The function $f(x) = |\cos x|$ is

f(A) everywhere continuous and differentiable

(B) everywhere continuous but not differentiable at odd multiples of $\frac{\pi}{2}$

- (C) neither continuous nor differentiable at $(2n + 1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
- (D) not differentiable everywhere

2. If
$$y = 2x^{3x}$$
, then $\frac{dy}{dx}$ at $x = 1$ is
(A) 2
(B) 6 5
(C) 3
(C)

If f(5) = 3 and f'(0) = 2, then f'(5) is x + y = 5 $\int (x) \int (y) = 5$ (B) 0 (C) 5 (D) -6

The value of C in (0, 2) satisfying the mean value theorem for the function $f(x) = x (x - 1)^2$, $x \in [0, 2]$ is equal to

(A)
$$\frac{3}{4}$$
 (B) $\frac{4}{3}$ (C) $\frac{1}{3}$ (D) $\frac{2}{3}$
5. $\frac{d}{dx} \left[\cos^2 \left(\cot^{-1} \sqrt{\frac{2+x}{2-x}} \right) \right]$ is
(A) $-\frac{3}{4}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$
(A) $-\frac{3}{4}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$
(C) not a critical point (D) a point of inflexion
(C) not a critical point (D) a point of maximum (2-24+12 = 0)
Space for Rough Work / 2023 for $\frac{1}{3}\sqrt{\frac{3}{5}}$ (T is 0^{1-2}

M C-3

 ∞

2

II (36 Sin²θ) (6 605θ II +2 Sinθ 3 The function x^x ; x > 0 is strictly increasing at $(B) \quad x < \frac{1}{2}$ $(0) \quad x > \frac{1}{2}$ (A) $\forall x \in \mathbb{R}$ (D) x < 08. The maximum volume of the right circular cone with slant height 6 units is (A) $4\sqrt{3}\pi$ cubic units (B) $16\sqrt{3}\pi$ cubic units ~ = (C) $3\sqrt{3}\pi$ cubic units (D) $6\sqrt{3}\pi$ cubic units $L e^{2(-1)} 2e^{2}$ If $f(x) = x e^{x(1-x)}$ then f(x) is 9. (A) increasing in **R** (B) decreasing in \mathbb{R} (C) decreasing in $\left|-\frac{1}{2},1\right|$ (D) increasing in $\left|-\frac{1}{2},1\right|$ $\int \frac{\sin x}{3 + 4\cos^2 x} \, dx =$ 3 e = 0 $(\widehat{(A)}) - \frac{1}{2\sqrt{3}} \tan^{-1}\left(\frac{2\cos x}{\sqrt{3}}\right) + C$ (B) $\frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{\cos x}{3}\right) + C$ (C) $\frac{1}{2\sqrt{3}} \tan^{-1}\left(\frac{\cos x}{3}\right) + C$ (D) $-\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{2\cos x}{3}\right) + C$ (1-x2) Sin(-x) **H.** $\int (1-x^2) \sin x \cdot \cos^2 x \, dx =$ - (1-x2)Sinx. (102x (A) $\pi - \frac{\pi^2}{3}$ (B) $2\pi - \pi^3$ (C) $\pi - \frac{\pi^3}{2}$ AD 0

Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ

M C-3

(4)

$$1 \frac{1}{x} \int \frac{1}{x[6(\log x)^2 + 7\log x + 2]} dx = \frac{1}{x(6x^2 + 7x + 2)} dx = \frac{1}{x(6x^2 + 7x + 2)} dx = \frac{1}{x(6x^2 + 7x + 2)} (A) = \frac{1}{2} \log \left| \frac{2\log x + 1}{3\log x + 2} \right| + C = \frac{1}{6x^2 + 4x^2 + 2x} (C) = \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2} \log \left| \frac{3\log x + 2}{2\log x + 1} \right| + C = (B) = \frac{1}{2$$

(6)

M C-3

The solution of $e^{\frac{dy}{dx}} = x + 1$, y(0) = 3 is

- $(A) \quad y 2 = x \log x x$
- $(B) \quad y x 3 = x \log x$
- (C) $y-x-3 = (x + 1) \log (x + 1)$
- (D) $y + x 3 = (x + 1) \log (x + 1)$
- **14.** The family of curves whose x and y intercepts of a tangent at any point are respectively double the x and y coordinates of that point is
 - (A) xy = C(C) $x^2 - y^2 = C$ (D) $\frac{y}{x} = C$
- **20.** The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$ are the sides of a \triangle ABC. The length of the median through A is
 - (A) $\sqrt{18}$ (B) $\sqrt{72}$ (C) $\sqrt{33}$ (D) $\sqrt{288}$

21. The volume of the parallelopiped whose co-terminous edges are $\hat{j} + \hat{k}$, $\hat{i} + \hat{k}$ and $\hat{i} + \hat{j}$ is

- (A) 6 cu.units (B) 2 cu.units
- (C) 4 cu.units (D) 3 cu.units
- **22.** Let \overrightarrow{a} and \overrightarrow{b} be two unit vectors and θ is the angle between them. Then $\overrightarrow{a} + \overrightarrow{b}$ is a unit vector if
 - (A) $\theta = \frac{\pi}{4}$ (D) $\theta = \frac{\pi}{3}$ (D) $\theta = \frac{\pi}{2}$

Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ

(8)

28. If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors and p, q, r are vectors defined by $\vec{p} = \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \cdot \vec{c}}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\vec{b} \cdot \vec{c}}, \vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{c} \cdot \vec{c}}, \text{ then}$ $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{p} + (\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{q} + (\overrightarrow{c} + \overrightarrow{a}) \cdot \overrightarrow{r}$ is ((D)) 3 (A) 0 (\mathbf{B}) 1 (C) 2 **A.** If lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{2k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are mutually perpendicular, then k is equal to $(A) - \frac{10}{7}$ $(B)^{-} - \frac{7}{10}$ (C) – 10 (D) – 7 The distance between the two planes 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is Ž5. (C) $\frac{2}{\sqrt{29}}$ units (D) 4 units 2 units (**A**) (B) 8 units The sine of the angle between the straight line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{4-z}{-5}$ and the plane 26. 2x - 2y + z = 5 is (A) $\frac{1}{5\sqrt{2}}$ (B) $\frac{2}{5\sqrt{2}}$ (C) $\frac{3}{50}$ (D) $\frac{3}{\sqrt{50}}$ The equation xy = 0 in three-dimensional space represents $\chi = -Y$ k^{-1} y^{-1} $\chi = -1$ y^{-2} $\chi = -2$ a pair of straight lines (**A**) **(B)** a plane a pair of planes at right angles (**C**) a pair of parallel planes (**D**) The plane containing the point (3, 2, 0) and the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$ is 28. (B) x + y + z = 5(A) x - y + z = 1(D) 2x - y + z = 5 $\mathbf{x} + 2\mathbf{y} - \mathbf{z} = \mathbf{1}$ (**C**)

Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ

(10)

Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let z = 4x + 6y be the objective function. The minimum value of z occurs at

J-q-4 4 2. : 13

4×3+6 F G+6=K

- (A) Only (0, 2) z = 12
- (B) Only (3, 0) z = 12

(C) The mid-point of the line segment joining the points (0, 2) and (3, 0) $(2, 4) = \frac{3}{2}, \frac{1}{2}$

(D) Any point on the line segment joining the points (0, 2) and (3, 0)

30. A die is thrown 10 times. The probability that an odd number will come up at least once is

(A)
$$\frac{11}{1024}$$
 (B) $\frac{1013}{1024}$

$$\begin{array}{c} (C) \\ \hline 1023 \\ \hline 1024 \\ \end{array} \tag{D} \quad \frac{1}{1024} \\ \end{array}$$

31. A random variable X has the following probability distribution :

X	0	1	2
P(X)	$\frac{25}{36}$	k	$\frac{1}{36}$

If the mean of the random variable X is $\frac{1}{3}$, then the variance is

.(A) $\frac{1}{18}$ (B) $\frac{5}{18}$ (C) $\frac{7}{18}$ (D) $\frac{11}{18}$

If a random variable X follows the binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then p is equal to

(A) 10 (B)
$$\frac{1}{10}$$
 (C) 5 (D) $\frac{1}{5}$

Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ

M C-3

(12)

 $2^{m} = \chi + 56^{n}, 2^{n} = \chi$ Two finite sets have m and n elements respectively. The total number of subsets of the first 38. set is 56 more than the total number of subsets of the second set. The values of m and n respectively are (A) (B) 5, 1 (C) 6, 3 (D) 8, (B) 5, 1 (C) 6, 3 (D) 8, (C) 6, 3 (D) 8, (D) (D) 8, 7 34. (D) $x \in (2, 3]$ (A) $x \in [3, 4]$ (B) $x \in [2, 4)$ (C) $x \in [2, 3]$ (D) $x \in (2, 3]$ $x \in [2, 3]$ (D) $x \in (2, 3]$ If in two circles, arcs of the same length subtend angles 30° and 78° at the centre, then the 35. ratio of their radii is (A) $\frac{5}{13}$ (D) $\frac{4}{13}$ (B) $\frac{13}{5}$ (C) $\frac{13}{4}$ If \triangle ABC is right angled at C, then the value of tan A + tan B is **36**. $(D) \frac{b^2}{2}$ (B) $\frac{a^2}{ba}$ (C) $\frac{c^2}{c^b}$ (A) a + b**37.** The real value of ' α ' for which $\frac{1 - i \sin \alpha}{1 + 2i \sin \alpha}$ is purely real is (A) $(n+1)\frac{\pi}{2}, n \in \mathbb{N}$ $(B) \quad (2n+1)\frac{\pi}{2}, n \in \mathbb{N}$ $(n\pi, n \in \mathbb{N})$ (D) $(2n-1)\frac{\pi}{2}, n \in \mathbb{N}$ The length of a rectangle is five times the breadth. If the minimum perimeter of the rectangle is 180 cm, then Breadth ≤ 15 cm **(B)** Breadth ≥ 15 cm (**A**) Length ≤ 15 cm (D) Length = 15 cm(C) The value of ${}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3 + {}^{46}C_3 + {}^{45}C_3 + {}^{45}C_4$ is 39. ${}^{50}C_4$ **(B)** (A) $^{50}C_2$ (D) ${}^{50}C_1$ (C)

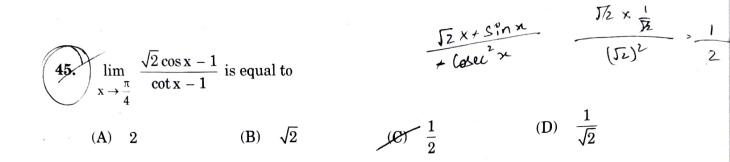
Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ

(14)

\mathbf{M}. In the expansion of $(1 + \mathbf{x})^n$ $\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + n\frac{C_n}{C_{n-1}}$ is equal to (A) $\frac{n(n+1)}{2}$ (B) $\frac{n}{2}$ (C) $\frac{n+1}{2}$ (D) 3n(n+1)41. If S_n stands for sum to n-terms of a G.P. with 'a' as the first term and 'r' as the common (B) $\frac{1}{r^n + 1}$ (C) $r^n - 1$ $\frac{3^n - \alpha}{r^n - 1}$ (D) $\frac{1}{r^n - 1}$ $\frac{3^n - \alpha}{3^n - \alpha}$ ratio then $S_n : S_{2n}$ is $(A) \quad r^n + 1$ If A.M. and G.M. of roots of a quadratic equation are 5 and 4 respectively, then the 42 a + b = 5 a + b = 10 y = -x + 3 a + b = 2 ac b = ac y = -x + 3 b = acquadratic equation is 10,16 (A) $x^2 - 10x - 16 = 0$ (B) $x^2 + 10x + 16 = 0$ (C) $x^2 + 10x - 16 = 0$ $(\underline{D}) x^2 - 10x + 16 = 0$ The angle between the line x + y = 3 and the line joining the points (1, 1) and (-3, 4) is 43. (B) $\tan^{-1}\left(-\frac{1}{7}\right)$ (\widehat{A}) tan⁻¹ (7) $y^{2} = -4ax$ $x^{2} = 4ay$ (C) $\tan^{-1}\left(\frac{1}{7}\right)$ (D) $\tan^{-1}\left(\frac{2}{7}\right)$ The equation of parabola whose focus is (6, 0) and directrix is x = -6 is (A) $y^2 = 24x$ (B) $y^2 = -24x$ $x^2 = -24v$ (C) $x^2 = 24y$

Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ

(16)



46. The negation of the statement

"For every real number x; $x^2 + 5$ is positive" is

(A) For every real number x; $x^2 + 5$ is not positive.

(B) For every real number x; $x^2 + 5$ is negative.

(C) There exists at least one real number x such that $x^2 + 5$ is not positive.

(D) There exists at least one real number x such that $x^2 + 5$ is positive.

) Let a, b, c, d and e be the observations with mean m and standard deviation S. The standard deviation of the observations a + k, b + k, c + k, d + k and e + k is

(A) kS (B) S + k (C) $\frac{S}{k}$ (D) S

$$\begin{array}{cccc}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$$
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}
\left(\begin{array}{c}
\end{array}\\
\end{array}
\left(\begin{array}{c}
\end{array}\\
\end{array}
\left)
\end{array}
\left(\begin{array}{c}
\end{array}\\
\end{array}
\left)
\left(\begin{array}{c}
\end{array}
\left)
\left(\begin{array}{c}
\end{array}
\left)
\left(\begin{array}{c}
\end{array}\\
\end{array}
\left)
\left(\begin{array}{c}
\end{array}\\
\end{array}
\left)
\left(\begin{array}{c}
\end{array}
\left)
\left(\begin{array}{c}
\end{array}\\
\end{array}
\left)
\left(\begin{array}{c}
\end{array}\\
\end{array}
\left)
\left(\end{array})
\left)
\left(\end{array}
\left)
\left(\end{array}
\left)
\left(\end{array}
\left)
\left(\end{array})
\left)
\left(\end{array}
\left)
\left(\end{array}
\left)
\left(\end{array}
\left)
\left(\end{array})
\left)
\left(\end{array}
\left)
\left(}
\bigg)
\left)
\left(\end{array})
\left)
\left(\end{array}
\left)
\left(}
\bigg)
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\\
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\\
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\\
\left)
\left)
\left(\end{array})
\left)
\left(\\
\left)
\left(\end{array})
\left)
\left(\\
\left)
\left)
\left(\end{array})
\left)

40. Let $f: R \to R$ be defined by $f(x) = x^2 + 1$. Then the pre images of 17 and - 3 respectively are

(A) $\phi, \{4, -4\}$	(B)	{3, -3}, φ
(C) $\{4, -4\}, \phi$	(D)	$\{4, -4\}, \{2, -2\}$

Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ

$$\begin{aligned} \left(\begin{array}{c} \left(q(x) \right) = \int_{-\infty}^{\infty} x \\ \left(q(x) \right) = \int_{-\infty}^{\infty} \left(x \right) \left(q(x) \right) = \int_{-\infty}^{\infty} \left(x \right) x \\ \left(q(x) \right) = \int_{-\infty}^{\infty} \left(x \right) = x \\ (A) \quad f(x) = \sin^{2}x, \quad g(x) = x \\ (A) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (B) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (B) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (B) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \sin^{2}x, \quad g(x) = \sqrt{x} \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G) \quad f(x) = \int_{-\infty}^{\infty} \left(f(x) + x \right) \\ (G)$$

57. If
$$P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is the adjoint of a 3×3 matrix A and $|A| = 4$, then α is equal to
(A) 4
(C) 11
(B) 5
(C) 11
(C) 11
(C) 3
(C)

- 60. Which one of the following observations is correct for the features of logarithm function to any base b > 1?
 - (A) The domain of the logarithm function is R, the set of real numbers.
 - (B) The range of the logarithm function is R^+ , the set of all positive real numbers.
 - (C) The point (1, 0) is always on the graph of the logarithm function.
 - (D) The graph of the logarithm function is decreasing as we move from left to right.

Space for Rough Work / ಒರಟು ಕೆಲಸಕ್ಕೆ ಸ್ಥಳ