JEE-Main-09-04-2024 (Memory Based) [MORNING SHIFT]

Maths

Question: A ray of light passing through (1,2) after reflecting on x- axis at point Q passes through R(3, 4). If S(h,k) is such that PQRS is a parallelogram, then find the value of hk². **Options:**

(a) 90

(b) 84

(c) 98

(d) 108

Answer: (b)

Question: Tetrahedral dice having outcomes (1,2,3,4) **Options:**

(a) 4

(b) 5

(c) 6

(d) 7

Answer: (b)

Question: A circle passes through (0,0) and (1,0) and touches the circle $x^2 + y^2 = 9$. Then the locus of the centre of the circle is:

Options:

(a) Circle(b) Parabola

(c) Hyperbola

(d) Straight Line

Answer: (a)

```
Question: \vec{\vec{A}}, \vec{\vec{B}} and \vec{\vec{C}} are given as} 

\vec{\vec{A}} = \alpha \hat{i} + 4 \hat{j} + 5 \hat{k} \vec{\vec{B}} = 2 \hat{i} + 5 \hat{j} + 6 \hat{k} \vec{\vec{C}} = \vec{\vec{A}} + \vec{\vec{B}} is equal to:

Options:

(a) 25,731

(b) -25,669

(c) -25,731

(d) 25,669

Answer: (c)
```

Question: If set $A = \{z : |z-1| \le 1\}$ and set $B = \{z : |z-5i| \le |z-5|\}$, if z = a + ib, where $a, b \in \mathbb{I}$, then sum of modulus squares of $A \cap B$ is : **Options:**

(a) 0 (b) 2 (c) 4 (d) 5 **Answer: (b)**

$$\frac{1}{(1+d)(1+2d)} + \frac{1}{(1+2d)(1+3d)} + \dots + \frac{1}{(1+9d)(1+10d)} = 1,$$

then value of 50d is (d > 0):
Options:
(a) 50
(b) 60
(c) 25
(d) 30
Answer: (c)

edanti,

Question: The remainder when (428)²⁰²⁴ is divided by 21 is: Answer: (1)

Question: If A is 3 x 3 matrix, det(3adj (2 adj A)) = 2^{-13} . 3^{-10} and det(3adj (2A)) = 2^{-m} . 3^{-n} then $2^m + 2^n$ is equal to : Answer: (14)

Question: If $f(x) = 3ax^3 + bx^2 + cx + 1$ and f(1) = 41, f'(1) = 2 and f''(1) = 4 then $(a^2 + b^2 + c^2)$ is ____. Answer: (8)

Sin⁻¹ $\left(\frac{x-1}{2x+3}\right)$ is R - $(\alpha, \beta]$ then $12\alpha\beta$ is equal to : Answer: (32)

Question: A = {2,4,6,8}, B = {3,7,6,9}. R : A X B \rightarrow A X B such that (a₁, b₁) R (a₂, b₂) \Leftrightarrow a₁ + a₂ = b₁ + b₂ where (a₁, b₁) \in A, (a₂,b₂) \in B. Find number of elements in the relation. Answer: (9)

Question: Let
$$\int \frac{2 - \tan x}{3 + \tan x} dx = \frac{1}{2} (ax + \log_e |\beta \sin x + v \cos x|) + C,$$
 where
c is constant of integration. Then
Options:
(a) 4
(b) 7
(c) 1
(d) 3
Answer: ()

Question: Let $|\cos \theta \cos(60 - \theta)| \le \frac{1}{8}$, $\theta \in [0, 2\pi]$. Then the sum of all $\theta \in [0, 2\pi]$, where $\cos 3\theta$ attains its maximum value is

Vedantu

Options:

(a) 15π
(b) 9π
(c) 6π
(d) 18π
Answer: (c)

Question: The coefficient of x^{70} in $x^2(1 + x)^{98} + x^3(1 + x)^{97} + x^4(1 + x)^{96} + + x^{54}(1 + x)^9 C_p$ -⁴⁶C_q is. Then a possible value of p + q is Options:

(a) 68 (b) 55 (c) 83 (d) 61

Answer: (c)

Question: A variable line L passes through the point (3,5), and intersects the +ve coordinate axes at the points A and B. The minimum area of the $\triangle OAB$, where o is the origin is : **Options:**

(a) 25 (b) 40 (c) 35 (d) 30 **Answer: (d)**