BITSAT 2023 May 24 Shift 1 Question Paper With Answers and Solutions (Memory-based)

Question 1. If an object of mass m is given a velocity equal to twice the escape velocity of Earth then the velocity of the object at the point where Earth shows no Gravitational force strength would be at?

Answer: At an infinite distance from Earth.
Solution: The velocity of an object at the point where Earth's gravitational force becomes negligible (far away from Earth) would be zero.

The escape velocity of Earth is the minimum velocity an object needs to escape the gravitational pull of Earth and never return. If an object is given a velocity equal to twice the escape velocity, it means the object has more than enough energy to escape Earth's gravitational field.

As the object moves farther away from Earth, the gravitational force between Earth and the object decreases. At a certain point, the gravitational force becomes negligible compared to other forces acting on the object. This point is often considered to be at an infinite distance from Earth.

At this point, the object's velocity would become zero because there is no gravitational force acting on it. In other words, the object would be moving away from Earth at a decreasing velocity until it eventually comes to rest (velocity equals zero) at an infinite distance from Earth.

Question 2. Photochemical smog pollutants cannot be reduced by?

Solution: Photochemical smog pollutants cannot be reduced by physical methods alone. Physical methods involve removing or filtering pollutants
through physical processes such as filtration, condensation, or absorption. However, photochemical smog is primarily composed of pollutants that result from chemical reactions involving sunlight, nitrogen oxides (NOx), volatile organic compounds (VOCs), and other reactive compounds.

To effectively reduce photochemical smog pollutants, it requires chemical or biological methods that can break down or transform the reactive compounds into less harmful substances. Some of the methods used to mitigate photochemical smog include:

- Catalytic converters: These are used in automobiles to facilitate the conversion of harmful pollutants such as nitrogen oxides and volatile organic compounds into less harmful substances through catalytic reactions.
- Emission controls: Implementing stricter regulations and emission standards on industries and vehicles to reduce the release of pollutants into the atmosphere.
- Alternative transportation and energy sources: Encouraging the use of cleaner energy sources, such as renewable energy, and promoting the use of public transportation, walking, or cycling instead of relying heavily on individual vehicle transportation.
- Volatile organic compound (VOC) reduction strategies: Implementing measures to reduce the emission of VOCs from industrial processes, consumer products, and solvents, including the use of low-VOC products and improved industrial practices.
- Smog alerts and public awareness: Informing the public about high pollution levels and providing recommendations to reduce activities that contribute to smog formation, such as limiting vehicle use, reducing outdoor activities during peak pollution times, and promoting energy conservation.

It is important to note that while physical methods may not directly reduce photochemical smog pollutants, they can play a role in reducing other types of pollutants that contribute to overall air pollution, such as particulate matter (PM) and certain gases.

Question 3. The statement "velocity and acceleration always act through the same straight line, either in the same or opposite direction" applies for which dimensional motions?

Answer: In one dimensional motion.
Solution: The statement "velocity and acceleration always act through the same straight line, either in the same or opposite direction" applies to one-dimensional motions.

In one-dimensional motion, an object moves along a straight line, and its position, velocity, and acceleration can be described using a single coordinate or axis. The statement implies that in one-dimensional motion, the velocity and acceleration vectors are parallel or antiparallel to each other, meaning they either point in the same direction or in opposite directions along the straight line of motion.

However, in two or three-dimensional motions, such as motion in a plane or in space, the velocity and acceleration vectors can have components in different directions. In these cases, the velocity and acceleration vectors may not always align or have a simple relationship with each other along a single straight line. The relationship between velocity and acceleration in multi-dimensional motion can be more complex and dependent on the specific motion and forces involved.

Question 4. Two inductors each of 50 mH are connected in parallel, what is the equivalent inductance?

Answer: 25mh
Solution: When inductors are connected in parallel, the equivalent inductance ($\mathrm{L} _$eq) can be calculated using the formula:
1/L_eq = 1/L1 + 1/L2 + 1/L3 + ...

In this case, you have two inductors each with an inductance of 50 mH . Plugging in the values into the formula:
$1 / \mathrm{L} _$eq $=1 / 50 \mathrm{mH}+1 / 50 \mathrm{mH}$
To add the fractions, you need a common denominator:
$1 /$ L_eq $=(1 / 50 \mathrm{mH}+1 / 50 \mathrm{mH}) /(1 \mathrm{mH})$
Simplifying the numerator:
$1 / \mathrm{L} _$eq $=(2 / 50 \mathrm{mH}) /(1 \mathrm{mH})$
$1 / L _e q=2 / 50$
Inverting both sides:
L_eq = 50/2
L_eq $=25 \mathrm{mH}$
Therefore, the equivalent inductance of two 50 mH inductors connected in parallel is 25 mH .

Question 5. Conversation of linear momentum is a necessary condition for which Kepler's laws?

Answer: For Kepler's Second Law, also known as the Law of Equal Areas.
Solution: The conservation of linear momentum is a necessary condition for Kepler's Second Law, also known as the Law of Equal Areas.

Kepler's Second Law states that the line segment connecting a planet to the Sun sweeps out equal areas in equal time intervals. This means that as a planet orbits around the Sun, it covers equal areas in its orbital path over equal time intervals.

The conservation of linear momentum is necessary to understand this law because the angular momentum of a planet remains constant as it moves
in its elliptical orbit around the Sun. Angular momentum is related to linear momentum, and when linear momentum is conserved, angular momentum is also conserved.

In the absence of external forces, conservation of linear momentum implies that the planet's velocity will change as it moves along its elliptical orbit. As the planet approaches the Sun, it speeds up, and as it moves away from the Sun, it slows down. This change in velocity ensures that the area swept by the line segment connecting the planet to the Sun remains constant over equal time intervals, fulfilling Kepler's Second Law.

Therefore, the conservation of linear momentum is a necessary condition for Kepler's Second Law, which describes the equal areas law.

Question 6. The Radial Probability curve for 2s orbital.

Answer:

Question 7. How many elements are there in period 4 of the periodic table?

Answer: 18 elements.
Solution: The period in the periodic table:

1) The elements in the horizontal rows of a periodic table represent periods.
2) The 4th-period elements are the elements in the 4th row of the periodic table.

The number of elements in a period can be determined as:
Let ' p ' be the period number, and

- If p is even, the number of elements is: $(P+2)^{2} / 2$
- If p is odd, the number of elements is: $(P+1)^{2} / 2$

Since period number is 4 , it is even.
Therefore, number of elements in period 4 will be
$(4+2)^{2} / 2=36 / 2=18$
Hence, there are 18 elements in period 4 of the periodic table.

Question 8. If a block is pushed upwards on an inclined plane with velocity v and then it comes back to the initial position, then it's velocity is
A. equal to v
B. more than v
C. less than v
D. more or less than v depending on the angle of the inclined plane.

Question 9. If gamma ($\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$) of a gas is 1.5 , then in an adiabatic process what would be the relation between T and V?

Question 10. An acid has $\mathrm{pH}=4$ and $\mathrm{pK}_{\mathrm{a}}=5$, what would be the initial
concentration of the acid.

Question 11. What would be the reaction between B and LiAlH_{4}

Question 12. If points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right), C\left(x_{3}, y_{3}, z_{3}\right)$ are collinear then in which ratio does B divide $A C$?

Question 13. Odd one out: red, yellow, green, pink.

Question 14. Odd one out: saturday, monday, tuesday, thursday

BITSAT 2023 Answer Key May 24 Shift 1

Question	Answer
1	At an infinite distance from Earth.
2	By physical methods alone
3	One dimensional motion
4	Kepler's Second Law
5	25
6	
7	

BITSAT 2023 May 24 Shift 2 Question Paper With Answers and Solutions (Memory-based)

Question 1. Why did the time period of rotation of Earth decrease by microseconds after the Japan 2011 earthquake?
A. The oceanic floor and land disturbances caused the effect of rate of rotation of Earth.
B. Redistribution of mass caused MOI to increase.
C. Redistribution of mass caused MOI to decrease.
D. The kinetic energy of Earth increased due to earthquakes.

Answer: Redistribution of mass caused MOI to increase.
Solution: The time period of rotation of Earth did not decrease after the Japan 2011 earthquake. In fact, the earthquake caused a slight increase in the Earth's rotation period, resulting in a shortening of the day.

During large-scale earthquakes, the distribution of mass on Earth can change. The Japan 2011 earthquake, also known as the Great East Japan Earthquake, was a massive undersea earthquake that occurred off the northeastern coast of Japan on March 11, 2011. This earthquake had a significant impact on the Earth's rotation due to the redistribution of mass caused by the shifting of tectonic plates.

The earthquake caused the Pacific tectonic plate to move and resulted in a redistribution of mass, primarily by shifting a significant amount of Earth's crust from the ocean floor to land. This shift of mass closer to the Earth's axis of rotation caused a slight increase in the planet's moment of inertia.

To be more precise, the earthquake's effect on Earth's rotation was estimated to have shortened the day by approximately 1.8 microseconds (1.8 millionths of a second) by redistributing the Earth's mass closer to the
axis. This change is relatively small and would not be perceptible to human experience.

Question 2. The potential energy of a body is given by $\mathrm{U}(\mathrm{x})$ and it has mechanical energy is E. Then its potential energy when its velocity is zero is given by?

Answer: Potential energy of the body when its velocity is zero is equal to its total mechanical energy (E).

Solution: The potential energy of a body is given by $\mathrm{U}(\mathrm{x})$, and its total mechanical energy is E. When the body's velocity is zero, it means it has come to rest, and its kinetic energy is zero. In this scenario, we can determine the potential energy.

The total mechanical energy (E) of the body is the sum of its kinetic energy (K) and potential energy (U). Since the body is at rest, its kinetic energy is zero, so we can write:
$E=K+U$
Since $K=0$, the equation simplifies to:
$E=0+U$
Therefore, the potential energy of the body when its velocity is zero is equal to its total mechanical energy (E).

Question 3. Gibbs free energy formula is.

Answer: $\mathrm{G}=\mathrm{H}-\mathrm{TS}$ or more completely as $\mathrm{G}=\mathrm{U}+\mathrm{PV}-\mathrm{TS}$
Solution: Gibbs free energy is equal to the enthalpy of the system minus the product of the temperature and entropy. The equation is given as:
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$

Where,
$G=$ Gibbs free energy
H = enthalpy
T = temperature
S = entropy
OR
or more completely as:
$G=U+P V-T S$
Where,
$\mathrm{U}=$ internal energy (SI unit: joule)
$\mathrm{P}=$ pressure (SI unit: pascal)
$\mathrm{V}=$ volume (SI unit: m3)
$\mathrm{T}=$ temperature (SI unit: kelvin)
$S=$ entropy (SI unit: joule/kelvin)

Question 4. Ratio of time periods of electrons in 1st and 2nd orbits of Hydrogen is?

Answer: 1:8
Solution: The time period of an electron is given by,
$T=n^{3} h^{3} /\left(4 \pi^{2} m Z^{2} e^{4}\right)$

For first orbit, $\mathrm{n}=1$
$T_{1}=1^{3} h^{3} /\left(4 \pi^{2} m Z^{2} e^{4}\right)$
For second orbit, $\mathrm{n}=2$
$T_{2}=2^{3} h^{3} /\left(4 T^{2} m Z^{2} e^{4}\right)$

Therefore, we have $T_{1} / T_{2}=1: 8$

Question 5. A planet of radius 8000 km transforms into a star of radius 8 km . If the initial time period is 15 h then what is the new time period?

Question 6. 1, $0,0,3,20$, what is the next number in the sequence?

Question 7. A block is pushed up a frictionless incline with velocity v. It comes down with which velocity?

Question 8. $d y / d x=\sin x / \sin (x+2)$. Find y in terms of x.

Question 9. Find the sum of all 4 digit numbers using digits 1,2,3,4,5,6 with no repetition.

Question 10. $\int\left(\tan ^{-1} x . e^{\tan -1 x}\right) / 1+x^{2} . d x$

Question 11. Find the focus of the ellipse $(x-3)^{2} / 25+(y-7)^{2} / 16=1$.

Question 12. Equation of tangent to the circle is given by $x^{2}+y^{2}-12 x+$ $16 y+19=0$ which is parallel to the straight line $4 x+3 y=5$.

Question 13. If the line $y=m x+1$ is tangent to parabola $y^{2}=4 x$, then find the value of m.

Question 14. A compound X gives $6.6 \mathrm{~g} \mathrm{CO}_{2}$ and 1.35 g of $\mathrm{H}_{2} \mathrm{O}$ on complete combustion. Find the formula of \mathbf{X}.

BITSAT 2023 Answer Key May 24 Shift 2

Question	Answer
1	Redistribution of mass caused MOI to increase.
2	Potential energy of the body when its velocity is zero is equal to its total mechanical energy (E).
3	G $=\mathrm{H}-\mathrm{TS}$ or more completely as G U + PV - TS
4	$1: 8$

