Vedantu

JEE-Main-09-04-2024 (Memory Based) [MORNINGSHIFT]

Maths

Question: A ray of light passing through (1,2) after reflecting on x - axis at point Q passes through $R(3,4)$. If $\mathrm{S}(\mathrm{h}, \mathrm{k})$ is such that PQRS is a parallelogram, then find the value of $h \mathrm{k}^{2}$.

Options:

(a) 90
(b) 84
(c) 98
(d) 108

Answer: (b)
Question: Tetrahedral dice having outcomes $(1,2,3,4)$
Options:
(a) 4
(b) 5
(c) 6
(d) 7

Answer: (b)

Question: A circle passes through $(0,0)$ and $(1,0)$ and touches the circle $x^{2}+y^{2}=9$. Then the locus of the centre of the circle is:

Options:

(a) Circle
(b) Parabola
(c) Hyperbola
(d) Straight Line

Answer: (a)
Question: $\begin{aligned} & \vec{A}, \vec{B} \text { and } \vec{C} \text { are given as } \\ & \vec{A}=\alpha \hat{i}+4 \hat{j}+5 \vec{k} \vec{B}=2 \hat{i}+5 \hat{j}+6 \hat{k} \vec{C}=\vec{A}+\vec{B}\end{aligned}$ is equal to:

Options:

$$
|\vec{c}|=|\vec{A}-\vec{B}|
$$

(a) 25,731
(b) $-25,669$
(c) $-25,731$
(d) 25,669

Answer: (c)

Question: If set $\mathrm{A}=\{\mathrm{z}:|\mathrm{z}-1| \leq 1\}$ and $\operatorname{set} \mathrm{B}=\{\mathrm{z}:|\mathrm{z}-5 \mathrm{i}| \leq|\mathrm{z}-5|\}$, if $\mathrm{z}=\mathrm{a}+\mathrm{ib}$, where $\mathrm{a}, \mathrm{b} \in \mathbb{I}$, then sum of modulus squares of $\mathrm{A} \cap \mathrm{B}$ is :

Options:

(a) 0
(b) 2
(c) 4
(d) 5

Answer: (b)
Question: If $\frac{1}{(1+d)(1+2 d)}+\frac{1}{(1+2 d)(1+3 d)}+\ldots+\frac{1}{(1+9 d)(1+10 d)}=1$, then value of 50 d is $(\mathrm{d}>0)$:

Options:

(a) 50
(b) 60
(c) 25
(d) 30

Answer: (c)

Question: The remainder when $(428)^{2024}$ is divided by 21 is:
Answer: (1)
Question: If A is 3×3 matrix, $\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj} A))=2^{-13} \cdot 3^{-10}$ and $\operatorname{det}(3 \operatorname{adj}(2 A))=2^{-m} \cdot 3^{-n}$ then $2^{\mathrm{m}}+2^{\mathrm{n}}$ is equal to :
Answer: (14)
Question: If $f(x)=3 a x^{3}+b x^{2}+c x+1$ and $f(1)=41, f^{\prime}(1)=2$ and $f^{\prime \prime}(1)=4$ then $\left(a^{2}+b^{2}+\right.$ c^{2}) is \qquad .

Answer: (8)

Question: If domain of $\mathrm{f}(\mathrm{x})^{\sin }(\overline{2 x+3})$ is $\mathrm{R}-(\alpha, \beta]$ then $12 \alpha \beta$ is equal to :
Answer: (32)

Question: $A=\{2,4,6,8\}, B=\{3,7,6,9\} . R: A X B \rightarrow A X B$ such that $\left(a_{1}, b_{1}\right) R\left(a_{2}, b_{2}\right) \Leftrightarrow$ $a_{1}+a_{2}=b_{1}+b_{2}$ where $\left(a_{1}, b_{1}\right) \in A,\left(a_{2}, b_{2}\right) \in B$. Find number of elements in the relation.
Answer: (9)
Question: Let $\int \frac{2-\tan x}{3+\tan x} d x=\frac{1}{2}\left(a x+\log _{e}|\beta \sin x+v \cos x|\right)+C$, where
c is constant of integration. Then

$$
\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)
$$

Options:

(a) 4
(b) 7
(c) 1
(d) 3

Answer: ()

Question: Let $|\cos \theta \cos (60-\theta)| \leq 1 / 8, \theta \in[0,2 \pi]$. Then the sum of all $\theta \in[0,2 \pi]$, where \cos 3θ attains its maximum value is

Options:

(a) 15π
(b) 9π
(c) 6π
(d) 18π

Answer: (c)
Question: The coefficient of x^{70} in $\mathrm{x}^{2}(1+\mathrm{x})^{98}+\mathrm{x}^{3}(1+\mathrm{x})^{97}+\mathrm{x}^{4}(1+\mathrm{x})^{96}+\ldots .+\mathrm{x}^{54}(1+\mathrm{x}){ }^{9} \mathrm{C}_{\mathrm{p}}$ ${ }_{-}^{46} \mathrm{C}_{\mathrm{q}}$ is. Then a possible value of $\mathrm{p}+\mathrm{q}$ is
Options:
(a) 68
(b) 55
(c) 83
(d) 61

Answer: (c)
Question: A variable line L passes through the point (3,5), and intersects the +ve coordinate axes at the points A and B . The minimum area of the $\triangle \mathrm{OAB}$, where o is the origin is :

Options:

(a) 25
(b) 40
(c) 35
(d) 30

Answer: (d)

