

CAT Geometry Formulas

Plane Figures

Figure	Perimeter	Area	
Triangle	=a+b+c	$\sqrt{s(s-a)(s-b)(s-c)} \frac{1}{2}bh$	a h b
Peri Right angled triangle meter	$\frac{a+b+}{\sqrt{a^2+b^2}}$	$\frac{l}{2}ab$	a b b
Equilateral triangle	3а	$\frac{\sqrt{3}}{4}a^2$	a $\frac{1}{3}a$ $\frac{1}{2}a$ a
Isoceles triangle	2a + b	$\frac{b}{4}\sqrt{4a^2-b^2}$	a ha b
Circle	2πr	π1 ²	<i>;</i>
Sector of a circle	$\frac{\theta}{360} \times 2\pi r + 2r$ (θ is in degrees)r	$\frac{\theta}{360} \times \pi^{2}$	7 00 7
Square	4 <i>a</i>	a ²	a a a
Rectangle	2(<i>l</i> + <i>b</i>)	lb	b
Trapezium	a+b+c+d	$\frac{l}{2}(a+b)h$	c h d b
Parallelogram	2(a + b)	$\frac{l}{2}absin\theta$ bh or $\frac{l}{2}$	a h a θ b

Solids

Figure	Lateral Surface Area	Total Surface Area	Volume	
Cube	4 <i>a</i> ²	6 <i>a</i> ²	a ³	a
Cuboid	2h(l+b)	2(<i>lb</i> + <i>bh</i> + <i>lh</i>)	lbh	h l
Cylinder	2π <i>r</i> b	$2\pi r(r+h)$	πr ² h	h
Cone	πrl	$\pi r(l+r)$	$\frac{l}{3}\pi r^2h$	h
Sphere	_	4πr ²	$\frac{4}{3}\pi r^3$	-
Hemisphere	2π	3πr ²	² / _{3 π} , ³	(1)
Right prism (i) Equilateral triangular prism	3ah	$3ah + \frac{\sqrt{3}}{2}a^2$	$\frac{\sqrt{3}}{4}a^2h$	a a h a
(ii) Square prism	4ah	2ah (2h + a)	a²h	a h
(iii) Hexagonal Prism	6ah	$\int_{3a} \left[\frac{\sqrt{3}}{2} a + 2h \right]$	$\frac{3\sqrt{3a^2}h}{2}$	h

Frustum of a cone	$\pi l(\mathbf{R}+r)$ $l = \sqrt{(R-r)^2 + h^2}$	$\pi(R^2 + r^2 + Rl + rl)$	$\frac{l}{3}\pi h(R^2+Rr+r^2)$	h R
Frustum of a Pyramid	$\frac{I}{2}$ × Perimeter of base × Slant height	L.S.A + A ₁ + A ₂	$\frac{l}{2}h$ $(A_{I} + A_{2} + \sqrt{A_{I}A_{2}})$	A1 A2
Torus	Frustum of a cone	4π ² rα	2π ² r ² a	Ę

NOTE: (3.14) is an approximation of pi.

Coordinate Geometry

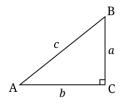
The Distance Between Two Points A and B:

• $AB^2 = (Bx - Ax)^2 + (By - Ay)^2$

The Equation of a Line Using One Point and the Gradient

The equation of a line that has gradient m and which passes through the point (x1, y1) is:

• y - y1 = m(x - x1)


The Midpoint of a Line Joining Two Points

The midpoint of the line joining the points (x1, y1) and (x2, y2) is:

• $[\frac{1}{2}(x1 + x2), \frac{1}{2}(y1 + y2)]$

Trigonometry

- sin A = Perpendicular / Hypoteneuse = a / c
- cos A = Base / Hypoteneuse = b / c
- tan A = Perpendicular / Base = a / b
- cot A = 1 / tan A
- sec A = 1 / cos A
- $\operatorname{cosec} A = 1 / \sin A$

Trigonometric Identities:

- Sine=Opposite/Hypotenuse
- Cosine=Adjacent/Hypotenuse
- Tangent=Opposite/Adjacent
- Secant=Hypotenuse/Adjacent
- Co-Secant=Hypotenuse/Opposite
- Co-Tangent=Adjacent/Opposite

The reciprocal identities:

- sinΘ=1/CosecΘ
- cosΘ=1/secΘ
- tanΘ=1/cotΘ
- Cosec Θ =1/sin Θ
- secΘ=1/cosΘ
- cotΘ=1/tanΘ