

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. The dimension of latent heat is
 - (1) $[M^0L^2T^{-1}]$ (2) $[M^0L^2T^{-2}]$
 - (3) $[M^0LT^{-2}]$ (4) $[M^{-1}L^2T^{-2}]$

Answer (2)

- **Sol.** $[L] = \frac{Q}{M} = \frac{ML^2T^{-2}}{M}$ $= \left[L^2T^{-2}\right]$
- In the pulley-block system shown, the pulley and the block are ideal. If the acceleration of the blocks

is
$$\frac{g}{8}$$
, find $m_1 : m_2$ (Given $m_2 > m_1$)
 m_1
 m_2
(1) 7:9
(2) 5:7
(3) 3:4
(4) 9:11

Answer (1)

Sol. $a = \frac{(m_2 - m_1)g}{(m_1 + m_2)} = \frac{g}{8}$

$$\frac{m_1}{m_2} = \frac{7}{9}$$

3. Velocity of a particle of mass *m* as a function of displacement *x* is given by $v = \alpha \sqrt{x}$.

Work done to move it from x = 0 to x = d is

(1)
$$\frac{m\alpha^2}{2}.d$$
 (2) $m\alpha^2.d$
(3) $\frac{3m\alpha^2d}{2}$ (4) $2m\alpha^2d$

Answer (1)

Sol.
$$W = \Delta KE$$

 $W = \frac{1}{2}m\left[\left(\alpha\sqrt{d}\right)^2 - \left(\alpha\sqrt{0}\right)^2\right]$
 $W = \frac{m\alpha^2 d}{2}$

 Two persons are pulling a rope towards themselves with force of 200 N each. If Young's modulus is 2 × 10¹¹ N/m² and area of cross is 2 cm² for the rope. The elongation in the rope is, if distance of their holding the rope is 2 m.

(4) 40 μm

Ω

(1) 10 μm (2) 20 μm

(3) 5 µm

Answer (1)

Sol.
$$\frac{FI}{YA} = \Delta$$

$$\frac{200 \times 2}{2 \times 10^{11} \times 2 \times 10^{-4}} = \Delta I$$

100 × 10⁻⁷ = ΔI
10 × 10⁻⁶ m = ΔI

5. A galvanometer having resistance of 200 Ω shows full deflection at 20 μ A. If the galvanometer has to measure current up to 200 *m*A, the shunt resistance required is

(1)
$$\frac{200}{99} \Omega$$
 (2) $\frac{200}{999} \Omega$
(3) $\frac{20}{99} \Omega$ (4) 200×999

Answer (2)

JEE (Main)-2024 : Phase-2 (09-04-2024)-Morning

Sol.
$$20 \,\mu\text{A} = \left(\frac{R_s}{R_s + 200}\right) 20 \,\text{mA}$$

 $R_s + 200 = 1000 \,R_s$
 $R_s = \frac{200}{999} \,\Omega$

 A particle oscillating simple harmonic motion such that its speed and acceleration at distance 2 m from mean position are 4 m/s and 16 m/s² respectively.

(1)	√10 m	(2)	√6 m

(3) $\sqrt{8}$ m (4) $\sqrt{3}$ m

Answer (2)

Sol. $4 = \omega \sqrt{A^2 - 4}$...(i) $16 = 2\omega^2$...(ii) from (i) and (ii)

7. **Assertion :** Object at radius of curvature of biconvex lens forms image at same distance an other side of lens.

Reason : Image of a real object formed by concave lens is always virtual and erect.

- (1) Assertion and reason are correct and reason is correct explanation of assertion.
- (2) Assertion and reason are correct but reason is not correct explanation of assertion.
- (3) Assertion is correct but Reason is incorrect
- (4) Assertion is incorrect but Reason is correct

Answer (2)

Sol. Theoretical
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \& |v| = |u| = 2f$$

- 8. The equivalent energy of 1 gm mass is equal to
 - (1) $8.3 \times 10^{26} \text{ MeV}$ (2) $5.6 \times 10^{26} \text{ MeV}$

(4) 5.6 × 10¹² MeV

(3) 8.3 × 10¹² MeV

Answer (2)

$$= \frac{1 \times 10^{-3} \times 9 \times 10^{16}}{1.6 \times 10^{-19}} \text{ eV}$$
$$= 5.625 \times 10^{32} \text{ eV}$$
$$= 5.6 \times 10^{26} \text{ MeV}$$

9. Find equivalent resistance between terminal is *A* and *B* for the given network.

Answer (4)

$$R_{AB} = 14 + \frac{15}{3} = 19 \ \Omega$$

 A person covers first half of the distance with 6 m/s and rest half of the distance is covered with 9 m/s and 15 m/s in two equal time intervals. Find average speed of the journey.

/// 15 Ω

(1) 12 m/s	(2)	9 m/s
------------	-----	-------

(3) 10 m/s (4) 8 m/s

Answer (4)

speed Sol. Average in second half distance $=\frac{9+15}{2}=12$ m/s

Average speed of journey = $\frac{2d}{\frac{d}{d} + \frac{d}{d}}$ = 8 m/s 6 12

11. Find the potential at the centre of a uniformly charged semi-circular wire with uniform linear charge density of 4 nC/m.

(1) 36π volts

(2) 29π volts

(3) 9π volts

(4) Zero volts

Answer (1)

Sol.
$$v = \frac{kQ}{R}$$

$$=\frac{9\times10^9(\pi R)\times4\times10^{-9}}{R}$$

= 36π volt

12. An astronaut takes a body of mass m from the surface of the earth to an altitude $\frac{R}{20}$ (*R* is the

radius of the earth, g is acceleration due to gravity at surface of earth)

Find change in gravitational potential energy of the body.

mgR (1) $\frac{mgR}{20}$ (2) 21

$$(3) \quad \frac{mgR}{15} \qquad \qquad (4) \quad \frac{mgR}{25}$$

Answer (2)

RISHI S SHUKLA

nse sheet and NTA answer key

TWO YEAR CLASSROOM PROG

'As per student respo

Sol.
$$\Delta U = U_f - U_i = \frac{-GMm}{\left(\frac{R+R}{20}\right)} - \left(\frac{-GMm}{R}\right)$$

 $\Delta U = \frac{GMm}{24D} = m\left(\frac{GM}{2}\right) \cdot \frac{R}{24} = \frac{mgR}{24}$

$$D = \frac{1}{21R} = m \left(\frac{1}{R^2}\right) \cdot \frac{1}{21} = \frac{1}{21}$$

(PHY. OR CHEM. OR MATHS)

JEE (Main)-2024 : Phase-2 (09-04-2024)-Morning

- 13. Energy associated with a photon is 1.42 eV. Find wavelength of photon. (Take hc = 1240 nmeV)
 - (1) 628.26 nm (2) 873.24 nm
 - (3) 625.22 nm (4) 820.23 nm

(4) 1 A

Our Stars Aakashians Conquer JEE (Main) 2024 SESSION-1 Perfect Score! '300/300 99+ PERCENTILERS Chirag Falor 95+ PERCENTILERS 100 PERCENTILERS

S

JEE (Main)-2024 : Phase-2 (09-04-2024)-Morning

0

$$y-5+y-0-4y-40-4x = 0$$

$$6y-4x = 45 \qquad ...(ii)$$

$$i = 2.5 A$$

$$4y = 30$$

$$y = \frac{15}{2}$$

And $x = 0$

 An object of diameter *D* has cavity of diameter *d* as shown. Relative density of material of object is σ.

Find $\frac{D}{d}$ such that the object just completely

submerge in water.

(1)
$$\left(\frac{\sigma-1}{\sigma}\right)^{\frac{1}{3}}$$
 (2) $\left(\frac{\sigma}{\sigma-1}\right)^{\frac{1}{3}}$
(3) $\left(\frac{\sigma^2-1}{\sigma^2}\right)^{\frac{1}{3}}$ (4) $\left(\frac{2\sigma-1}{2\sigma}\right)^{\frac{1}{3}}$

Answer (2)

Sol.
$$V = \frac{4}{3} \pi \left(\frac{D}{2}\right)^3$$

 $V_c = \frac{4}{3} \pi \left(\frac{d}{2}\right)^3$
 $\frac{4}{3} \pi \left(\frac{D}{2}\right)^3 = \frac{4}{3} \pi \left\{ \left(\frac{D}{2}\right)^3 - \left(\frac{d}{2}\right)^3 \right\} \sigma$
 $D^3 = (D^3 - d^3) \sigma$

$$1 = \left\{ 1 - \left(\frac{d}{D}\right)^3 \right\} \sigma$$
$$1 - \frac{1}{\sigma} = \left(\frac{d}{D}\right)^3$$
$$\left(\frac{\sigma}{\sigma - 1}\right)^{\frac{1}{3}} = \frac{D}{d}$$

- 16. A capacitor is connected with a bulb to an ac source. After some time dielectric is introduced between the plates of the capacitor. The brightness of the bulb will
 - (1) Increase
 - (2) Decrease
 - (3) No change
 - (4) First increase then decrease

Answer (1)

Sol. *c*′ = *kc*

$$X_c = \frac{1}{\omega c}$$

κς κςω

z decreases

- . *i* will increase.
- 17. Two vector \vec{A} and \vec{B} having magnitude A and Brespectively are inclined at angle $\theta = \cos^{-1}\left(\frac{5}{9}\right)$. If they satisfied the relation $|\vec{A} + \vec{B}| = \sqrt{2}|\vec{A} - \vec{B}|$ and given that $|\vec{A}| = n|\vec{B}|$, then value of n may be (1) $\sqrt{3}$ (2) 3

(4) $\frac{1}{\sqrt{3}}$

(3)
$$\frac{2}{\sqrt{3}}$$

Answer (2)

Aakash Medical/IIT-JEE/Foundation

JEE (Main)-2024 : Phase-2 (09-04-2024)-Morning

Sol. $\sqrt{A^2 + B^2 + 2AB\cos\theta} = \sqrt{2}\sqrt{A^2 + B^2 - 2AB\cos\theta}$

$$(nB)^{2} + B^{2} + 2(nB)B \times \frac{5}{9} = 2\left[(nB)^{2} + B^{2} - 2(nB)B \times \frac{5}{9}\right]$$
$$n^{2} + 1 - \frac{10}{3}n = 0$$
$$3n^{2} + 3 - 10n = 0$$
$$3n^{2} - 10n + 3 = 0$$
$$3n^{2} - 9n - n + 3 = 0$$
$$3n(n - 3) - 1(n - 3) = 0$$
$$n = 3$$

$$n=\frac{1}{3}$$

18. In an adiabatic process $\left(\gamma = \frac{3}{2}\right)$, a gas expands to double of its initial volume.

Find the work done by gas if initial temperature is T. (Number of moles of gas = 1)

(1) $RT(2-\sqrt{2})$ (2) $RT(2+\sqrt{2})$ (3) $\frac{RT}{2+\sqrt{2}}$ (4) $\frac{RT}{2-\sqrt{2}}$

Answer (1)

Sol. $TV^{\gamma-1} = T_1 (2V)^{\gamma-1}$

 $\Rightarrow T_1 = \frac{T}{\sqrt{2}}$

$$W = \frac{nR\left(T - \frac{T}{\sqrt{2}}\right)}{\frac{3}{2} - 1} = \sqrt{2}RT\left(\sqrt{2} - 1\right)$$

 $= RT(2-\sqrt{2})$

 A man is holding a rod as shown in figure from one end while the other end is making an angle θ with the ground. Find the contact force between rod and man if weight of rod is *W*.

Sol.
$$mg\cos\theta \frac{l}{2} = N \times l$$

$$N = \frac{mg}{2}\cos\theta = \frac{W\cos\theta}{2}$$

- 20. If the energy of α -particle, proton and an electron are same and the simplest ratio of their de–Broglie wavelength is
 - (1) 2:1:1244
 (2) 1836:4:1
 (3) 1:4:7340
 (4) 1:4:1836

Answer (3)

Sol.
$$\lambda = \frac{h}{\sqrt{2mE}}$$

 $\lambda \propto \frac{1}{\sqrt{m}}$

Aakashians Conquer JEE (Main) 2024 SESSION-1

JEE (Main)-2024 : Phase-2 (09-04-2024)-Morning

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. In the YDSE set up shown below, point P is having

 $\left(\frac{1}{4}\right)^{tn}$ the maximum intensity. If the minimum

distance of *P* from *O* is $N \times 10^{-4}$ m, find *N*. (Given wavelength of light = 600 nm)

Sol. $\frac{l_0}{4} = l_0 \cos^2 \frac{\phi}{2}$

φ = 120°

 $\Delta x = \frac{\lambda}{2\pi} \times \frac{2\pi}{3} = \frac{\lambda}{3}$

$$\Delta x = \frac{dy}{D} = \frac{\lambda}{3}$$

$$y = \frac{\lambda D}{3d} = \frac{600 \times 10^{-9} \times 1}{3 \times 10^{-3}}$$

= 2 × 10⁻⁴ m

22. A choke coil draws 4 A current from 20 V DC and $\frac{4}{5}$ A current from 20 V AC (of frequency of 50 Hz).

The inductance of the coil is $\frac{x}{10}$ H. Find nearest integer *x*.

Answer (4)

Sol.
$$R = 5 \Omega$$

 $\sqrt{5^2 + x_L^2} = \frac{20}{\left(\frac{4}{5}\right)} = 25$
 $25 + x_L^2 = 625$
 $x_L = \sqrt{600}$

$$L = \frac{10\sqrt{6}}{20\pi \times 50} = \frac{\sqrt{6}}{2\pi}$$
 H

= 0.4 H

23. String wrapped on a circular disc of radius r = 20 cm. The moment of inertia of disc is 0.4 kgm². The string is pulled with a constant force of 40 N. The angular velocity of the disc at time t = 2 sec is *K* rad/s.

Find the value of K. (Initially disc is at rest)

Answer (40)

Sol. $\tau = l\alpha$

 $40 \times 0.2 = 0.4 \cdot \alpha \implies \alpha = 20 \text{ rad/s}^2$

 $\therefore \omega = \omega_i + \alpha t$

 $\omega = 40 \text{ rad/s}$

24. 25. 26. 27.

28.

29. 30.

