and minimum values find (M-m)

Options:

(a) π
(b) $\pi+1$
(c) $\pi+2$
(d) 2π

Answer: (c)
Question: Let z be a complex number then $|\mathrm{z}+2|=1$ and
imaginary part of $\frac{z+1}{z+2}=\frac{1}{6}$ then find the value of real part of $\mathrm{z}+2$
Question: $\begin{aligned} & \bar{r}_{1}=(5+\mu) i+(1-3 \mu) j+(1+2 \mu) k \\ & \bar{r}_{2}=(2+\lambda) i+(3-3 \lambda) j+(3+4 \lambda) k\end{aligned}$

Question: Find 3 digit numbers using digits $0,2,4,6$ and 7 without repetition and the number cannot be divisible by 3 is?

Options:

(a) 20
(b) 24
(c) 28
(d) 30

Answer: (c)

