# JEE-Main-09-04-2024 (Memory Based) [MORNING SHIFT] 

## Physics

Question: The dimension of latent heat is:
Options:
(a) $\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
(b) $\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]$
(d) $\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$

Answer: (b)
Question: In the pulley-block system shown, the pulley and the block are ideal. If the acceleration of the block is $\mathrm{g} / 8$, find $\mathrm{m}_{1}: \mathrm{m}_{2}\left(\right.$ Given $\left.\mathrm{m}_{2}>\mathrm{m}_{1}\right)$


Options:
(a) $7: 9$
(b) $5: 7$
(c) $3: 4$
(d) $9: 11$

Answer: (a)
Question: Velocity of a particle of mass $m$ as a function of displacement $x$ is given by $v=\alpha v x$. Work done to move it from $x=0$ to $x=d$ is:
Options:
(a) $\frac{m \alpha^{2}}{2} \cdot d$
(b) $m \alpha^{2} \cdot d$
(c) $3 m \alpha^{2} \cdot \frac{d}{2}$
(d) $2 m \alpha^{2} d$

Answer: (a)

Question: Two persons are pulling a rope towards themselves with a force of 200 N each. If the Young's modulus is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and area of cross-section is $2 \mathrm{~cm}^{2}$ for the rope, the elongation in the rope is $\qquad$
(distance between the persons holding the ropes is 2 m )
Options:
(a) $10 \mu \mathrm{~m}$
(b) $20 \mu \mathrm{~m}$
(c) $5 \mu \mathrm{~m}$
(d) $40 \mu \mathrm{~m}$

Answer: (a)

Question: A particle oscillating in simple harmonic motion such that its speed and acceleration at distance 2 m from mean position are $4 \mathrm{~m} / \mathrm{s}$ and $16 \mathrm{~m} / \mathrm{s}^{2}$ respectively. Find the amplitude of oscillation of the particle.
Options:
(a) $\sqrt{ } 10 \mathrm{~m}$
(b) $\sqrt{ } 6 \mathrm{~m}$
(c) $\sqrt{ } 8 \mathrm{~m}$
(d) $\sqrt{ } 3 \mathrm{~m}$

Answer: (b)

Question: Assertion (A): Object at radius of curvature of biconvex lens made by glass ( $\mu=$ 1.5 ) form image at same distance an other side of the lens.

Reason (R): Image of a real object formed by concave lens is always virtual and erect.
Options:
(a) Both Assertion(A) and Reason(R) are the true and Reason $(\mathrm{R})$ is a correct explanation of Assertion (A).
(b) Both Assertion (A) and Reason (R) are the true but Reason $(\mathrm{R})$ is a correct explanation of Assertion (A)
(c) Aseration (A) is true and Reason (R) is false
(d) Assertion (A) is false and Reason (R) is true

Answer: (b)

Question: The equivalent energy of 1 gm mass is equal to:
Options:
(a) $8.3 \times 10^{26} \mathrm{M}_{\mathrm{e}} \mathrm{V}$
(b) $5.6 \times 10^{26} \mathrm{M}_{\mathrm{e}} \mathrm{V}$
(c) $8.3 \times 10^{12} \mathrm{MeV}$
(d) $5.6 \times 10^{12} \mathrm{MeV}^{\mathrm{V}}$

Answer: (b)

Question: Find the equivalent resistance between terminal A and B for the given network.


Options:
(a) $16 \Omega$
(b) $20 \Omega$
(c) $15 \Omega$
(d) $19 \Omega$

Answer: (d)

Question: Find the Equivalent capacitance from given diagram


Options:
(a) $11 \mathrm{~A} \varepsilon_{0} / 18 \mathrm{~d}$
(b) $13 \mathrm{~A} \varepsilon_{0} / 18 \mathrm{~d}$
(c) $15 \mathrm{~A} \varepsilon_{0} / 18 \mathrm{~d}$
(d) $18 \mathrm{~A} \varepsilon_{0} / 11 \mathrm{~d}$

Answer: (a)

Question: A monatomic gas is expanded adiabatically from 4 V to 5 V find ratio of initial and final Pressure?
Options:
(a) $5 \sqrt{ } 5 / 8$
(b) $5 \sqrt{ } 7 / 8$
(c) $5 \sqrt{ } 5 / 7$
(d) $7 \sqrt{ } 5 / 8$

Answer: (a)

Question: A gas is expanded adiabatically - initial temperature is T volume V . The final volume 2 V then find work done in process
Options:
(a) $R T(2-\sqrt{2})$
(b) $R / T(2-\sqrt{2})$
(c) 2 RT
(d) 5 RT

Answer: (a)

Question: A half ring of radius $\mathrm{R}=10 \mathrm{~cm}$ has linear charge density $4 \mathrm{nC} / \mathrm{m}$. Its potential at the centre is given as $x \pi V$. Find $x=$ ?
Options:
Answer: (36)

Question: Intensity at point is $1 / 4$ of max intensity. find its minimum distance from centre.
Given wavelength $600 \mathrm{~nm}, \mathrm{~d}=1 \mathrm{~mm}, \mathrm{D}=1 \mathrm{~m}$
Options:
Answer: $(200 \mu \mathrm{~m})$
Question: An astronaut takes a ball of mass $m$ from earth surface. He throws the ball in the radius of 386.6 . Then change in potential energy is $x G M m / 21 R$ Find $x$.
Take radius of earth $R=6310 \mathrm{~km}$.
Options:
Answer: (11)

Question: Rod weight W kept on shoulder of man inclined at angle $\theta$ find weight experienced Options:
(a) W
(b) $W / 2$
(c) $W / 4$
(d) $W / 8$

Answer: (b)

Question: Find the Ratio of De broglie wavelength of $\alpha$ - article, Electron \& Proton
Options:
(a) $\lambda_{\alpha}<\lambda_{p}<\lambda_{e}$
(b) $\lambda_{\alpha}>\lambda_{\mathrm{p}}>\lambda_{\mathrm{e}}$
(c) $\lambda_{\alpha}>\lambda_{\mathrm{p}}<\lambda_{\mathrm{e}}$
(d) $\lambda_{\alpha}<\lambda_{\mathrm{p}}>\lambda_{\mathrm{e}}$

Answer: (a)
Question: If a bulb and capacitor are connected in series and then capacitor is inserted with a dielectric then
Bulb's intensity
Options:
(a) Increases
(b) Decreases
(c) Remains same
(d) Becomes 0

Answer: (a)

