Total No. of Questions: 150
Total No. of Marks: 150

Duration of the Test: 2 Hours 30 Minutes

V-61

APRDC CET - 2023

Course: B. Sc. (MPC)

[English - Physics - Maths - Chemistry]

English / Telugu Medium

HALL TICKET NUMBER					
	100			15.60	127

INSTRUCTIONS

- 1. Write your hall ticket number in the boxes provided on the front page of the Question paper booklet immediately after receiving it.
- 2. Don't write anything on the question paper booklet. However, for any rough work, you can make use the space provided at the end of the question paper booklet.
- For each question, choose the best answer from the four choices given. Bubble the circle, which corresponds to the best answer for that question, with Blue / Black ball point pen only.
- 4. Do **not** overwrite on the OMR answer sheet. Please read the detailed instructions listed on side-1 of the OMR answer sheet.
- Question Nos. from 1 to 30 are from English language. The next 120 questions, i.e. from 31 to 150 are the group subjects concerned.
- 6. Each question carries ONE mark. There will be no negative marks for wrong answers.
- 7. The candidate is allowed to take away the question paper booklet along with him after the completion of the Test.
- 8. Before leaving the examination hall, the candidate must handover the OMR answer sheet to the invigilator.

PART-I: GENERAL ENGLISH

Rea	id the sentences and choose the right answer	and ma	ark it.
1.	Prabha feels she is Sarojini Naidu	•	
	(1) a	(2)	the
	(3) an	(4)	no article
2.	Neither Rahul nor I the viction of	the las	st year's flood.
	(1) is	(2)	am
	(3) are	(4)	being
3.	There were a lot of its in the insurance police	cy. Wh	at part of speech is the underlined word?
	(1) Noun	(2)	Conjunction
	(3) Preposition	(4)	Interjection
4.	She can solve the problem,?		
	(1) Can she	(2)	Can her
	(3) Can't she	(4)	Can't her
5.	Penicillin (discover) in 1928.		
	(1) discovered	(2)	is discovered
	(3) was discovered	(4)	has been discovered
6.	It's so dark that I can't see anything.		
	Change the above sentence into simple ser	ntence.	
	(1) It's too dark to see anything.		
	(2) It's too dark for me to see anything.		
	(3) It's very dark and I can't see anything		
	(4) I can't see anything because it's very	dark.	
7.	She is fond classical dance.		
	(1) with	(2)	on
	(3) for	(4)	of
1			

8.	Let	me see the picture - change into passi	ve voic	e.
	(1)	The picture is seen by me	(2)	Let the picture be seen by I
	(3)	Let the picture be seen by me	(4)	Let the picture is seen by me
9.	Cho	ose the correct sentence.		
	(1)	I own a factory	(2)	I am owning a factory
	(3)	I was owning a factory	(4)	I have been owning a factory
10.		the meaning of new English words	in you	dictionary.
	(1)	Look in	(2)	Look up
	(3)	Look after	(4)	Look into
mak biote	The lificate it mechno	tion (GM) is the science by which the are resistant to pests or killer weeds, logists claim that GM will be a major	genetic or to e r contri	continues unabated in the West. Genetic material of a plant is altered, perhaps to nhance its nutritional value. Many food bution of science to mankind in the 21st
Mod mak biote centro of G they mod The impor mod also	The difficate it mechnoury. Of Marc pose iffied anti-Cosing iffied cons	tion (GM) is the science by which the lore resistant to pests or killer weeds, logists claim that GM will be a major on the other hand, large numbers of opper a myth propagated by multinational health hazards they have therefore, call food. GM campaign is quite effective in Eural virtual ban for five years over genetication food industry is particularly strong in	genetic or to e r contri conents, l corpore ed for g rope, w ally-mo	material of a plant is altered, perhaps to nhance its nutritional value. Many food
Mod mak biote centro of G they mod The impor mod also	The lificate it mechnoury. Of Marc pose iffied anti-Cosing iffied cons bic af	tion (GM) is the science by which the agree resistant to pests or killer weeds, logists claim that GM will be a major on the other hand, large numbers of opper a myth propagated by multinational health hazards they have therefore, callefood. GM campaign is quite effective in Eural virtual ban for five years over genetical food industry is particularly strong in titutes another chapter in the US-Europe in the U	genetic or to e r contri conents, l corpore ed for g rope, w ally-mo	material of a plant is altered, perhaps to nhance its nutritional value. Many food bution of science to mankind in the 21 st mainly in Europe, claim that the benefits rations to increase their profits, and that overnments to ban the sale of genetically-rith several European member countries diffied food imports. Since the genetically nited States of America, the controversy
Mod mak biote centr of G they mod The impo mod also acer	The lificate it mechnoury. Of Marc pose iffied anti-Cosing iffied cons bic af	tion (GM) is the science by which the lore resistant to pests or killer weeds, logists claim that GM will be a major on the other hand, large numbers of opper a myth propagated by multinational health hazards they have therefore, callefood. GM campaign is quite effective in Eural virtual ban for five years over genetical food industry is particularly strong in titutes another chapter in the US-Europe ter the US invasion of Iraq.	genetic or to e r contri conents, l corpor ed for g rope, w ally-mo	material of a plant is altered, perhaps to nhance its nutritional value. Many food bution of science to mankind in the 21st mainly in Europe, claim that the benefits rations to increase their profits, and that overnments to ban the sale of genetically with several European member countries diffied food imports. Since the genetically nited States of America, the controversy mishes which have become particularly
Mod mak biote centr of G they mod The impo mod also acer	The lificate it mechnoury. Of Marc pose iffied anti-Cosing iffied consider the constant what we have the constant of the const	tion (GM) is the science by which the lore resistant to pests or killer weeds, logists claim that GM will be a major on the other hand, large numbers of opper a myth propagated by multinational health hazards they have therefore, callefood. GM campaign is quite effective in Eural virtual ban for five years over genetical food industry is particularly strong in titutes another chapter in the US-Eural ter the US invasion of Iraq. Altering the physical characteristics Altering the genetic material of a plant.	genetic or to e r contri conents, l corpore ed for g rope, w ally-mo the Ur ope Skin	material of a plant is altered, perhaps to nhance its nutritional value. Many food bution of science to mankind in the 21st mainly in Europe, claim that the benefits rations to increase their profits, and that overnments to ban the sale of genetically with several European member countries diffied food imports. Since the genetically nited States of America, the controversy mishes which have become particularly
Mod mak biote centr of G they mod The impo mod also acer	The difficate it mechnoury. Of Marc pose iffied anti-Cosing iffied consider what (1)	tion (GM) is the science by which the lore resistant to pests or killer weeds, logists claim that GM will be a major on the other hand, large numbers of opper a myth propagated by multinational health hazards they have therefore, callefood. GM campaign is quite effective in Eural virtual ban for five years over genetical food industry is particularly strong in titutes another chapter in the US-Europe ter the US invasion of Iraq. Altering the physical characteristics	genetic or to e r contri conents, l corpore ed for g rope, w ally-mo the Ur ope Skin	material of a plant is altered, perhaps to nhance its nutritional value. Many food bution of science to mankind in the 21st mainly in Europe, claim that the benefits rations to increase their profits, and that overnments to ban the sale of genetically with several European member countries diffied food imports. Since the genetically nited States of America, the controversy mishes which have become particularly

(1)

(3)

Genetically modified food

Genetic Modification

(2) Multinational corporations

(4) Pesticides and Weedicides

13.	WIR	ere is the anti-Givi campaign effective?		
	(1)	USA	(2)	Australia
	(3)	All over the world	(4)	Europe
14.	Cho	ose the ANTONYM of the word 'benef	it'.	
	(1)	gain	(2)	disadvantage
	(3)	asset	(4)	boon
15.	Fine	d the word in the passage which means '	to eng	gage in a minor dispute'.
	(1)	imposing	(2)	claim
•	(3)	skirmishes	(4)	enhance
16.	Wha	at is the part of speech of the word 'nutr	ritiona	1'?
	(1)	Noun	(2)	Adjective
	(3)	Adverb	(4)	Conjunction
17.		cording to the passage where does the tinue?	contr	oversy over genetically modified food
	(1)	In the West	(2)	In the East
. 7	(3)	In the South	(4)	In the North
18.	Bio	technologist is the person who studies		
	(1)	human mind and behaviour		
	(2)	life style of birds and animals		(and present the present of Section 5.
	(3)	genetic, chemical and physical attribu	ites of	fcells
	(4)	humans and their customs scientifical	lly	
19.	Cho	oose the Adjective form of the word 'HA	ZAR	D'.
	(1)	Hazardly	(2)	Hazardom
	(3)	Hazardously	(4)	Hazardous
20.	Who	o called for governments to ban the sale	e of ge	enetically-modified food?
	(1)	A few people in Europe	(2)	Large number of opponents in Europe
	(3)	Multinational companies	(4)	Biotechnologists

21.	Choose the word for the phonetic script given –							
	/dz^							
	(1)	drunk	(2)	donkey				
	(3)	jockey	(4)	junk				
22.			other wor	rds in the group with regard to the sound				
		ne underlined letters.	(0)					
	(1)	m <u>ea</u> n	(2)	m <u>ea</u> sure				
	(3)	l <u>ei</u> sure	(4)	pl <u>ea</u> sure				
23.	Cho	ose the wrongly spelt word						
	(1)	bouquet	(2)	mis chevous				
	(3)	foreign	(4)	discipline				
24.	Iden	ntify the silent letter in the word 'DE	BRIS'					
	(1)	d	(2)	b				
	(3)	r	(4)	S				
25.	Iden	ntify the number of syllables in the w	ord 'CON	ISTABLE'.				
	(1)	4	(2)	3				
	(3)	2	(4)	1				
26.	Cho	ose the meaning of the word 'ANIM	ATE'.					
	(1)	Having life	(2)	Having no life				
	(3)	A creature that has spirit	(4)	Of being great spirit				
27.	Cho	ose the word that has a wrongly man	ket stress	3.				
	(1)	A'bility	(2)	Communi'cation				
	(3)	'Sort	(4)	'Beside				
28.	Who	o is the author of the poem 'The Tabl	es Turnec	1'?				
	(1)	Mark Twain	(2)	Sarojini Naidu				
	(3)	William Wordsworth	(4)	H.W. Longfellow				
29.	In w	which of the following essays the aut	hor says t	hat work is worship?				
	(1)	In celebration of Being Alive	(2)	The secret of work				
	(3)	Learning from the west	(4)	JC Bose				
30.	In th	ne Novel 'The Adventures of Tom Sa	awyer' wh	no plays the villain role?				
	(1)	Huck	(2)	Muff potter				
	(3)	Injun Joe	(4)	Widow Douglas				

PART-II: PHYSICS

31. Dimensional formula for Planck's constant ప్లాంక్ స్థిరాంకము యొక్క మితి ఫార్ములా

 $(1) \left[ML^2T^{-2} \right]$

 $(2) \qquad ML^2T^{-1}$

(3) $\left[MLT^{-2} \right]$

(4) $\left[MLT^{-1} \right]$

32. Percentage error in the measurement of mass of a body is 1% and in the measurement of velocity is 2% Then, maximum percentage in the measurement of it's kinetic energy is ఒక వస్తువు ద్రవ్యరాశిని కొలుచుటలో దోషశాతము 1% మరియు దాని వడిని కొలుచుటలో దోషశాతము 2% అయిన, దాని గతిజ శక్తిని కొలుచుటలో దోషశాతము

- (1) 2%
- (2) 3%
- (3) 4%
- (4) 5%

33. Magnitude of resultant of two equal vectors of magnitude P inclined at an angle of 120° is P పరిమాణం గల రెండు సమాన సదిశలు, ఒకదానితో ఒకటి 120° కోణం చేయుచున్నపుడు, వాటి ఫలిత సదిశ యొక్క పరిమాణము

- (1) P
- (2) $\sqrt{3}P$ (3) 2P
- (4) $\frac{P}{2}$

A body moves with a velocity of 3 m/s towards east and then turns due north to travel with same velocity. If the total time of travel is 6 sec., acceleration of the body (magnitude) ఒక వస్తువు తూర్పు దిశలో 3 m/s వేగముతో ప్రయాణించి తరువాత ఉత్తర దిశకు తిరిగి అదే వేగముతో ప్రయాణించినది. ఆ వస్తువు మొత్తం 6 సెకన్లు ప్రయాణించిన, ఆ వస్తువు యొక్క త్వరణము (పరిమాణము)

- (1) 0 m/s^2
- (2) $\sqrt{2}$ m/s² (3) $\frac{1}{\sqrt{2}}$ m/s² (4) $\sqrt{3}$ m/s²

A ball of mass 200 grams moving with a velocity of 6 m/s strikes surface and rebounces with same velocity, change in it's momentum is

200 గ్రాములు ద్రవ్యరాశి కలిగిన ఒక బంతి 6 m/s వేగముతో ఒక తలమును తాకి అదే వేగముతో వెనక్కి ప్రయాణించిన (రీబౌన్స్), దాని ద్రవ్య వేగములోని మార్పు

- (1) 0 N-S
- (2) 1.2 N-S
- (3) 1200 N-S
- (4) 2.4 N-S

36. Horizontal and vertical displacements of a projectile are given by equations x = 12t, $2y = 24t - gt^2$ respectively. It's angle of projection is

ప్రక్షేపకం యొక్క క్షితిజ సమాంతర మరియు నిలువు స్థాన్మభంశాలను x=12t మరియు $2y=24t-gt^2$ సమీకరణములతో వరుసగా సూచించిన, దాని ప్రక్టిష్ట కోణం

- (1) 30°
- (2) 45°
- (3) 60°
- (4) tan⁻¹(2)

A stationary wheel starts rotating about it's own axis at uniform angular acceleration 8 rad/s². Time taken by it to complete 77 rotations is

ఆగి ఉన్న చక్రము తన అక్షము పరంగా 8 rad/s^2 స్థిర కోణీయ త్వరణముతో తిరుగుచున్న, అది 77భ్రమణాలు పూర్తి చేయుటకు పట్టకాలము

- (1) 7 sec.
- (2) 9 sec.
- (3) 11 sec.
- 13 sec.

38. A ball is allowed to fall freely on a surface of coefficient of restitution 'e' from height 'h' Total distance travelled by ball before it stops bouncing is

'h' ఎత్తు నుంచి ఒక బంతి 'e' ప్రత్యావస్థాన గుణకము కలిగిన తలముపై స్వేచ్చగా పతనము చెందిన ఆ బంతి పూర్తిగా ఆగిపోవు లోపు ప్రయాణించే మొత్తము దూరము

- (1) $h\left(\frac{1+e^2}{1-e^2}\right)$ (2) $h\left(\frac{1+e}{1-e}\right)$ (3) $h\left(\frac{1-e^2}{1+e^2}\right)$ (4) $h\left(\frac{1-e}{1+e}\right)$

39. Ratio of radii of two solid spheres is 3:5. If their masses are equal, ratio of their moment of inertias is

రెండు ఘన గోళాల వ్యాసార్ధాల నిష్పత్తి 3:5. వాటి ద్రవ్యరాశులు సమానమయిన, వాటి యొక్క జడత్వ భ్రామకాల నిష్పత్తి

- (1) 5:3
- (2) 25:9
- (3) 9:25
- (4) 3:5

40. Orbital velocity of a satellite at a distance 'R' from surface of earth is (R is radius of earth and g is acceleration due to gravity)

భూమి యొక్క ఉపరితలం నుంచి 'R' దూరము నందు గల ఉప్రగహము యొక్క కక్ష్యావేగము

- $(2) \quad \frac{\sqrt{gR}}{2}$
- (3) $\sqrt{2gR}$
- (4) VgR

41. A particle executing simple harmonic motion is represented by the equation $x = a \cos\left(\frac{\pi t}{2}\right)$. Distance covered by it in 2 seconds is

సరళ హరాత్మక చలనములో ఉన్న ఒక కణము $x=a\cos\left(\frac{\pi t}{2}\right)$ అను సమీకరణమును అనుసరిస్తున్నది.

- 2 సెకన్లలో అది ప్రయాణించు దూరము.
- (1) a
- (2) 2a
- (3) 3a
- (4) 4a
- 42. Stress required to double the length of wire is (Y is Young's modulus of wire) ఒక తీగ యొక్క పొడవు రెండింతలు చేయడానికి కావలసిన ప్రతిబలం (Y అనునది తీగ యొక్క యంగ్ గుణకము)
 - (1) 3Y
- $(2) \quad \frac{Y}{2}$
- (3) 2Y
- (4) Y

- 43. Choose the correct matching.
 - a) Equation of continuity

i) $V = \frac{\pi P r^4}{8\eta l}$

b) Bernoulli's theorem

ii) $v = \sqrt{2gh}$

c) Torricelli's theorem

iii) $P + \frac{1}{2}\rho v^2 + \rho gh = constant$

d) Poiseuille's formula

iv) Av = constant

సరైన జతను ఎన్నుకొనుము.

సాంతత్య సమీకరణము

i) $V = \frac{\pi P r^4}{8nl}$

b) బెర్నౌలీ సిద్దాంతము

ii) $v = \sqrt{2gh}$

c) టోరిసెల్లీ సిద్ధాంతము

iii) $P + \frac{1}{2}\rho v^2 + \rho gh = స్థిరము$

d) పోయిసుయిల్ సూత్రము

iv) Av = స్థిరము

(1) a-iv, b-iii, c-i, d-ii

(2) a-iii, b-iv, c-ii, d-i

(3) a-iv, b-iii, c-ii, d-i

(4) a-iii, b-iv, c-i, d-ii

44.	Root mean squared speed of gas molecule								
	(1) depends on the mass of gas molecule an	id independent of it's temperature.							
	(2) independent of the mass of gas molecul	e but depends on it's temperature							
	(3) depends on mass of gas molecule and it	's temperature							
	(4) independent of mass of gas molecule an	d it's temperature							
	ఒక వాయు అణువు యొక్క RMS వేగము.								
	(1) వాయు అణువు యొక్క ద్రవ్యరాశి మీద ఆధా	రపడుతుంది, ఉష్ణోగ్రత మీద ఆధారపడదు							
	(2) వాయు అణువు యొక్క ద్రవ్యరాశి మీద ఆధా	రపడదు కానీ ఉష్ణోగత మీద ఆధారపడుతుంది							
	(3) ವ್ಯಾ ಅಣುವು ಮುಕ್ಕ ದ್ರವ್ಯರಾಕಿ ಮರಿಯು	ఉష్ణోగ్రతల మీద ఆధారపడుతుంది							
	(4) వాయు అణువు యొక్క ద్రవ్యరాశి మరియు	ఉష్ణోగ్రతల మీద ఆధారపడదు							
45.	Specific heat of a gas in an isothermal proces	S							
		2) zero							
	(3) negative (4) remains constant							
	సమ ఉష్ణోగత ప్రక్రియ నందు విశిష్టాష్ణము								
	(1) అనంతము	2) సున్న							
	(3) ఋణాత్మక విలువ (4) స్థిరము							
46.	Carnot's engine whose sink is at temperature should be the increase in temperature of sources sources as కార్నాటు యంత్రము యొక్క సింక్ ఉష్ణోగత కావాలంటే సోర్స్ యొక్క ఉష్ణోగతను ఎంత పెంచవ (1) 500K (2) 250K (ce so that new efficiency is 60%? 300K మరియు దక్షత 40%. దాని దక్షత 60%							
47.	A body cools from 80°C to 50°C in 5 minutes the temperature of the surroundings is 20°C	. Time it takes to cool from 60°C to 30°C if							
	(1) 5 minutes (2) 7 minutes							
	(3) 9 minutes	4) 11 minutes							
	ఒక వస్తువు 80° C నుంచి 50° Cకు చల్లబడుటకు క అయిన ఆ వస్తువు 60° C నుంచి 30° C కు చల్లబడ								
	(1) 5 බ්ඩා ක්පා (2	2) 7 నిమిషాలు							
	(3) 9 నిమిషాలు (4	4) 11 నిమిషాలు							

48.	According to Stefan's law, amount of heat radiated by a black body per second per unit area is directly proportional to (T is absolute temperature)						
	స్టీఫన్ సూత్రం ప్రకారము, కృష్ణ వస్తువు ఒక సెకనుకు ఏకాంక వైశాల్యము గుండా కోల్పోయే ఉష్ణ						
	విలువ కు అనులోమానుపాతంలో ఉంటుంది. (T అనునది కెల్విన్ స్కేలు మీద ఉష్ణోగ్రత). (1) T^4 (2) T^3 (3) T^2 (4) T						
49.	Scale of temperature that has only positive values is						
	(1) Centigrade scale (2) Fahrenheit scale						
	(3) Kelvin scale (4) Reaumur scale						
	ధనాత్మక విలువలను మాత్రమే కలిగిన ఉష్ణోగ్రత స్కేలు						
	(1) సెంటీగ్గేడు స్కేలు (2) ఫారన్ హీట్ స్కేలు						
	(3) కెల్విన్ స్కేలు (4) రీమర్ స్కేలు						
50.	Choose the correct option.						
	Linear expansion of a solid depends on						
	a) it's original mass						
	b) nature of the material						
	temperature difference between solid and it's surroundings.						
	సరైన దానిని ఎన్నుకొనుము.						
	ఒక ఘన పదార్ధము యొక్క దైర్హ్య వ్యాకోచము క్రింది వానిపై ఆధారపడును.						
	a) తొలి ద్రవ్యరాశి						
	b) పదార్ధ స్వభావము						
	c) పదార్ధ మరియు పరిసరాల మధ్య ఉష్ణోగ్రతల తేడా						
	(1) (a), (b) (2) (a), (b), (c) (3) (a), (c) (4) (b), (c)						
51.	To hear beats, two sound waves should						
	(1) Travel in same direction						
	(2) Travel in opposite direction						
	(3) Should have slight difference in amplitudes						
(4) Should have slight difference in wavelengths							
	విస్పందనాలను వినడానికి రెండు ధ్వని తరంగాలు						
	(1) ఒకే దిశలో ప్రయాణించవలెను						
	(2) వ్యతిరేక దిశలలో ప్రయాణించవలెను						
	(3) వాటి కంపన పరిమితులలో కొద్దిగా తేడా ఉండవలెను						
	(4) వాటి తరంగ దైర్ఫ్యాలలో కొద్దిగా తేడా ఉండవలెను						

) : HERRY BENEFIT : B
52.	A source of sound is travelling towards stationary observer. The frequency of sound heard
	by the observer is 25% more than that of the actual frequency. If the speed of sound is V
	then speed of source is
	ఒక ధ్వని జనకము నిశ్చల పరిశీలకుని వైపు ప్రయాణించుచున్నది. పరిశీలకునికి వినపడే ధ్వని పౌన:పున్యం
	అసలైన పౌన:పున్యం కన్నా 25% ఎక్కువగా ఉన్న, ధ్వని జనకం యొక్క వేగము (V అనునది ధ్వని
	వేగము)

- $(1) \quad \frac{V}{5}$
- $(2) \quad \frac{V}{4}$
- $(3) \quad \frac{V}{3}$
- $(4) \quad \frac{V}{2}$
- 53. Effective focal length (f) of combination of two lenses of focal lengths f_1 and f_2 separated by a distance 'd' is obtained using equation

 f_1, f_2 నాభ్యాంతరాలు కలిగిన రెండు కటకాల మధ్య దూరం 'd' అయిన, ఆ కటకాల సంయోగ నాభ్యాంతర (f) విలువను కనుగొనుటకు ఉపయోగించే సమీకరణము.

(1) $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$

(2) $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$

(3) $f = f_1 + f_2 - d$

- (4) $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{d}{f_1 f_2}$
- 54. A light ray is incident on a transparent medium of refractive index (μ) 1.732. It's polarising angle is

వ్రకీభవన గుణకము (μ) విలువ 1.732 కలిగిన పారదర్శక యానకముపై ఒక కాంతి కిరణము పతనము చెందిన, దాని ధృవణ కోణము.

- (1) 30°
- (2) 45°
- (3) 60°
- (4) 90°
- 55. Fringe width obtained in Young's double slit experiment is β. If the distance between two slits is halved and slit to screen distance is doubled, then new fringe width is యంగ్ ద్విచీలిక ప్రయోగము నందు పట్టీ వెడల్పు β. రెండు చీలికల మధ్య దూరాన్ని సగం చేసి, చీలిక నుండి తెరకు ఉన్న దూరాన్ని రెట్టింపు చేసిన, పట్టీ వెడల్పు
 - (1) 4β
- (2) 2B
- (3) $\frac{\beta}{2}$
- (4) B
- 56. Potential difference between two plates separated by 1 mm is 100V. Force acting on an electron placed in between plates is

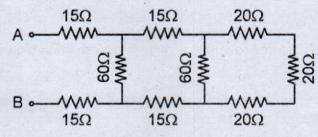
1 మి.మీ. దూరంలో ఉన్న రెండు పలకల మధ్య పొటెన్షియల్ భేదము 100V. ఈ పలకల మధ్య ఒక ఎలక్ష్మాన్ను ఉంచిన దాని మీద పని చేయు బలము.

(1) $6.25 \times 10^{-23} \text{ N}$

(2) $1.6 \times 10^{-14} \text{ N}$

(3) $1.6 \times 10^{-24} \text{ N}$

(4) $6.25 \times 10^{-15} \,\mathrm{N}$


- 57. Which of the following represents energy of a capacitor? క్రింది వానిలో కెపాసిటర్ యొక్క శక్తిని చూపించేది.
 - (1) $\frac{1}{2}C^2V^2$

 $(2) \quad \frac{1}{2}qV$

 $(3) \quad \frac{1}{2}qV^2$

- $(4) \quad \frac{1}{2} \frac{q^2}{V}$
- 58. The resistance between points A and B is

A మరియు B బిందుపుల మధ్య నిరోధము.

- (1) 15Ω
- (2) 30 Ω
- (3) 60Ω
- (4) 90 Ω
- 59. For a controlled chain reaction, multiplication factor should be
 - (1) equal to zero

(2) equal to one

(3) less than one

(4) greater than one

నియంత్రిత శృంఖల చర్యకు సంబంధించిన ప్రత్యుత్పాదక గుణకం విలువ

(1) సున్న

(2) ఒకటికి సమానము

(3) ఒకటి కన్నా తక్కువ

- (4) ఒకటి కన్నా ఎక్కువ
- 60. Decay constant of radio active element which disintegrates from 200 grams to 100 grams in 10 minutes is

10 నిమిషాలలో 200 గ్రాములు నుంచి 100 గ్రాములకు ఒక రేడియోధార్మిక పదార్ధము క్షీణించిన, ఆ పదార్గము యొక్క విఘటన స్థిరాంకము.

(1) 0.0693 min⁻¹

(2) 0.693 min⁻¹

(3) 6.93 min⁻¹

- (4) 0.693 sec⁻¹
- 61. Flux linked with a coil is 0.8 weber. When 2A of current flowing through it. If the current through it changes at the rate of 2 A/sec, induced emf in the coil is

ఒక 2A విద్యుత్ ప్రవహిస్తున్న తీగ చుట్ట అభివాహము 0.8 weber, ఆ తీగ చుట్ట నందు విద్యుత్ 2 A/sec రేటులో మారుచున్న అందులో (పేరిత విద్యుచ్చాలక బలము.

- (1) 1.6 V
- (2) 3.2 V
- (3) 0.2 V
- (4) 0.8 V

02.	in case of ECR circuit, during resonance
	$(1) Lw = \frac{1}{cw} $ (2) $Lw < \frac{1}{cw}$
	(3) $Lw > \frac{1}{cw}$ (4) Lw is approximately equal to cw.
	ఒక LCR వలయము, అనునాదములో ఉన్నపుడు
	$(1) Lw = \frac{1}{cw} $ (2) $Lw < \frac{1}{cw}$
	(3) $Lw > \frac{1}{cw}$ (4) Lw మరియు cw లు దరిదాపుగా సమానము
63.	If 13.6 eV energy is required to ionise a hydrogen atom, then required energy to remove an electron from $n = 2$ is
	హైడ్రోజన్ అణువును అయనీకరణ చేయుటకు $13.6~{\rm eV}$ శక్తి అవసరమయిన, $n=2$ కక్ష్య నుంచి ఒక ఎలక్ష్యాన్ను తొలగించుటకు కావలసిన శక్తి
	(1) 13.6 eV (2) 27.2 eV (3) 3.4 eV (4) 6.8 eV
64.	A magnetic pole of pole strength 2.5 AM is placed in a field of induction 50×10^{-6} T. Force experienced by the pole is 2.5 AM ధృవ సత్వము కలిగిన అయస్కాంత ధృవమును 50×10^{-6} T అయస్కాంత డ్రేవం కలిగిన అయస్కాంత క్షేతములో ఉంచినపుడు, ఆ ధృవముపై పని చేయు బలము. (1) 1.25×10^{-4} N (2) 1.25×10^{-6} N (3) 2×10^{-6} N (4) 2×10^{-5} N
65.	An electric current passes through a long straight wire. At a distance 5 cm from wire, magnetic field is B. Magnetic field at 20 cm from wire is
	పాడవుగా మరియు వంపులు లేని తీగ గుండా విద్యుత్తు ప్రవహిస్తున్నపుడు, ఆ తీగ నుంచి 5 సెం.మీ.
	దూరంలో అయస్కాంత (పేరణ B అయిన, 20 సెం.మీ. దూరములో అయస్కాంత (పేరణ విలువ.
	(1) 2B (2) $\frac{B}{2}$ (3) 4B (4) $\frac{B}{4}$
66.	Potential gradient along the length of a uniform wire is 10 V/m. Two points X and Y are located at distances 20 cm and 60 cm on a scale fitted a long wire potential difference between X and Y is
	ఏకరీతి తీగ వెంబడి పొటెన్నియల్ ప్రవణత 10 V/m. ఆ తీగ ప్రక్కన అతికించబడిన స్కేలు మీద 20 సెం.మీ. మరియు 60 సెం.మీ. ల వద్ద X మరియు Y అను రెండు బిందువులు కలవు. X , Y
	బిందువుల మధ్య పొటెన్షియల్ భేధము.
	(1) 0.2 V (2) 2 V (3) 0.4 V (4) 4 V

- 67. Maximum potential that can be measured with a voltmeter of resistance 1000 Ω is 6 V. Resistance that must be connected to measure a potential of 30 V with it is
 - (1) 4000Ω in parallel

(2) 4000Ω in series

(3) 6000Ω in series

(4) 6000Ω in parallel

 $1000~\Omega$ నిరోధము కలిగిన వోల్టు మీటరుతో గరిష్టంగా 6~V పొటెన్షియల్ను కొలవవచ్చును. ఆ మీటరుతో 30 V వోల్టేజిని కొలవవలెనన్న, కలుపవలసిన నిరోధము

(1) 4000 Ω సమాంతరంగా

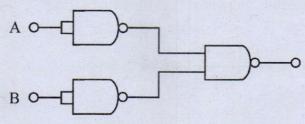
(2) 4000 Ω ල්ක්ජ

(3) 6000 Ω ල්කීණ්

- (4) 6000 Ω సమాంతరంగా
- 68. De-Broglie wavelength associated with a particle of mass m, moving with velocity v and energy E is given by

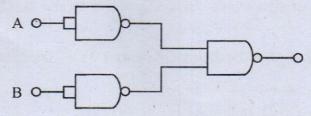
m ద్రవ్యరాశి, E శక్తి కలిగిన ఒక కణము v వేగముతో ప్రయాణిస్తున్నపుడు, ఆ కణముకు సంబంధించిన డీబ్రూగ్లీ తరంగదెర్వం

(1) $\frac{2h}{mv^2}$ (2) $\frac{mv^2}{2h}$ (3) $\frac{\sqrt{2mE}}{h}$ (4) $\frac{h}{\sqrt{2mE}}$


- 69. Stopping potential depends on
 - (1) frequency of incident radiation (2) intensity of incident light
 - (3) number of emitted electrons
- (4) number of incident photons

నిరోధక పొటెన్షియల్ క్రింది వానిలో దేనిమీద ఆధారపడును?

- (1) పతన కిరణాల పౌన:పున్యం
- (2) పతన కాంతి కిరణాల తీవ్రత


(3) వెలువడే ఎలక్ట్రాన్ల సంఖ్య

- (4) పతన ఫోటాన్ల సంఖ్య
- 70. Below combination of Gates represents

- (1) OR gate (2) AND gate
- (3) NOR gate
- (4) NAND gate

్రకింది సంయోగ ద్వారాలు ఏ ద్వారాన్ని సూచిస్తుంది?

- (1) OR ద్వారము (2) AND ద్వారము
- (3) NOR ద్వారము (4) NAND ద్వారము

PART-III: MATHEMATICS

71. Domain of
$$f(x) = \frac{(x-1)(x-2)}{x^2+1}$$
 is

$$f(x) = \frac{(x-1)(x-2)}{x^2+1}$$
 యొక్క ప్రదేశము

- (1) [1,2] (2) (1,2)
- (3) $\mathbb{R} \{1, 2\}$
- (4) R

72. The Rank of the matrix
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 is

- (1) 0
- (2) 1
- (3) 2
- (4) 3

73.
$$1^3 + 2^3 + 3^3 + ... + n^3 = K \frac{n^2 (n+1)^2}{16}$$
 then K =

$$1^3 + 2^3 + 3^3 + ... + n^3 = K \frac{n^2 (n+1)^2}{16}$$
 అయిన K విలువ

- $(1) \frac{1}{2}$
- (2) 2
- (3) $\frac{1}{4}$
- (4) 4

74. The system of equations
$$x + y + z = 6$$
, $x + 2y + 3z = 10$ and $2x + 4y + \lambda z = 20$ is consistent if $\lambda =$ _____

$$x + y + z = 6$$
, $x + 2y + 3z = 10$ మరియు $2x + 4y + \lambda z = 20$ సమీకరణములు సంగత వ్యవస్థను సూచించిన $\lambda =$ ______

- (1) 6
- '(2) -6
- (3) 4
- (4) -4

75.		vector equation	of th	ne plane passing	thro	ugh	$\overline{a},\overline{b},\overline{c}$	is $\overline{r} = (1 - 1)^{-1}$	$-\alpha$) $\overline{a} + \alpha \overline{b} + \beta \overline{c}$
	(1)	-1	(2)	0	(3)	1		(4)	None
	$\overline{a},\overline{b},$	$ar{c}$ ల ద్వారా పోతు	• తలం	ు సదిశాసమీకరణవ	သ <i>T</i> =	=(1-	$-\alpha)\overline{a}$ +	$\alpha \overline{b} + \beta \overline{c}$	అయిన β విలువ
	(1)	-1	(2)	0	(3)	1		(4)	ఏదీకాదు
76.	If \overline{a}	$=i-j+k$ and \bar{b}	$\bar{c} = -2$	$i + \lambda j + 3k$ are p	erpen	dicu	lar then	λ=	
	(1)	0	(2)	1	(3)	2		(4)	None
	$\overline{a} = i$	i-j+k మరియు	$\overline{b} =$	$-2i + \lambda j + 3k$ లు	ಒಕದ	°నికొక	కటి లంబ	ాలైన λవి	ు వ
	(1)	0	(2)	1	(3)	2		(4)	ఏదీకాదు
77.	Inaz	ΔABC, secA (co	s C co	s B – sin C sin B) =	*			
	(1)	0	(2)	1	(3)	-1		(4)	None
	ΔΑΒ	C ಲ್ secA (cos	C cos	$B - \sin C \sin B$	=				
	(1)	0	(2)	1 .	(3)	-1		(4)	ఏదీకాదు
78.	The	maximum value	of 3si	$nx + 4\cos x - 5$ is					
	(1)	0	(2)	1	(3)	-1		(4)	None
	3sin	c + 4cosx - 5 a	ుక్క గ	రిష్ఠ విలువ					
	(1)	0	(2)	1	(3)	-1		(4)	ఏదీకాదు
79.	In an	equilateral trian	gle th	e value of $\frac{r}{R}$ is					
	సమజ	ာဘာ ခြံဆုံးမဝေ့	$\frac{r}{R}$ \mathfrak{D}	లువ					

(1) $\frac{1}{4}$

(3) $\frac{1}{2}$

(4) 1

(2) $\frac{1}{3}$

- 80. A person is standing at a distance of 20 m from a building looking at its top. The angle of elevation is 45° then the height of the building is
 - (1) 10 m
- (2) 20 m
- (3) 30 m
- (4) 40 m

ఒక భవనం నుండి 20మీ దూరంలో నిలబడిన వ్యక్తి, భవనంపై భాగమును 45° ల ఊర్హుకోణంతో గమనించిన ఆ భవనం ఎత్తు ఎంత?

- (1) 10 మీ.
- (2) 20 మీ.
- (3) 30 మీ.
- (4) 40 మీ.
- 81. If α , β are the complex cube roots of unity then $\alpha^{100} + \beta^{100} + \frac{1}{\alpha^{100} \cdot \beta^{100}} =$

lpha, eta లు 1 యొక్క సంకీర్ణ ఘనమూలాలు అయిన $lpha^{100}+eta^{100}+rac{1}{lpha^{100}\cdoteta^{100}}=$

- (1) 0
- $(2) \cdot 1$
- (3) 2
- (4) 3

- 82. If |z-3| = 4 then the locus of z is
 - (1) A circle with centre (3, 3) and radius 4 units
 - (2) A circle with centre (0, 3) and radius 2 units
 - (3) A circle with centre (3, -3) and radius 2 units
 - (4) A circle with centre (3, 0) and radius 4 units

z అనే సంకీర్ణ సంఖ్యకు |z-3|=4 అయితే ఆ సంకీర్ణ సంఖ్య సూచించే బిందు పథము

- (1) కేంద్రము (3, 3) మరియు వ్యాసార్ధము 4 ప్రమాణాలుగా కల్గిన వృత్తము
- (2) కేంద్రము (0, 3) మరియు వ్యాసార్ధము 2 ప్రమాణాలుగా కల్గిన వృత్తము
- (3) ಕೆಂದ್ರಮ (3, -3) ಮರಿಯು ವ್ಯಾಸ್ಥಾನಮು 2 ప్రమాణాలుగా కల్గిన వృత్తము
- (4) ಕೆಂದ್ರಮ (3,0) ಮರಿಯು ವ್ಯಾసార్ధము 4 ప్రమాణాలుగా కల్గిన వృత్తము
- 83. If $x = \left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$ and $y = \left(\cos\frac{9\pi}{5} i\sin\frac{9\pi}{5}\right)$ then the value of $x^4 \cdot y^{-4}$ is

 $x = \left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$ మరియు $y = \left(\cos\frac{9\pi}{5} - i\sin\frac{9\pi}{5}\right)$ అయిన $x^4 \cdot y^{-4} = 1$

 $(1) \cdot 0$

(2) 1

(3) *i*

(4) -i

84.	The equation $\log_8^{(1-x)} + \log_8^{(3-x)} = 1$ has				
	(1) Only one root	(2)	Two roots		
	(3) Three roots	(4)	None		
	$\log_8^{(1-x)} + \log_8^{(3-x)} = 1$ సమీకరణమునకు				
	(1) ఒకే ఒక మూలము	(2)	రెండు మూలాలు		
	(3) మూడు మూలాలు	(4)	ఏదీకాదు		
85.	The term independent of x in the expansion	of (1	$(1+x)^{20}\left(1+\frac{1}{x}\right)^{20}$	is	
	$\left(1+x\right)^{20}\left(1+\frac{1}{x}\right)^{20}$ విస్తరణలో x లేని పదం				
	(1) ${}^{20}C_5$ (2) ${}^{20}C_{10}$	(3)	⁴⁰ C ₁₀	(4)	⁴⁰ C ₂₀
86.	$\frac{x^2 + x + 1}{(x+1)^2} = A + \frac{B}{x+1} + \frac{C}{(x+1)^2} \text{ then } A + B$	+ C =			
	$\frac{x^2 + x + 1}{(x+1)^2} = A + \frac{B}{x+1} + \frac{C}{(x+1)^2}$ అయిన A+	B+0	C=		
	(1) -1 (2) 0	(3)	1	(4)	2
87.	The polynomial $x^3 - kx^2 + 4x$ has three real $x^3 - kx^2 + 4x$ అనే బహుపదికి గల 3 ళూన్యాలు న			5	
	(1) k > 4		k < 4		
	$(3) k \ge 4$, ,	$ k \le 4$		
88.	In how many different ways can the letters of starts with an vowel? APRDC అనే పదంలోని అక్షరాలను అచ్చుతో మె.				
	(1) 2 (2) 6	(3)		(4)	
89.	Standard deviation of first 11 natural numbe మొదటి 11 సహజ సంఖ్యల క్రమ విచలనం.	ers is			
	(1) 1 (2) $\sqrt{5}$	(3)	$\sqrt{10}$	(4)	$\sqrt{20}$
				i kash	

90	A coin is tossed 5	times at random	The probability of	getting all heads is
10.	A com is tossed a	times at famuoin.	The probability of	getting an neads is

(1) $\frac{1}{16}$

(2) $\frac{1}{32}$

(3) $\frac{1}{64}$

(4) None

ఒక నాణెమును 5 సార్లు విసరగా యాదృచ్ఛికంగా అన్నీ బొమ్మలు వచ్చే సంభావ్యత

(1) $\frac{1}{16}$

(2) $\frac{1}{32}$

(3) $\frac{1}{64}$

(4) ఏదీకాదు

91. If the lines 2x + 4y = 6, 2x + 3y = 4, 3x + ky = 5 are concurrent then the value of k is 2x + 4y = 6, 2x + 3y = 4, 3x + ky = 5 రేఖలు మిళిత రేఖలు అయిన k విలువ

- (1) 1
- (2) 2
- (3) 3
- (4) 4

92. The points (1, 2, 3), (2, 3, 1) and (3, 1, 2) form

- (1) a scalene triangle
- (2) a right angled triangle
- (3) an equilateral triangle
- (4) none

బిందువులు (1, 2, 3), (2, 3, 1) మరియు (3, 1, 2) లు కలుపగా ఏర్పడునది.

- (1) విషమ బాహు త్రిభుజం
- (2) ಲಂಬಕ್ ಣ ಅಭುಜಂ
- (3) సమ బాహు త్రిభుజం
- (4) ఏదీకాదు

(1) 0

(2) 1

(3) -1

(4) Does not exist

$$\lim_{x \to 2} \frac{|x-2|}{x-2} =$$

(1) 0

(2) 1

(3) -1

(4) వ్యవస్థితం కాదు

94. If $y = \log(\sec x - \tan x)$ then $\frac{dy}{dx} =$

 $y = \log(\sec x - \tan x)$ wows $\frac{dy}{dx} =$

(1) $-\sec x$

(2) sec x

 $(3) -\tan x$

 $(4) \tan x$

95. Rolle's theorem is not applicable in which of the following cases

- (1) $f(x) = x^2 3x + 2$ on [1,2]
- (2) $f(x) = x^4$ on [-1,1]

(3) $f(x) = x^2 - x$ on [1,2]

(4) None of the above

ఈ క్రింది సందర్భాలలో రోల్స్ నియమం వర్తించనిది.

- (1) $f(x) = x^2 3x + 2, [1, 2]$
- (2) $f(x) = x^4, [-1,1]$

(3) $f(x) = x^2 - x, [1, 2]$

(4) పై వానిలో ఏపీ కావు

96. The pair of lines joining the origin to the points of intersection of the line y = mx + c and the circle $x^2 + y^2 = a^2$ will be mutually perpendicular if

 $(1) 2c^2 = a^2 (1 - m^2)$

(2) $2c^2 = a^2(1+m^2)$

(3) $2c^2 = a^2(m^2 - 1)$

(4) None

 $x^2 + y^2 = a^2$ వృత్తాన్ని y = mx + c రేఖ ఖండించగా ఏర్పడు బిందువులను మూల బిందువుతో కలుపగా వచ్చే రేఖాయుగ్మం పరస్పర లంబాలైన

(1) $2c^2 = a^2(1-m^2)$

(2) $2c^2 = a^2(1+m^2)$

(3) $2c^2 = a^2(m^2 - 1)$

(4) ఏదీకాదు

97. If $x - y = \sin(x - y)$ then $\frac{dy}{dx} =$

 $x - y = \sin(x - y)$ అయిన $\frac{dy}{dx} =$

- (1) -1
- (2) 0

(3) 1

(4) 2

98.	The percentage error in me is	easuring the side of a cube is 0.3 then percentage error in volume
	(1) $\frac{9}{10}$	(2) $\frac{7}{10}$

ఒక ఘనము యొక్క భుజం కొలతలలో లోప శాతం 0.3 అయిన దాని ఘన పరిమాణం కొలతలలో లోప శాతం

(4) None

- (1) $\frac{9}{10}$ (2) $\frac{7}{10}$
- (3) $\frac{3}{10}$ (4) ఏదీకాదు

- (1) $\frac{8}{3}$ (2) $\frac{7}{3}$ (3) $\frac{5}{3}$ (4) $\frac{4}{3}$
- (1, 1) బిందువు వద్ద $y = x^2$ మరియు $6y = 7 x^3$ వక్రాల మధ్య కోణం

100. The curve $6y = 7 - x^3$ and $y = x^2$ intersect at (1, 1) at an angle of

- (1) π (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{4}$
- 101. The circle concentric with $x^2+y^2-2x+4y+5=0$ and radius 2 units is $x^2+y^2-2x+4y+5=0$ వృత్తంతో సకేంద్రీయమై వ్యాసార్ధం 2 యూనిట్లుగా గల వృత్త సమీకరణం (1) $x^2+y^2-2x+4y-2=0$
 - (2) $x^2 + y^2 2x + 4y + 2 = 0$
 - (3) $x^2 + y^2 2x + 4y 1 = 0$
 - (4) $x^2 + y^2 2x + 4y + 1 = 0$

(3)

102. The number of common tangents to the circles $x^2 + y^2 = 16$ and $x^2 + y^2 + 6x - 8y + 24 = 0$ is

 $x^2 + y^2 = 16$ మరియు $x^2 + y^2 + 6x - 8y + 24 = 0$ వృత్తాలకు గల ఉమ్మడి స్పర్శ రేఖల సంఖ్య

- (1) 1
- (2) 2
- (3) 3

(4) 4

103. The length of the latus rectum of a conic is 6. Its focus is (1, 1) and its directrix is 3x + 4y - 2 = 0 then the conic is

(1) a parabola

(2) an ellipse

(3) Hyperbola

(4) Rectangular hyperbola

ఒక శంఖం నాభిలంబం పొడవు 6 ప్రమాణాలు మరియు నాభి (1, 1) నిమిత రేఖ సమీకరణం 3x + 4y - 2 = 0 అయిన శంఖం ఏది

(1) పరావలయం

(2) దీర్వవృత్తం

(3) అతిపరావలయం

(4) దీర్ఘ అతిపరావలయం

104. $\int \sin^{-1}(3x-4x^3)dx =$

(1)
$$x\sin^{-1}x + \sqrt{1-x^2} + C$$

(2)
$$2\left[x\sin^{-1}x + \sqrt{1-x^2}\right] + C$$

(3)
$$3 \left[x \sin^{-1} x + \sqrt{1 - x^2} \right] + C$$

(4)
$$4\left[x\sin^{-1}x + \sqrt{1-x^2}\right] + C$$

 $105. \int e^x \left(\frac{1 + x \log x}{x} \right) dx =$

 $(1) \quad e^x + \log x + c$

(2) $e^x - \log x + c$

 $(3) \quad e^x \cdot \log x + c$

 $(4) \quad \frac{e^x}{\log x} + c$

106. The eccentricity of a rectangular hyperbola is

దీర్ఘ అతిపరావలయం యొక్క ఉత్కేంద్రత

- (1) 2
- (2) $\sqrt{2}$
- (3) 3
- $(4) \sqrt{3}$

$$107. \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx =$$

- (1) 0 (2) π
- (3) $\frac{\pi}{2}$
- $(4) \quad \frac{\pi}{4}$

108. $\int_{0}^{2} x^{15} \sin^2 x \ dx =$

- (1) 0
- (2) 1
- (3) 2
- (4) 3

109. The order and degree of the differential equation $\left(\frac{dy}{dx}\right)^2 + 2y = \sin x$ is

- (1) 1, 1
- (2) 1, 2
- (3) 2, 2
- (4) None

 $\left(\frac{dy}{dx}\right)^2 + 2y = \sin x$ అవకలన సమీకరణము యొక్క పరిమాణము మరియు తరగతి

- (1) 1, 1
- (2) 1, 2
- (3) 2, 2
- (4) ఏదీకాదు

110. The integrating factor of the differential equation $x \frac{dy}{dx} + y = xe^x$ is

 $x\frac{dy}{dx} + y = xe^x$ అవకలన సమీకరణపు సమాకలన గుణకం

- (1) x
- $(2) \log x \qquad \qquad (3) e^x$
- $(4) \frac{1}{r}$

PART-IV: CHEMISTRY

111.		litre of a buffer solution contains 0. I value of the solution is	01M NH ₄	Cl and 0.1	M NH ₄ OH. Th	e p ^k b of ba	ise is	
	ATTACK THE RESERVE)టర్ బఫర్ ద్రావణంలో 0.01M NH ₄ C	ి మరియు	0.1M NF	I ₄ OH కలవు. క్షా	రం యొక్క	pkb	
		వ 5. బఫర్ ద్రావణం యొక్క pH విలువ				ŭ		
	(1)		(3)	4	(4) 6			
112.	Man	ufacture of ammonia by Haber's pr	ocess inv	olves the r	eaction			
	N ₂ +	$-3H_2 \rightleftharpoons 2NH_3$; $\Delta H = -22.5$ k cal	mol ⁻¹					
		effect of increase in temperature o		ilibrium is				
	(1)	Equilibrium is shifted to the right						
	(2)	Equilibrium is unaffected						
	(3)	Equilibrium is shifted to the left						
	` ′	(4) Equilibrium is shifted to right and then to the left						
	ేవాబర్ విధానంలో అమ్మోనియా తయారీ ఈ క్రింది చర్య ప్రకారం జరుగును							
	$N_2 + 3H_2 \rightleftharpoons 2NH_3$; $\Delta H = -22.5 \text{ k cal mol}^{-1}$							
	ಕಷ್ಟ	ఉష్ణోగత పెంచినపుడు పై సమతాస్థితి						
	(1)	కుడివైపునకు జరుగును						
		ఎటువంటి మార్పు ఉండదు						
		ఎడమవైపుకి జరుగును						
		మొదట కుడివైపుకి జరిగి మరల ఎడవ	ා	రుగును				
113.	In diamond, each carbon atom is bonded with four other carbon atoms in manner.							
	(1)	Square planar	(2)	Tetrahedi				
	(3)	Trigonal planar	(4)	Angular				
	డైమం	ండ్లో ప్రతీ కార్బన్, నాలుగు ఇతర కార్మ	న్లతో	విధంగ	ా బంధింపబడి	ఉంటుంది.		
	(1)	సమతల చతుర్యసం	(2)	చతుర్ముఖీ	యం			
	(3)	సమతల త్రికోణీయం	(4)	కోణీయం				
114.	1H1,	₁ H ² and ₁ H ³ differ in						
	(1)	Number of electrons	(2)	Number	of neutrons			
	(3)	Number of protons	(4)	Electron	c configuratio	n		
	1H1,	$_{_1}\mathrm{H}^2$ మరియు $_1\mathrm{H}^3$ లు విభిన్నమైన $_$	ను క	ಕರಿಗಿ ఉಂಟ್	ow.			
	(1)	ఎలక్ష్మానుల సంఖ్య	(2)	న్యూటాన్	ပ လဲဝနာရွ			
	(3)	ప్రాటానుల సంఖ్య	(4)	ఎలక్ట్రాన్ స	విన్యాసం			

** **	emistry 26			CONTRACTOR DESCRIPTION
	సమతా స్థితి వద్ద,	(3)	$\Delta G = + ve$ (4) $\Delta G = + ve$	∆G=-ve
121.	At equilibrium state,			
	Oxidation state of Cr in CrO_5 is	మార్చు ప్రతి	ను. CrO ₅ , రెండు (– O –	O –) బంధాలను
120.	In acidic medium, H_2O_2 changes $Cr_2O_7^{-2}$ to			
119.	ఈ క్రింది వానిలో ఓజోనైడ్ను ఏర్పరచలేనిది ఏది?	(3)		Ethane ヂቑ፟፟ጜ
	(3) 2-మిథైల్ ప్రోపేన్-2-ఓల్	(2) (4)	ంచని సమ్మేళనం ఏది? బ్యుటేన్-1-ఓల్ బ్యుటనోన్	
118.		(2) (4)	Butan-1-ol Butanone	is
117.	Silica is soluble in సిలికా లో కరుగును. (1) HCl (2) HNO ₃	(3)	H_2SO_4 (4)	HF
	 (1) చిన్న కాటయాన్ మరియు పెద్ద ఆనయాన్ (2) చిన్న కాటయాన్ మరియు చిన్న ఆనయాన్ (3) పెద్ద కాటయాన్ మరియు పెద్ద ఆనయాన్ (4) పెద్ద కాటయాన్ మరియు చిన్న ఆనయాన్ 	\$C &	ojasas eass	, CON - GOWN
116.	According to Fajans rule, covalent bond is fi (1) Small cation and large anion (2) Small cation and small anion (3) Large cation and large anion (4) Large cation and small anion ఫాజన్స్ నియమాల ప్రకారం, సమయోజనీయ బంగ			renova e o o o o o
	(3) క్షయకరణి	-	సోల్డర్	
	(1) පද්ාර්ජනී	(2)	ఫ్లక్స్	
	అల్యూమినో థర్మిక్ విధానంలో, అల్యూమినియం		గా పనిచేయును.	
	(3) A reducing agent	(2)	A flux A solder	
115.	In Alumino thermic process, aluminium act(1) An oxidising agent		A floor	

1	22. The	full ction of annyurous Arcia in the Frie	cuci C	Tall S reaction is to					
	(1)	Absorb water	(2)	Absorb HCl					
	(3)	Produce electrophile	(4)	Produce nucleophile					
	్ఫీడల్	కల్ క్రాఫ్ట్ చర్యలో, నిర్జల AlCl ₃ గా పని చేస్తుంది.							
	(1)	జలశోషణకారి	(2)	HCl శోషణకారి					
	(3)	ఎలక్ట్రోఫైల్ ఉత్పత్తికారి	(4)	న్యూక్లియోఫైల్ ఉత్పత్తికారి					
1		solid lattice, the cation has left a lattice ce defect is	e site a	and is located at interstitial position, the					
	(1)	Interstitial defect	(2)	Vacancy defect					
	(3)	Frenkel defect	(4)	Schottky defect					
			తన లా	ాటిస్ స్థానాన్ని ఖాళీ చేసి, సమీప మధ్యంతర					
		మునకు మారిన యొడల ఏర్పడే లోపము							
		మధ్యంతర లోపం		ఖాళీ లోపం					
	(3)	్రెంకెల్ లోపం	(4)	షాట్కీ లోపం					
1	24. 18 0	C–H bonds and 7 C–C sigma(σ) bonds a	are pro	esent in					
	(1)	Cyclohexane	(2)	3, 3-dimethyl pentane					
	(3)	2, 2, 3-tri methyl pentane	(4)	n-heptane					
	180	C-H బంధాలను మరియు 7 C-C 'ర' (సిగ్మా)) ಬಂಧ	ాలను ఈ క్రింది వానిలో ఏది కలిగి ఉండును?					
	(1)	సైక్లో హెక్సేస్	(2)	3, 3 -డై మిథైల్ పెంటేన్					
	(3)	2, 2, 3-టై మిథైల్ పెంటేన్	(4)	n-హెప్టేన్					
1	25. Bae	yer's reagent is							
	(1)	Alkaline Potassium permanganate sol	ution						
	(2)	Acidified potassium permanganate so	lution						
	(3)	Neutral potassium permanganate solu	ition						
	(4)	Aqueous Bromine solution							
	బేయ	ర్ కారకం అనగా							
	(1)	క్షార పొటాషియం పెర్మాంగనేట్ ద్రావణం							
	(2)	ఆమ్ల పొటాషియం పెర్మాంగనేట్ ద్రావణం							
	(3)	తటస్థ పొటాషియం పెర్మాంగనేట్ ద్రావణం							
	(4)	సజల బ్రోమిన్ ద్రావణం							

120.	Mechanism $A + B \rightarrow C + D$ slow							
	$A+C \rightarrow E$ fast							
	The rate law expression for the reaction is							
	$2A + B \rightarrow D + E$ అనే చర్య యొక్క చర్యా విధానం ఈ క్రింది విధంగా ఉంది.							
	$A + B \rightarrow C + D$ నెమ్మది చర్య							
	A + C → E వేగ చర్య							
	ఈ చర్య యొక్క రేటు సమీకరణం							
	(1) $r = k[A]^2[B]$ (2) $r = k[A][B]$							
	(3) $r = k[A]^2$ (4) $r = k[A][C]$							
127.	The ratio of mass of hydrogen and magnesium produced by the same amount of electricity							
	from H ₂ SO ₄ and MgSO ₄ solutions is							
	$ m H_2SO_4$ మరియు $ m MgSO_4$ ద్రావణాల గుండా ఒకే పరిమాణంలో విద్యుత్తును పంపినపుడు, ఏర్పడే							
	హైడ్రోజన్ మరియు మెగ్నీషియం భారాల నిష్పత్తి							
	(1) 1:8 (2) 1:12 (3) 1:16 (4) 1:32							
128.	In a galvanic cell, electrons flow will be from							
	(1) Negative electrode to positive electrode							
	(2) Positive electrode to negative electrode							
	(3) No flow							
	(4) Cathode to anode in the external circuit							
	గాల్వానిక్ ఘటంలో, ఎలక్ట్రాన్ల ప్రవాహం							
	(1) ఋణ ఎల్మక్టోడ్ నుండి ధన ఎల్మక్టోడ్కు ఉండును							
	(2) ధన ఎలక్ట్రోడ్ నుండి ఋణ ఎలక్ట్రోడ్కు ఉండును							
	(3) ය ංడదు							
	(4) కాథోడ్ నుండి ఆనోడ్కు బాహ్య వలయంలో ఉండును							
129.	Galvanised iron sheets are coated with							
	(1) Copper (2) Tin							
	(3) Carbon (4) Zinc							
	ఇనుప రేకులను గాల్వనైజేషన్ చేయుటలోను వాడుతారు.							
	(1) కాపర్ (2) టిన్							
	(3) కార్బన్ (4) జింక్							
130.	The mass of carbon dioxide obtained when 2g of pure limestone is calcinated is							
	స్వచ్ఛమైన 2g సున్నపురాయిని భస్మీకరణం చేసినపుడు వెలువడు కార్బన్ డై ఆక్ట్రెడ్ భారం							
	(1) 44g (2) 0.22g							
	(3) 0.88g (4) 8.8g							

	riod $(t\frac{1}{2})$ is	conce	miration of the feactant, then the half me
	t½ is independent of a	(2)	t½ α a
	$t^{1}/_{2} \propto a^{3}$		t½ α a²
ఒక	ప్రథమక్రమాంక చర్యలో 'a' అనునది క్రియాజ	నకం	ప్రారంభ గాథత అయినపుడు, ఆ చర్య యొక్క
అర్ధ	(జీవితకాలం (t½)		
(1)	a మీద $t^{1\!\!/_{\!\!2}}$ ఆధారపడదు	(2)	t½ α a
(3)) $t\frac{1}{2} \propto a^3$	(4)	$t\frac{1}{2} \alpha a^2$
132. IU	PAC name of K ₃ [Fe(CN) ₆] is		
(1)	Potassium ferricyanide	(2)	Hexa cyanoferrate (III)
(3)	Potassium hexacyanoferrate (III)	(4)	Potassium hexacyanoferrate (II)
K	g[Fe(CN) ₆] యొక్క IUPAC నామం	_	
(1)) పొటాషియం ఫెర్రి సయనైడ్	(2)	హెక్సా సైయనో ఫెర్రేట్ (III)
) పాటాషియం హెక్సా సైయనో ఫెర్రేట్ (III)		
133. W	hich property of colloids is not depender	nt on t	he charge of colloidal particles?
(1)) Coagulation	(2)	Electrophoresis
(3)) Electro Osmosis	(4)	Tyndall effect
Se.	గ్లాయిడ్ కణాల ఆవేశం మీద ఆధారపడని ధర్మ	ුං ఏద	?
(1)) కొయాగులేషన్ (గడ్డ కట్టుట)	(2)	ఎల(క్ట్ర్ ఫోరేసిస్
(3)) విద్యుత్ ద్రవాభిసరణం	(4)	టిండాల్ ప్రభావం
134. W	hich of the following is used to remove c	olour	from raw cane sugar juice?
(1)) Alumina	(2)	Silica gel
(3)			Nickel powder
మ	డి చెరుకు రసం నుండి, వర్ణంను తొలగించుట	కు ఈ	్రకింది వాటిలో దేనిని వాడతారు?
(1)) అల్యూమినా	(2)	సిలికా జెల్
(3)) యానిమల్ చార్కోల్ (జంతు బొగ్గు)	(4)	බිමිව්
135. Th	e number of unpaired electrons in the ele	ectror	nic configuration $1s^2 2s^2 2p^4$ is
	$(22s^22p^4)$ ఎల్మక్టాన్ విన్యాసంలోని ఒంటరి ఎం		
	2 (2) 3	(3)	
136. Th	e number of nodal planes a d-orbital has		
(1)		(3)	two (4) three
	d-ఆర్బిటాల్లోని నోడల్ తలాల సంఖ్య		
(1)		(3)	రెండు (4) మూడు

137.	. The two electrons occupying in an orbital are distinguished by						
	(1)	Principal quantum number	(2) Azimuthal quantum number				
	(3) Magnetic quantum number			[2] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2			
	ఒక ఆ	ఆర్బిటాల్లోని రెండు ఎలక్ట్రాన్ల మధ్య బేధాన్ని	ತಾರಿಯ	మజేసే క్వాంటం సంఖ్య			
		ప్రధాన క్వాంటం సంఖ్య		అజిముతల్ క్వాంటం సంఖ్య			
	(3)	అయస్కాంత క్వాంటం సంఖ్య	(4)	స్పిన్ (భ్రమణ) క్వాంటం సంఖ్య			
138.	The	correct ground state electronic configu	ration	n of chromium atom is			
	క్రోమి	యం పరమాణువు యొక్క సరియైన భూస్థాం	ည သ	లక్ట్రాన్ విన్యాసం			
		[Ar] 3d ⁵ 4s ¹	(2)	$[Ar] 3d^4 4s^2$			
	(3)	[Ar] 3d ⁶	(4)	[Ar] $3d^5 4s^2$			
139.	The	molar volume of a gas at STP is					
	(1)	1 litre	(2)	22.414 ml			
	(3)	22.414 <i>l</i>	(4)	5.6 1			
	STP	వద్ద ఒక వాయువు యొక్క మొలార్ ఘనపర్	మాణ	0			
	(1)	1 లీటర్	(2)	22.414 మిల్లీ లీటర్			
	(3)	22.414 లీటర్	(4)	5.6 లీటర్			
140.	The	number of molecules present in 1g of I	Hydro	ogen is			
	1g 3	రాడ్రోజన్లోని అణువుల సంఖ్య					
	(1)	6.02×10^{23}	(2)	3.01×10^{23}			
	(3)	2.5×10^{23}	(4)	1.5×10^{23}			
141.	Whi	ch one of the following elements have z	zero v	ralency?			
	(1)	Platinum (2) Gold	(3)	Sulphur (4) Neon			
	వేలని	్స్ట్ర జీరోగా గల మూలకం					
	(1)	ప్లాటినం (2) గోల్డ్	(3)	సల్ఫర్ (4) నియాన్			
142.	The	element with highest ionisation potenti	al is				
		Nitrogen (2) Oxygen	(3)	Helium (4) Neon			
	అత్య	ధిక అయనీకరణ శక్తి కలిగిన మూలకం					
		వైటోజన్ (2) ఆక్సిజన్	(3)	హీలియం (4) నియాన్			
143	CL	$I_5OH \xrightarrow{K_2Cr_2O_7/H_2SO_4} A \xrightarrow{K_2Cr_2O_7/H_2SO_4}$	7/H ₂ S0	0 ₄ B			
115.		ad B in the above reaction are					
	(1)	acetone and acetaldehyde	(2)	acetaldehyde and acetone			
	(3)	acetic acid and acetaldehyde		acetaldehyde and acetic acid			
		$H_5OH \xrightarrow{K_2Cr_2O_7/H_2SO_4} A \xrightarrow{K_2Cr_2O_7/H_2SO_4}$					
				75			
		ఇవ్వబడిన చర్యలో A మరియు B	(2)	78.1_87_E 4.8_4. 78.106E			
		~		ఎసిటార్డిహైడ్ మరియు ఎసిటోన్			
	(3)	ఎసిటిక్ ఆమ్లం మరియు ఎసిటాల్డిహైడ్	(4)	ఎసటార్డి హైడ్ మరియు ఎసటిక్ ఆమ్లం			

30

V-Chemistry

144.		బెంజీన్ అణువు న						
	.,					$sp^3 - sp^3$		$sp^2 - sp^2$
145.	The	reagent that give	s an or	range coloure	d precipit	ate with acetale	dehyde	(ethanal) is
	ఎసిట	ూల్డిహైడ్ (ఇథనాల్)ණ් පැ	రెంజ్ రంగు అం	కక్టేపాన్ని ఏ	ర్పరిచే కారకం ఏ	ය?	
	(1)	NH ₂ OH	(2)	NaHSO ₃	(3)	I_2	(4)	2,4 DNP
146.	Whi	ch of the followi	ng fur	nctional group	os can be	tested using ca	rbylami	ine reaction?
	क ह	కింది ప్రమేయ సమ	ూహాల	లో దేనిని కార్పై	ల్ ఎమీన్	చర్య సహాయం	తో గుర్తిం	చవచ్చు?
	(1)	-NH ₂ .	(2)	=NH	(3)	NH	(4)	-ОН
147.	Hyd	rogen diffuses si	x time	es faster than	a gas 'X'.	The molar ma	ss of the	e gas 'X' is
	'X'	అనే వాయువు కన	<u>ವ</u> ್ತ್	్డ్ జన్ వాయు	వు, ఆరు	రెట్లు వ్యాపనం	చెందుత	సంది. 'X' యొక్క
		భారం ఎంత?						
	(1)	72	(2)	6	(3)	24	(4)	36
148.		emulsifying age	nt in n	nilk is				
	(1)	Casein			(2)	Lactic acid		
		Lactose	E ()	·F	(4)	Citric acid		
		లోని ఎమల్సిఫయిం	ಗ ೨ಜ	oe	(2)	-9F V		
		కేసిన్				లాక్టిక్ ఆమ్లం		
	(3)	లాక్టోస్			(4)	సిట్రిక్ ఆమ్లం		
149.	α-su	ılphur (Rhombic	sulph	$ur) \stackrel{x}{\rightleftharpoons} \beta$ -sulr	ohur (Mo	noclinic sulphi	ır)	
		e 'x' is						
			_ x	0 . 5 .	-in			
		ల్ఫర్ (రాంభిక్ సల్ఫ	(5)	è β- ည ပျှင် (သ			x, 709.	
	(1) (3)	95.5 K 273 K			(2)	368.5°C 368.5 K		
-								
150.	Prin	nary and secondar	ry vale	encies of Coba	lt (Co) in	$\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]$	Cl ₃ respe	ectively are
	(1)	2 and 3			(2)	6 and 3		
	(3)	3 and 6			(4)	3 and 2		
	Co	(NH ₃) ₆]Cl ₃ ණ	కోబాల్ట్	(Co) ಮುಕ್ಕು	ప్రాథమిక	మరియు ద్వితీయ	రు వేలన్నీ	ဗာ
	(1)	2 మరియు 3			(2)	6 మరియు 3		
	(3)	3 మరియు 6			(4)	3 మరియు 2		
-					7			