- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 19 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।

Maximum Marks : 70

- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 19 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 35 questions.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.
रोल नं.
Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।
Candidates must write the Q.P. Code on the title page of the answer-book.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 70

Time allowed : 3 hours

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :
(i) इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
(ii) यह प्रश्न-पत्र पाँच खण्डों में विभाजित है - क, ख, ग, घ एवं ङ।
(iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
(iv) खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं।
(v) खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
(vi) खण्ड घ में प्रश्न संख्या 31 तथा 32 केस-आधारित चार-चार अंकों के प्रश्न हैं।
(vii) खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं।
(viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है । यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
(ix) कैल्कुलेटर का उपयोग वर्जित है।

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं। $18 \times 1=18$

1. α-हेलिक्स संरचनात्मक लक्षण है :
(a) सूक्रोस का
(b) स्टार्च का
(c) पॉलिपेप्टाइडों का
(d) न्यूक्लिओटाइडों का
2. स्टार्च के ऐमिलेस घटक में ग्लूकोस इकाइयों को जोड़ने के लिए सम्मिलित ग्लाइकोसाइडी बंध है :
(a) $\mathrm{C}_{1}-\mathrm{C}_{6} \alpha$ बंध
(b) $\mathrm{C}_{1}-\mathrm{C}_{6} \beta$ बंध
(c) $\mathrm{C}_{1}-\mathrm{C}_{4} \alpha$ बंध
(d) $\mathrm{C}_{1}-\mathrm{C}_{4} \beta$ बंध
3. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s}) \quad \mathrm{E}^{\circ}=+0.80 \mathrm{~V}$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-0.44 \mathrm{~V}$
$\mathrm{Fe}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
सेल के लिए $\mathrm{E}_{\text {सेल }}^{\circ}$ ज्ञात कीजिए ।
(a) 1.6 V
(b) -1.16 V
(c) 2.04 V
(d) 1.24 V

General Instructions：

Read the following instructions carefully and strictly follow them ：
（i）This question paper contains 35 questions．All questions are compulsory．
（ii）This question paper is divided into five Sections $-\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{E} ．
（iii）In Section A－Questions no． 1 to 18 are multiple choice（MCQ）type questions， carrying 1 mark each．
（iv）In Section B－Questions no． 19 to 25 very short answer（VSA）type questions， carrying 2 marks each．
（v）In Section C－Questions no． 26 to $\mathbf{3 0}$ are short answer（SA）type questions， carrying 3 marks each．
（vi）In Section D－Questions no． 31 and 32 are case－based questions carrying 4 marks each．
（vii）In Section \boldsymbol{E}－Questions no． 33 to $\mathbf{3 5}$ are long answer（LA）type questions carrying 5 marks each．
（viii）There is no overall choice．However，an internal choice has been provided in 2 questions in Section B， 2 questions in Section C， 2 questions in Section D and 2 questions in Section E．
（ix）Use of calculators is not allowed．

SECTION A

Questions no． 1 to 18 are Multiple Choice（MCQ）type Questions，carrying 1 mark each．
1．An α－helix is a structural feature of ：
（a）Sucrose
（b）Starch
（c）Polypeptides
（d）Nucleotides

2．The glycosidic linkage involved in linking the glucose units in amylase part of starch is ：
（a） $\mathrm{C}_{1}-\mathrm{C}_{6} \propto$ linkage
（b）$\quad \mathrm{C}_{1}-\mathrm{C}_{6} \beta$ linkage
（c）$\quad \mathrm{C}_{1}-\mathrm{C}_{4} \propto$ linkage
（d）$\quad \mathrm{C}_{1}-\mathrm{C}_{4} \beta$ linkage

3．$\quad \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s}) \quad \mathrm{E}^{\circ}=+0.80 \mathrm{~V}$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-0.44 \mathrm{~V}$
Find the $\mathrm{E}_{\text {cell }}^{\circ}$ for ：
$\mathrm{Fe}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
（a） 1.6 V
（b）-1.16 V
（c） 2.04 V
（d） 1.24 V
4. एक प्रथम कोटि की अभिक्रिया को 50% पूर्ण होने में 30 मिनट लगते हैं । वेग स्थिरांक k का मान होगा :
(a) $2.5 \times 10^{-3} \mathrm{~min}^{-1}$
(b) $2.75 \times 10^{-4} \mathrm{~min}^{-1}$
(c) $1.25 \times 10^{-3} \mathrm{~min}^{-1}$
(d) $2.31 \times 10^{-3} \mathrm{~min}^{-1}$
5. निम्नलिखित में से कौन-सा सबसे कम क्षारकीय है ?
(a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(b) NH_{3}
(c)

(d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
6. ऐल्कोहॉली माध्यम में NaOH और Br_{2} के साथ $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ अभिक्रिया करके देता है :
(a) $\mathrm{CH}_{3} \mathrm{COONa}$
(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
7. अभिक्रिया $\mathrm{R}-\mathrm{OH}+\mathrm{HCl} \xrightarrow{\mathrm{ZnCl}_{2}} \mathrm{RCl}+\mathrm{H}_{2} \mathrm{O}$ में ऐल्कोहॉल की अभिक्रियाशीलता का सही क्रम क्या है ?
(a) $1^{\circ}<2^{\circ}<3^{\circ}$
(b) $1^{\circ}>3^{\circ}>2^{\circ}$
(c) $1^{\circ}>2^{\circ}>3^{\circ}$
(d) $3^{\circ}>1^{\circ}>2^{\circ}$
8. बहुलकों और प्रोटीनों के मोलर द्रव्यमान निर्धारण के लिए निम्नलिखित में से कौन-सा अणुसंख्य गुणधर्म प्रयुक्त होता है ?
(a) परासरण दाब
(b) हिमांक में अवनमन
(c) वाष्प दाब का आपेक्षिक अवनमन
(d) क्वथनांक का उन्नयन
9. अधिक ऊँचाई वाली जगहों पर रहने वाले लोगों के रुधिर और ऊतकों में ऑक्सीजन सांद्रता निम्न होने का कारण है :
(a) उच्च वायुमंडलीय दाब
(b) निम्न ताप
(c) निम्न वायुमंडलीय दाब
(d) निम्न ताप और उच्च वायुमंडलीय दाब दोनों
4. A first order reaction takes 30 minutes for 50% completion. The value of rate constant k would be :
(a) $2.5 \times 10^{-3} \mathrm{~min}^{-1}$
(b) $2.75 \times 10^{-4} \mathrm{~min}^{-1}$
(c) $1.25 \times 10^{-3} \mathrm{~min}^{-1}$
(d) $2.31 \times 10^{-3} \mathrm{~min}^{-1}$
5. Which of the following is least basic ?
(a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(b) NH_{3}
(c)

(d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
6. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ on reaction with NaOH and Br_{2} in alcoholic medium gives :
(a) $\mathrm{CH}_{3} \mathrm{COONa}$
(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
7. In the reaction $\mathrm{R}-\mathrm{OH}+\mathrm{HCl} \xrightarrow{\mathrm{ZnCl}_{2}} \mathrm{RCl}+\mathrm{H}_{2} \mathrm{O}$, what is the correct order of reactivity of alcohol?
(a) $1^{\circ}<2^{\circ}<3^{\circ}$
(b) $1^{\circ}>3^{\circ}>2^{\circ}$
(c) $1^{\circ}>2^{\circ}>3^{\circ}$
(d) $3^{\circ}>1^{\circ}>2^{\circ}$
8. The colligative property used for the determination of molar mass of polymers and proteins is :
(a) Osmotic pressure
(b) Depression in freezing point
(c) Relative lowering in vapour pressure
(d) Elevation is boiling point
9. Low concentration of oxygen in the blood and tissues of people living at high altitude is due to :
(a) high atmospheric pressure
(b) low temperature
(c) low atmospheric pressure
(d) both low temperature and high atmospheric pressure

10. निम्नलिखित में से कौन-सा उत्प्रेरक से प्रभावित होता है ?
(a) $\Delta \mathrm{H}$
(b) $\Delta \mathrm{G}$
(c) E_{a}
(d) $\Delta \mathrm{S}$
11. यौगिक $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ और $\left[\mathrm{Co}(\mathrm{Br})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$ निरूपित करते हैं :
(a) ध्रुवण समावयवता
(b) बंधनी समावयवता
(c) आयनन समावयवता
(d) उपसहसंयोजन समावयवता
12. ऐल्किल फ्लुओराइड का संश्लेषण सबसे अच्छी तरह से प्राप्त किया जाता है :
(a) मुक्त मूलकों से
(b) स्वार्ट्ज़ अभिक्रिया से
(c) सैंडमायर अभिक्रिया से
(d) फिंकेलस्टीन अभिक्रिया से
13. लैंथेनॉइड की सर्वाधिक सामान्य और स्थायी ऑक्सीकरण अवस्था है :
(a) +2
(b) +3
(c) +4
(d) +6
14. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{h} \nu} 2 \mathrm{HCl}(\mathrm{g})$ के लिए अभिक्रिया कोटि है :
(a) 2
(b) 1
(c) 0
(d) 3

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों $(a),(b),(c)$ और (d) में से चुनकर दीजिए ।
(a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
(b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
(c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है ।
(d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है ।
15. अभिकथन (A) : जलीय विलयन में $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$ की अपेक्षा $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ अधिक क्षारकीय है।
कारण (R) : $\quad\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$ की अपेक्षा $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ में अधिक त्रिविम बाधा एवं +I प्रभाव है ।

10. Which of the following is affected by catalyst ?
(a) $\Delta \mathrm{H}$
(b) $\Delta \mathrm{G}$
(c) E_{a}
(d) $\Delta \mathrm{S}$
11. The compounds $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ and $\left[\mathrm{Co}(\mathrm{Br})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$ represent :
(a) optical isomerism
(b) linkage isomerism
(c) ionisation isomerism
(d) coordination isomerism
12. The synthesis of alkyl fluoride is best obtained from :
(a) Free radicals
(b) Swartz reaction
(c) Sandmeyer reaction
(d) Finkelstein reaction
13. The most common and stable oxidation state of a Lanthanoid is :
(a) +2
(b) +3
(c) +4
(d) +6
14. The order of the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{h} \nu} 2 \mathrm{HCl}(\mathrm{~g}) \text { is : }
$$

(a) 2
(b) 1
(c) 0
(d) 3

For Questions number 15 to 18, two statements are given - one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is true, but Reason (R) is false.
(d) Assertion (A) is false, but Reason (R) is true.
15. Assertion (A): $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ is more basic than $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$ in aqueous solution.
Reason (R) : $\quad \operatorname{In}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$, there is more steric hindrance and +I effect than $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$.

16. अभिकथन (A) : अभिक्रिया $\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{HBr}$ में आण्विकता 2 प्रतीत होती है । कारण (R) : दी हुई प्राथमिक अभिक्रिया में अभिकारकों के दो अणु भाग लेते हैं ।
17. अभिकथन (A) : ऐनिलीन के ऐसीटिलन से एकल प्रतिस्थापित उत्पाद बनता है ।

कारण (R) : $-\mathrm{NHCOCH}_{3}$ समूह का सक्रियण प्रभाव ऐमीनो समूह से अधिक होता है ।
18. अभिकथन (A) : EDTA जल की कठोरता निर्धारण के लिए प्रयुक्त होता है । कारण (R) : EDTA द्विदंतुर लिगन्ड है ।

खण्ड ख

19. 200 g जल में 10 g अवाष्पशील विलेय घोलकर एक विलयन बनाया गया । 308 K पर इसका वाष्प दाब 31.84 mm Hg है । विलेय का मोलर द्रव्यमान परिकलित कीजिए । (308 K पर शुद्ध जल का वाष्प दाब $=32 \mathrm{~mm} \mathrm{Hg}$)
20. संक्षेप में व्याख्या कीजिए :
(क) कार्बिलऐमीन अभिक्रिया
(ख) गैब्रिएल थैलिमाइड संश्लेषण
21. निम्नलिखित के लिए कारण दीजिए :
(क) $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$ युग्म के लिए E° का मान $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$ युग्म अथवा $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ युग्म के मानों से बहुत अधिक धनात्मक होता है ।
(ख) निम्नलिखित समीकरण को पूर्ण कीजिए :

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \longrightarrow
$$

22. (क) दो विद्युत्-अपघट्यों ' A ' और ' B ' का तनुकरण करने पर, ' A ' की $\wedge_{m} 25$ गुना बढ़ती है जबकि B की 1.5 गुना बढ़ती है । इनमें से कौन-सा विद्युत्-अपघट्य प्रबल है ? अपने उत्तर की पुष्टि के लिए ग्राफ खींचिए ।

अथवा

(ख) $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ विलयन के कॉलम का विद्युत प्रतिरोध $5.55 \times 10^{3} \mathrm{ohm}$ है । इसका व्यास 1 cm एवं लम्बाई 50 cm है । इसकी चालकता का परिकलन कीजिए।
16. Assertion (A) : The molecularity of the reaction $\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{HBr}$ appears to be 2 .
Reason (R) : Two molecules of the reactants are involved in the given elementary reaction.
17. Assertion (A) : Acetylation of aniline gives a monosubstituted product. Reason (R) : Activating effect of $-\mathrm{NHCOCH}_{3}$ group is more than that of amino group.
18. Assertion (A) : EDTA is used to determine hardness of water. Reason (R) : EDTA is a bidentate ligand.

SECTION B

19. A solution is prepared by dissolving 10 g of non-volatile solute in 200 g of water. It has a vapour pressure of 31.84 mm Hg at 308 K . Calculate the molar mass of the solute.
(Vapour pressure of pure water at $308 \mathrm{~K}=32 \mathrm{~mm} \mathrm{Hg}$)
20. Explain briefly :
(a) Carbylamine reaction
(b) Gabriel phthalimide synthesis
21. How would you account for :
(a) The E° value for the $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$ couple is much more positive than that for $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$ couple or $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ couple.
(b) Complete the following equation :

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \longrightarrow
$$

22. (a) On diluting two electrolytes ' A ' and ' B ', the \wedge_{m} of ' A ' increases 25 times while that of ' B ' increases by 1.5 times. Which of the two electrolytes is strong ? Justify your answer graphically.

OR

(b) The electrical resistance of a column of $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ solution of diameter 1 cm and length 50 cm is $5.55 \times 10^{3} \mathrm{ohm}$. Calculate the conductivity.
23. (क) निम्नलिखित अभिक्रियाओं के उत्पादों की प्रागुक्ति कीजिए :
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{Cu} / 273 \mathrm{~K}}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{Br}_{2}(\mathrm{aq})}$

अथवा

(ख) निम्नलिखित के लिए कारण दीजिए :
(i) p -मेथिलफ़ीनॉल की अपेक्षा p -नाइट्रोफ़ीनॉल अधिक अम्लीय होता है ।
(ii) NaOCH_{3} के साथ अभिक्रिया करने पर $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$ मुख्य उत्पाद के रूप में ऐल्कीन देता है न कि ईथर ।
24. (क) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow{\mathrm{PCl}_{5}}{ }^{\prime} \mathrm{A}^{\prime} \xrightarrow{\mathrm{AgCN}}{ }^{\prime} \mathrm{B}$ ' OH
(ख)
 उपर्युक्त अभिक्रियाओं में ' A ' और ' B ' को पहचानिए ।
25. प्रोटीन के विकृतीकरण को परिभाषित कीजिए। प्रोटीन की संरचना पर विकृतीकरण का क्या प्रभाव होता है ?

खण्ड ग

26. कारण दीजिए :
(क) प्रोटीनों और बहुलकों जैसे वृहदाणुओं के मोलर द्रव्यमान निर्धारण करने के लिए परासरण दाब की मापन विधि को वरीयता दी जाती है।
(ख) जलीय प्राणियों के लिए गर्म जल की तुलना में ठंडे जल में रहना अधिक आरामदायक होता है ।
(ग) 1 M शर्करा विलयन की तुलना में 1 M KCl विलयन के क्वथनांक का उन्नयन लगभग दुगुना होता है ।
27. (a) Predict the products of the following reactions :

$$
2 \times 1=2
$$

(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{Cu} / 273 \mathrm{~K}}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{Br}_{2}(\mathrm{aq})}$

OR

(b) Give reasons for the following :

$$
2 \times 1=2
$$

(i) p-nitrophenol is more acidic than p-methylphenol.
(ii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$ on reaction with NaOCH_{3} gives alkene as the main product and not an ether.
24.

(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{KOH} \xrightarrow{\text { ethanol }}{ }^{\prime} \mathrm{A}^{\prime} \xrightarrow{\mathrm{HBr}}{ }^{\prime} \mathrm{B}^{\prime}$

Identify ' A ' and ' B ' in the above reactions.
25. Define denaturation of protein. What is the effect of denaturation on the structure of protein?

SECTION C

26. Give reason :
(a) Measurement of osmotic pressure method is preferred for the determination of molar masses of macromolecules such as proteins and polymers.
(b) Aquatic animals are more comfortable in cold water than in warm water.
(c) Elevation of boiling point of 1 M KCl solution is nearly double than that of 1 M sugar solution.
27. निम्नलिखित अभिक्रियाएँ पूर्ण कीजिए :
(क) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[\Delta]{\text { ऐल्कोहॉली } \mathrm{KOH}}(\mathrm{A}) \xrightarrow{\mathrm{HBr}}(\mathrm{B})$
(ख) $(\mathrm{A}) \xrightarrow{\mathrm{SOCl}_{2}}$ (B) $\mathrm{Na}^{\mathrm{Na} \text { ईथर }}$ (C)
28. आप निम्नलिखित रूपान्तरण कैसे करेंगे : (कोई तीन)
(क) फ़ीनॉल से 2 -हाइड्रॉक्सीबेन्ज़ैल्डिहाइड
(ख) ऐनिसोल से 2 -मेथॉक्सीऐसीटोफ़ीनोन
(ग) प्रोपीन से प्रोपेन-2-ऑल
(घ) एथेनॉल से ऐथेनैल
29. (क) (i) लैक्टोस, (ii) माल्टोस के जल-अपघटन के उत्पाद क्या हैं ?
(ख) स्टार्च और सेलुलोस के मध्य मूलभूत संरचनात्मक अंतर दीजिए ।
30. (क) व्याख्या कीजिए क्यों :
(i) बेन्ज़ोइक अम्ल में कार्बोक्सिल समूह मेटा निर्देशक होता है ।
(ii) ऐल्डिहाइडों और कीटोनों के परिष्करण के लिए सोडियम बाइसल्फाइट प्रयुक्त किया जाता है ।
(iii) कार्बोक्सिलिक अम्ल, कार्बोनिल समूह की अभिलक्षणिक अभिक्रियाएँ नहीं देते हैं ।

अथवा

(ख) एक कार्बनिक यौगिक ' A ' जिसका अणुसूत्र $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ है, 573 K पर Cu के साथ अभिक्रियित करने पर ' B ' देता है । ' B ' फेलिंग विलयन को अपचित नहीं करता है लेकिन $\mathrm{I}_{2} / \mathrm{NaOH}$ के साथ यौगिक ' C ' का पीला अवक्षेप देता है । A, B और C संरचनाओं का निगमन कीजिए।
27. Complete the following reactions :

$$
1 \frac{1}{2}+1 \frac{1}{2}=3
$$

(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[\Delta]{\text { Alc. } \mathrm{KOH}}(\mathrm{A}) \xrightarrow{\mathrm{HBr}}$ (B)
(b) (A) $\xrightarrow{\mathrm{SOCl}_{2}}$ (B) $\xrightarrow{\stackrel{\mathrm{Na} / \text { Ether }}{\mathrm{NaOCH}_{3}} \text { 2-Methoxypropane }}$
28. How do you convert the following : (Any three)
(a) Phenol to 2-Hydroxybenzaldehyde
(b) Anisole to 2-Methoxyacetophenone
(c) Propene to Propan-2-ol
(d) Ethanol to Ethanal
29. (a) What are the hydrolysis products of (i) Lactose, (ii) Maltose?
(b) Give the basic structural difference between starch and cellulose.
30. (a) Explain why:
(i) Carboxyl group in benzoic acid is meta directing.
(ii) Sodium bisulphite is used for the purification of aldehydes and ketones.
(iii) Carboxylic acids do not give characteristic reactions of carbonyl group.

OR

(b) An organic compound ' A ', having the molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ on treatment with Cu at 573 K , gives ' B '. ' B ' does not reduce Fehling's solution but gives a yellow precipitate of the compound 'C' with $\mathrm{I}_{2} / \mathrm{NaOH}$. Deduce the structures of A, B and C.

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं / केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।
31. उपसहसंयोजन यौगिकों में धातुएँ दो प्रकार की संयोजकताएँ, प्राथमिक और द्वितीयक, प्रदर्शित करती हैं । प्राथमिक संयोजकताएँ आयननीय होती हैं तथा ऋणात्मक आवेशित आयनों द्वारा संतुष्ट होती हैं । द्वितीयक संयोजकताएँ अन-आयननीय होती हैं और एकाकी इलेक्ट्रॉन युग्म युक्त उदासीन अथवा ऋणात्मक आयनों द्वारा संतुष्ट होती हैं। प्राथमिक संयोजकताएँ अदिशिक होती हैं जबकि द्वितीयक संयोजकताएँ संकुल की आकृति निर्धारित करती हैं ।
(i) यदि $\mathrm{PtCl}_{2}, 2 \mathrm{NH}_{3}, \mathrm{AgNO}_{3}$ के साथ अभिक्रिया नहीं करता है, तो इसका सूत्र क्या होगा ?
(ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ की द्वितीयक संयोजकता क्या है ?
(iii) (1) आयरन(III)हैक्सासायनिडोफेरेट(II) का सूत्र लिखिए ।
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ का आई.यू.पी.ए.सी. नाम लिखिए ।

अथवा

(iii) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ का संकरण एवं चुम्बकीय व्यवहार लिखिए । [परमाणु संख्या : $\mathrm{Ni}=28$]
32. अभिक्रिया वेग, इकाई समय में अभिकारकों की सांद्रता घटने अथवा उत्पादों की सांद्रता वृद्धि से संबंधित होता है । इसे किसी क्षण विशेष पर तातक्षणिक वेग के रूप में और किसी दीर्घ समय अंतराल में औसत वेग से प्रदर्शित किया जा सकता है । अभिक्रिया वेग के गणितीय निरूपण को वेग नियम कहते हैं । वेग स्थिरांक एवं अभिक्रिया की कोटि का निर्धारण वेग नियम अथवा समाकलित वेग समीकरण द्वारा कर सकते हैं।

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.
31. In coordination compounds, metals show two types of linkages, primary and secondary. Primary valencies are ionisable and are satisfied by negatively charged ions. Secondary valencies are non-ionisable and are satisfied by neutral or negative ions having lone pair of electrons. Primary valencies are non-directional while secondary valencies decide the shape of the complexes.
(i) If $\mathrm{PtCl}_{2} \cdot 2 \mathrm{NH}_{3}$ does not react with AgNO_{3}, what will be its formula?
(ii) What is the secondary valency of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$?
(iii) (1) Write the formula of Iron(III)hexacyanidoferrate(II).
(2) Write the IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$.

OR

(iii) Write the hybridization and magnetic behaviour of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$.
[Atomic number : $\mathrm{Ni}=28$]
32. The rate of reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. Mathematical representation of rate of reaction is given by rate law. Rate constant and order of a reaction can be determined from rate law or its integrated rate equation.
P.T.O.
(i) औसत अभिक्रिया वेग क्या होता है ?
(ii) दो कारक लिखिए जो अभिक्रिया की दर को प्रभावित करते हैं । 1
(iii) (1) शून्य कोटि की अभिक्रिया के लिए अभिक्रिया वेग को क्या होता है ?
(2) शून्य कोटि की अभिक्रिया के लिए k की इकाई क्या है ? $2 \times 1=2$

अथवा

(iii) (1) एक अभिक्रिया $\mathrm{P}+2 \mathrm{Q} \longrightarrow$ उत्पाद के लिए वेग $=\mathrm{k}[\mathrm{P}]^{1 / 2}[\mathrm{Q}]^{1}$ है । अभिक्रिया की कोटि क्या है ?
(2) एक उदाहरण सहित छद्म प्रथम कोटि अभिक्रिया को परिभाषित कीजिए। $2 \times 1=2$

खण्ड ङ

33. निम्नलिखित प्रत्येक के लिए कारण दीजिए :
(i) संक्रमण तत्त्वों की 3 d श्रेणी में से मैंगनीज़ +7 की उच्चतम ऑक्सीकरण अवस्था प्रदर्शित करता है।
(ii) संक्रमण धातुएँ और उनके यौगिक रासायनिक अभिक्रियाओं में सामान्यत: अच्छे उत्प्रेरक होते हैं ।
(iii) Cr^{2+} अपचायक प्रकृति का है जबकि उसी d -कक्षक विन्यास $\left(\mathrm{d}^{4}\right)$ का Mn^{3+} एक ऑक्सीकारक है ।
(iv) Zn की कणन एन्थैल्पी न्यूनतम होती है।
(v) जलीय विलयन में Cu^{+}अस्थायी होता है ।
34. (क) (i) निम्नलिखित रूपान्तरणों को सम्पन्न कीजिए :
(1) एथेनैल से ब्यूट- 2 -ईन-1-अल
(2) प्रोपेनॉइक अम्ल से 2 -क्लोरोप्रोपेनॉइक अम्ल
(ii) $\mathrm{C}_{5} \mathrm{H}_{10}$ अणुसूत्र वाला एक ऐल्कीन ओज़ोनी-अपघटन से दो यौगिकों ' B ' और ' C ' का मिश्रण देता है । यौगिक ' B ' धनात्मक फेलिंग परीक्षण देता है और I_{2} तथा NaOH विलयन के साथ भी अभिक्रिया करता है । यौगिक ' C ' फेलिंग विलयन परीक्षण नहीं देता लेकिन आयोडोफॉर्म निर्मित करता है । यौगिक ' A ', ' B ' और ' C ' को पहचानिए ।
(i) What is average rate of reaction?
(ii) Write two factors that affect the rate of reaction.
(iii) (1) What happens to rate of reaction for zero order reaction?
(2) What is the unit of k for zero order reaction?

OR

(iii) (1) For a reaction $\mathrm{P}+2 \mathrm{Q} \longrightarrow$ Products Rate $=\mathrm{k}[\mathrm{P}]^{1 / 2}[\mathrm{Q}]^{1}$. What is the order of the reaction?
(2) Define pseudo first order reaction with an example. $2 \times 1=2$

SECTION E

33. Assign reason for each of the following :
(i) Manganese exhibits the highest oxidation state of +7 among the 3d series of transition elements.
(ii) Transition metals and their compounds are generally found to be good catalysts in chemical reactions.
(iii) Cr^{2+} is reducing in nature while with the same d-orbital configuration (d^{4}) Mn^{3+} is an oxidising agent.
(iv) Zn has lowest enthalpy of atomization.
(v) Cu^{+}is unstable in an aqueous solution.
34. (a) (i) Carry out the following conversions :
(1) Ethanal to But-2-en-1-al
(2) Propanoic acid to 2-chloropropanoic acid
(ii) An alkene with molecular formula $\mathrm{C}_{5} \mathrm{H}_{10}$ on ozonolysis gives a mixture of two compounds ' B ' and ' C '. Compound ' B ' gives positive Fehling test and also reacts with iodine and NaOH solution. Compound 'C' does not give Fehling solution test but forms iodoform. Identify the compounds ' A ', B ' and ' C '.
P.T.O.
(ख) (i) उपयुक्त रासायनिक परीक्षण से विभेद कीजिए :
(1) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ और $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(2) एथेनैल और ऐथेनॉइक अम्ल
(ii) ऐसीटोन के ऑक्सिम की संरचना लिखिए ।
(iii) A से D को पहचानिए । $2+1+2=5$

35. (क) (i) आयनों के स्वतंत्र अभिगमन का कोलराऊश नियम लिखिए । कोलराऊश नियम के अनुसार अनंत तनुता पर ऐसीटिक अम्ल की मोलर चालकता के लिए व्यंजक लिखिए।
(ii) 298 K पर दी गई अभिक्रिया के लिए अधिकतम कार्य और $\log \mathrm{K}_{\mathrm{c}}$ परिकलित कीजिए :

$$
\mathrm{Ni}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
$$

दिया गया है : $\quad \mathrm{E}_{\mathrm{Ni}}{ }^{\circ}{ }^{2+} / \mathrm{Ni}=-0.25 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=+0.80 \mathrm{~V}$

$$
1 \mathrm{~F}=96500 \mathrm{C} \mathrm{~mol}^{-1}
$$

अथवा

(ख) (i) फैराडे के विद्युत्-अपघटन का प्रथम नियम लिखिए । 1 मोल Cu^{2+} को Cu में अपचयित करने के लिए फैराडे के पदों में कितना आवेश आवश्यक होगा ?
(ii) 298 K पर निम्नलिखित सेल का विद्युत्-वाहक बल (emf) परिकलित कीजिए :
$\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(0.1 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.01 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$

$$
\left[\mathrm{E}_{\text {सेल }}^{\circ}=+2.71 \mathrm{~V}, \quad 1 \mathrm{~F}=96500 \mathrm{C} \mathrm{~mol}^{-1}, \quad \log 10=1\right] \quad 2+3=5
$$

(b) (i) Distinguish with a suitable chemical test :
(1) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(2) Ethanal and Ethanoic acid
(ii) Write the structure of oxime of acetone.
(iii) Identify A to D. $2+1+2=5$

35. (a) (i) State Kohlrausch's law of independent migration of ions. Write an expression for the molar conductivity of acetic acid at infinite dilution according to Kohlrausch's law.
(ii) Calculate the maximum work and $\log \mathrm{K}_{\mathrm{c}}$ for the given reaction at 298 K :

$$
\mathrm{Ni}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
$$

Given : $\quad \mathrm{E}_{\mathrm{Ni}^{2+} / \mathrm{Ni}}^{\circ}=-0.25 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=+0.80 \mathrm{~V}$

$$
1 \mathrm{~F}=96500 \mathrm{C} \mathrm{~mol}^{-1}
$$

OR

(b) (i) State Faraday's first law of electrolysis. How much charge, in terms of Faraday, is required for the reduction of $1 \mathrm{~mol} \mathrm{Cu}^{2+}$ to Cu ?
(ii) Calculate emf of the following cell at 298 K for

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})\left|\mathrm{Mg}^{2+}(0.1 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.01 \mathrm{M})\right| \mathrm{Cu}(\mathrm{~s}) \\
& {\left[\mathrm{E}_{\text {cell }}^{\circ}=+2 \cdot 71 \mathrm{~V}, \quad 1 \mathrm{~F}=96500 \mathrm{C} \mathrm{~mol}^{-1}, \quad \log 10=1\right] \quad 2+3=5}
\end{aligned}
$$

	$\quad$$\quad$ Marking Scheme Strictly Confidential
Senior Snernal and Restricted use only)	
General Instructions: -	

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:- - Leaving answer or part thereof unassessed in an answer book. - Giving more marks for an answer than assigned to it. - Wrong totaling of marks awarded on an answer. - Wrong transfer of marks from the inside pages of the answer book to the title page. - Wrong question wise totaling on the title page. - Wrong totaling of marks of the two columns on the title page. - Wrong grand total. - Marks in words and figures not tallying/not same. - Wrong transfer of marks from the answer book to online award list. - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

Senior Secondary School Examination, 2023
CHEMISTRY (Subject Code-043)
[Paper Code: 56/1/2]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(c)	1
2.	(c) / Award full mark if attempted (Printing error)	1
3.	(d)	1
4.	(d) / Full mark to be awarded for any option.	1
5.	(c)	1
6.	(b)	1
7.	(a)	1
8.	(a)	1
9.	(c)	1
10.	(c)	1
11.	(c)	1
12.	(b)	1
13.	(b)	1
14.	(c) / Full mark to be awarded for any option	1
15.	(c)	1
16.	(a)	1
17.	(c)	1
18.	(c)	1
	SECTION-B	
19.	$\frac{\mathrm{pA}^{\circ}-\mathrm{p}_{\mathrm{A}}}{\mathrm{PA}^{\circ}}=\frac{\frac{\mathrm{w}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{A}}}}{\frac{\mathrm{w}_{A}}{\mathrm{M}_{\mathrm{A}}}+\frac{\mathrm{W}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{B}}}}=\frac{\frac{\mathrm{W}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{B}}}}{\frac{\mathrm{w}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{A}}}}$	1/2

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{gathered}
\frac{32-31.84}{32}=\frac{\frac{\mathbf{1 0}}{\mathbf{M}_{\mathbf{B}}}}{\frac{20 \mathbf{0}}{\mathbf{1 8}}} \\
\frac{0.16}{32}=\frac{10}{\mathrm{M}_{\mathrm{B}}} \times \frac{18}{200} \\
\mathrm{M}_{\mathrm{B}}=180 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$ \& 1

1

\hline 20. \& | (a) Aliphatic and aromatic primary amines on heating with chloroform and ethanolic potassium hydroxide form isocyanides or carbylamines which are foulsmelling substances. / $\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\text { Heat }} \mathrm{R}-\mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| Isocyanide with an offensive smell is formed. |
| (Explanation or reaction) |
| (b) Phthalimide on treatment with ethanolic potassium hydroxide forms potassium salt of phthalimide which on heating with alkyl halide followed by alkaline hydrolysis produces the corresponding primary amine / |
| Phthalimide |
| (Explanation or reaction) | \& 1

\hline 21. \& | (a) Mn^{3+} changes to Mn^{2+} stable half-filled d ${ }^{5}$ configuration / much larger third ionization enthalpy of Mn whereas Cr^{3+} and Fe^{3+} have stable configuration. |
| :--- |
| (b) $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ | \& 1

1

\hline 22. \& \& 1

1

\hline \& OR \&

\hline
\end{tabular}

	$\begin{aligned} \mathrm{A}=\pi \mathrm{r}^{2} & =3.14 \times(0.5)^{2}=0.785 \mathrm{~cm}^{2}, \ell=50 \mathrm{~cm} \\ \mathrm{k} & =\frac{\ell}{R \times A} \\ & =\frac{50}{0.785 \times\left(5.55 \times 10^{3}\right)} \\ & =\mathbf{1 1 . 4 7 \times 1 0 ^ { - 3 } \mathrm { S } \mathrm { cm } ^ { - 1 }} \end{aligned}$ (or by any other correct method)	$1 / 2$ 1 $1 / 2$
23.	(a) (i) No reaction possible at $273 \mathrm{~K} / \mathrm{CH}_{3} \mathrm{CHO}$ at 573 K (ii)	1
	OR	
	(b) (i) $-\mathrm{NO}_{2}$ group is electron withdrawing (-R /-I effect) while $-\mathrm{CH}_{3}$ is electron releasing group / conjugate base of p-nitrophenoxide ion is more resonace stabilised. (ii) $\mathrm{CH}_{3} \mathrm{ONa}$ is not only a good nucleophile but a strong base as well which favours the elimination reaction of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ - Br rather than substitution.	1
24.	(a) $\mathrm{A}=$ $\mathrm{B}=$ / Isopropyl isocyanide / Propan-2-isonitrile (b) $\mathrm{A}=\mathrm{CH}_{3}-\mathbf{C H}=\mathbf{C H}_{2} \quad /$ Propene	$1 / 2 \times 4$
25.	When a protein is subjected to a change in temperature or chemical change then it loses its biological activity. 2° and 3° structures are destroyed but 1° structure remains intact.	1 1
	SECTION-C	
26.	(a) Osmotic pressure is measured at room temperature / molarity of the solution is used instead of molality / as compared to other colligative properties its magnitude is large even for a very dilute solution. (b) Solubility of oxygen is higher at a lower temperature. (c) KCl being strong electrolyte dissociates into two moles of ions but sugar will not dissociate/ for $\mathrm{KCl}, \mathrm{i}=2$ and for sugar, $\mathrm{i}=1$.	1×3

27.	(a) $(\mathrm{A})=\mathbf{C H}_{3}-\mathbf{C H}=\mathbf{C H}_{2}$, (B) $=$ (b) $(\mathrm{A})=$ $(B)=$ $(B)=$	1 $1 / 2$
28.	(a) (b) (c) (d) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3}-\mathrm{CHO}$	1×3
29.	(a) (i) Glucose and Galactose (ii) Glucose and Glucose (b) Starch is a polymer of α-glucose while cellulose is a polymer of β-glucose (or any other correct structural difference)	$1+1$ 1
30.	(a) (i) because it is an electron-withdrawing group / deactivating group / -R effect, electrophilic substitution takes place at the m-position. (ii) because aldehydes \& ketones form an addition compound with NaHSO_{3} which on hydrolysis forms pure aldehydes \& ketones. (iii) Due to resonance, carboxylic carbon becomes less electrophilic.	1×3
	OR (b) (A) (B) (C) (or explanation with correct structures of A, B, and C)	1×3

\begin{tabular}{|c|c|c|}
\hline \& SECTION-D \& \\
\hline 31. \& \begin{tabular}{l}
(i) \(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]\) \\
(ii) 6 \\
(iii) (1) \(\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}\) \\
(2) Pentamminechloridocobalt(III) chloride. OR \\
(iii) \(\mathrm{dsp}^{2}\), diamagnetic
\end{tabular} \& \begin{tabular}{l}
1
1 \\
1,1 \\
1,1
\end{tabular} \\
\hline 32. \& \begin{tabular}{l}
(i) Change in the concentration of a reactant or product per unit time. \\
(ii) Concentration of reactants, Surface area, catalyst and temperature (any two). \\
(iii) (1) rate is independent of the concentration of reactant(s)/rate remains constant \(/\) rate \(=k\) \\
(2) \(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\) \\
OR \\
(iii) (1) \(3 / 2 \quad / 1.5\) \\
(2) A reaction that appears to be of higher order but follows first-order kinetics. Example: Hydrolysis of an ester. (or any other correct example)
\end{tabular} \& \begin{tabular}{l}
1 \\
1
\[
1+1
\] \\
1
\[
1 / 2,1 / 2
\]
\end{tabular} \\
\hline \& SECTION-E \& \\
\hline 33. \& \begin{tabular}{l}
(i) Due to the participation of all 3d and 4s electrons in bond formation /due to the presence of maximum number of unpaired electrons. \\
(ii) Due to variable oxidation state / due to the ability to adopt multiple oxidation states / due to the large surface area / due to complex formation. \\
(iii) \(\mathrm{Cr}^{2+}\) changes from \(\mathrm{d}^{4}\) to stable half-filled \(\mathrm{t}_{2 \mathrm{~g}}{ }^{3}\) configuration while \(\mathrm{Mn}^{3+}\) changes to stable half-filled \(\mathrm{d}^{5}\) configuration. \\
(iv) Due to the absence of unpaired electrons and weak interatomic interactions. \\
(v) \(\mathrm{Cu}^{+}\)ion (aq.) undergoes disproportionation to \(\mathrm{Cu}^{2+}\) (aq.) and Cu /
\[
2 \mathrm{Cu}^{+} \text {(aq.) } \longrightarrow \mathrm{Cu}^{2+} \text { (aq.) }+\mathrm{Cu} \text { (s) }
\]
\end{tabular} \& 1
1
1
1
1
1 \\
\hline 34. \& \begin{tabular}{l}
(a) (i) \\
(1) \\
(2) \\
(ii)
\end{tabular} \& 1

1
1

\hline
\end{tabular}

	OR (b) (i) (1) Add Iodine $\left(\mathrm{I}_{2}\right), \mathrm{NaOH}$, and heat both the test tubes containing the given organic compounds. Butanone gives yellow precipitate $\left(\mathrm{CHI}_{3}\right)$ while butanal will not give the positive iodoform test. (2) Add NaHCO_{3} in both the test tube containing the given organic compounds. Ethanoic acid will give brisk effervescence of CO_{2} and ethanal will not. (ii) (iii) $\mathrm{A}=\mathrm{CH}_{3} \mathbf{C O C l}, \quad \mathrm{~B}=\mathbf{C H}_{3} \mathrm{CHO}, \quad \mathrm{C}=\left(\mathbf{C H}_{3}\right)_{2} \mathbf{C H}(\mathbf{O H}), \quad \mathrm{D}=\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{OH}$	1 1 $1 / 2 \times 4$
35.	(a) (i) Limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. (ii) $\begin{aligned} & \Delta_{\mathrm{r}} \mathrm{G}^{\circ}=-\mathrm{nFE}_{\text {cell }}^{\circ} \\ & \text { Maximum work }=-\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=\mathrm{nFE}_{\text {cell }}^{\circ} \\ & =2 \times 96500 \mathrm{C} \mathrm{~mol}^{-1} \times(0.80+0.25) \mathrm{V} \\ & =2 \times 96500 \times 1.05 \mathrm{~J} \mathrm{~mol}^{-1} \\ & = \\ & \log \mathrm{K}_{\mathrm{C}}= \\ & \frac{\mathrm{nE}_{\text {cell }}^{\circ}}{0.059} \\ & =\frac{2 \times 1.05}{0.059}=35.6 \end{aligned}$ OR (b) (i) It states that the mass of a substance deposited /liberated at the electrodes is directly proportional to the charge/quantity of electricity passed through the electrolyte. 2 F charge is required. (ii) $\begin{aligned} & \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.0591}{2} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\ & =2.71 \mathrm{~V}-\frac{0.0591}{2} \log \frac{0.1}{0.01} \\ & =2.71 \mathrm{~V}-\frac{0.0591}{2} \log 10 \\ & =2.71 \mathrm{~V}-0.0295 \end{aligned}$ $=2.68 \mathrm{~V}$. (Deduct $1 / 2$ mark for no or incorrect unit)	1 1 1 1 $1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$ 1 1 1 1 1

