GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION ALTO BETIM, BARDEZ – GOA

Revised Syllabus For the Academic Year 2024 - 2025

Subject : Physics

Subject Code : 4702

Class : XII

Following table gives the section wise content which have been deleted for the

Academic Year 2024 – 25

Sections are as per the NCERT books, PHYSICS Part I and II

Published by the Goa Board of Secondary and Higher Secondary Education,

Print Edition – 2020 (Reprint - 2021)

Chapter	Page No.	Remarks
Chapter 1: Electric Charges and Fields	1 -7	1.2 Electric Charge (delete only activity with paper strips and making electroscope)
		1.3 Conductors and Insulators (delete only concept of earthing)
		1.4 Charging by induction (delete)
	47 – 50	Exercises 1.13, 1.25 – 1.34 (delete)
Chapter 2: Electrostatic Potential and Capacitance	55 - 58	 2.4 Potential due to an Electric Dipole (delete only derivation) 2.5 Potential due to a System of Charges (delete only derivation)
	80	2.15 Energy Stored in a Capacitor (delete only derivation)
	87 - 92	Exercises 2.12 – 2.36 (delete)
Chapter 3: Current Electricity	97 - 99	3.5 Drift of Electrons and the Origin of Resistivity (delete only derivation)
	101 – 103	3.7 Resistivity of various materials (delete Tables 3.1 and 3.2 and Carbon code for carbon resistor)

	107 – 109	3.10 Combinations of Resistors – Series
		and Parallel (delete only derivation)
	120 - 123	3.15 Meter Bridge (delete)
	120 - 123	3.16 Potentiometer (delete)
	127 - 131	Exercises 3.10, 3.12, 3.14 – 3.23 (delete)
Chapter 4:	135	Table 4.1(delete)
Moving Charges and Magnetism	140 - 142	4.4.1 Velocity Selector (delete) 4.4.2 Cyclotron (delete)
	152 - 153	4.8.2 The Toroid (delete)
	162 -163	4.10.3 The magnetic Dipole Moment of a Revolving Electron (delete)
	170 - 172	Exercises 4.14 – 4.28 (delete)
Chapter 5: Magnetism and Matter	176 – 179	5.2.2 Bar magnet as an equivalent Solenoid (delete only derivation)
		5.2.3 Dipole in a Uniform Magnetic Field (delete only derivation)
	180	Example 5.4 (delete)
	185 – 188	5.4 Earth's Magnetism (delete) 5.4.1 Magnetic Declination and Dip (delete)
	189 – 190	5.5 Magnetisation and Magnetic Intensity (delete only derivation)
	191	Table 5.2 (delete)
	192 – 196	5.6.2 Paramagnetism (delete only Curie's Law)
		5.6.3 Ferromagnetism (delete only Curie's temperature; and Hysterises) 5.7 Permanent Magnets and Electromagnets (delete)
	200 - 203	Exercises 5.1, 5.2, 5.9 – 5.11, 5.13 – 5.25 (delete)
Chapter 6:	215 - 219	6.7 Energy Consideration : A Quantitative
Electromagnetic Induction		study (delete)
Eactromagnetic induction		6.8 Eddy Currents (delete)

	220 - 224	 6.9.1 Mutual Inductance (delete only derivation) 6.9.2 Self Inductance (delete only derivation)
	230 - 232	Exercises 6.6, 6.10 – 6.17 (delete)
Chapter 7: Alternating Current	240	Figure 7.7 Magnetisation and Demagnetisation of an inductor (delete)
	243	Figure 7.10 Charging and discharging of a capacitor(delete)
	246 - 247	7.6.2 Analytical Solution (delete)
	248 – 251	7.6.3 Resonance (delete only Sharpness of Resonance)
	255 – 259	7.8 LC Oscillations (delete)
	266 - 268	Exercises 7.6, 7.8, 7.10, 7.12 – 7.26 (delete)
Chapter 8:	270 - 272	8.2 Displacement Current (delete only derivation)
Electromagnetic Waves	273 – 274	Example 8.1 (delete)
	275 - 277	8.3.2 Nature of Electromagnetic Waves (delete only about ether and page 277)
	279 - 280	Example 8.4 and 8.5 (delete)
	287	Exercises 8.11 – 8.15 (delete)
Chapter 9: Ray Optics and Optical	314	9.3 Refraction (delete only advanced sunrise and delayed sunset)
Instruments	319 - 320	9.4.1(i) Mirage (delete) 9.4.2 (ii) Diamond (delete)
	330 - 332	9.7 Some Natural Phenomena due toSunlight (delete)9.7.1 The Rainbow (delete)
	333- 339	 9.7.1 The Kambow (delete) 9.7.2 Scattering of light (delete) 9.8.1 The Microscope (delete only derivation) 9.8.2 Telescope (delete only derivation)
	344	Exercise 9.18 (delete)
Chapter 10:	354 - 355	10.3.4 The Doppler Effect (delete)
Wave Optics	355	Example 10.1(delete)

	1	
	358 - 362	10.5 Interference of Light Waves and Young's Experiment (retain the final expression for dark and bright fringes but delete the derivation; delete expression for
		fringe width)
	363 - 367	10.6.1 The single Slit (delete the derivation)
	368 - 371	10.6.3 Resolving Power of Optical Instruments (delete) 10.6.4 The Validity of ray Optics (delete)
	375 – 377	10.7.1 Polarisation by Scattering (delete) 10.7.2 Polarisation by Reflection (delete)
	379 - 381	Exercises 10.7 – 10.21
Chapter 11:	373-381	Table 11.1 (delete)
Dual Nature of Matter and Radiation	384 - 385	11.3.1 Hertz's Observations (only qualitative treatment)
		11.3.2 Hallwachs' and Lenard's
		Observations (only qualitative treatment)
	393	Example 11.3 (delete)
	394 – 400	 11.8 Wave Nature of Matter (delete only derivation for de Broglie wavelength of accelerated electrons; and Heisenberg's Uncertainty Principle) 11.9 Davisson and Germer Experiment (delete)
	403 - 407	Exercises 11.5, 11.7, 11.12 – 11.14, 11.16, 11.17, 11.19 -11.37 (delete)
	408 - 409	Appendix 11.1 The History of Wave – Particle Flip – Flop (delete)
Chapter 12:	417 - 418	12.3.1 Spectral Series (delete)
Atoms	418 – 422	12.4 Bohr model of the Hydrogen Atom
		(retain only the expression for radius of n th possible orbit but delete its derivation)
	424 – 426	12.5 The Line Spectra of the Hydrogen Atom (retain only qualitative treatment)
	426	Example 12.6 (delete)
	432 - 433	Exercises 12.3, 12.11 – 12.17 (delete)

Chapter 13: Nuclei	442 – 447	13.6.1 Law of Radioactive Decay (delete)13.6.2 Alpha Decay (delete)13.6.3 Beta Decay (delete)13.6.4 Gamma Decay (delete)
	448 – 451	13.7.2 Nuclear Reactor (delete)
	458 - 462	Exercises 13.1, 13.2, 13.6 – 13.10, 13.12 – 13.14, 13.18, 13.22 – 13.31 (delete)
Chapter 14: Semiconductor Electronics :	481 - 486	14.8 Special Purpose p-n Junction Diodes (delete)
Materials, Devices and simple circuits	493 - 494	Exercises 14.7 – 14.10 (delete)

Topic – Wise Weightage

Sr.	Chapter		Marks Allotted for		
No.		Mid -	First Term	Final Board	
		Term		Examination	
1	Electric Charges and Fields	04	07	06	
2	Electrostatic Potential and Capacitance	04	07	06	
3	Current Electricity	06	08	07	
4	Moving Charges and Magnetism		08	06	
5	Magnetism and Matter		05	03	
6	Electromagnetic Induction		06	04	
7	Alternating Current		08	05	
8	Electromagnetic Waves		03	03	
9	Ray Optics and Optical Instruments	06		08	
10	Wave Optics			05	
11	Dual Nature of Matter and Radiation			04	
12	Atoms			03	
13	Nuclei			03	
14	Semiconductor Electronics : Materials,		08	07	
	Devices and simple circuits				
	Total	20	60	70	

Pattern and Design of Theory Question Paper

for the Academic Year 2024 - 2025

Sr.No.			
1	Time Duration	180 Minutes	
2	Maximum Marks	70	
3	Weightage to Objective	Knowledge	: 30 %
	3	Understanding	: 50 %
		Application	: 20 %
4	Weightage to the type of	LA (4 marks) X 3	= 12
	Questions	SAII (3 marks) X 8	= 24
		SAI (2 marks) X 10	= 20
		VSA (1 marks) X 14	= 14
		(7 MCQ)	
		Total 35 questions	= 70
5	Scheme of options	Options in 3 LA Type + 1 SAII Type	= 21%
6	Difficulty Level	Easy $= 20\%$ Average $= 60\%$ Difficult $= 20\%$	
Additi	onal Guidelines for paper sett	ing	
7	Numericals	20% - 23% (14 – 16 Marks)	
		(As far as possible avoid/ minimize	the use of
		Logarithmic tables)	
8	Derivations	20% - 23% (14 – 16 Marks)	
		2 qns from LA Type + 2 qns from S	AII
		Type (= 20%)	
		+ 1 qn from SAI (total 23%)	

Pattern and Design of Mid - Term Examinations 2024 - 2025

1	Time Duration	60 Minutes	
2	Maximum Marks	20	
3	Weightage to Objective	Knowledge	: 30 %
		Understanding	: 50 %
		Application	: 20 %
4	Difficulty Level	Easy	= 20%
		Average	= 60%
		Difficult	= 20 %
5	Weightage to the type of	SA-II (3 marks) X 02	= 06
	Questions	SA-I (2 marks) X 05	= 10
		VSA (1 marks) X 04	= 04
		(2 MCQs)	
6	Scheme of options	Option in	
		1 SA- II Type question	
7	Numericals	20% - 25% ($04 - 05$ Marks)
		(As far as possible avoid/ m	ninimize the
		use of Logarithmic tables)	

Pattern and Design of First - Term Examinations 2024 - 2025

1	Time Duration	150 Minutes	
2	Maximum Marks	60	
3	Weightage to Objective	Knowledge	: 30 %
		Understanding	: 50 %
		Application	: 20 %
4	Difficulty Level	Easy	= 20%
		Average	= 60%
		Difficult	= 20 %
5	Weightage to the type of	LA (4 marks) X 2 qns	= 08
	Questions	SAII (3 marks) X 6 qns	= 18
		SAI (2 marks) X 10 qns	= 20
		VSA (1 marks) X 14 qns	= 14
		(7 MCQ)	
		Total32 questio	ns
6	Scheme of options	Options in $2 LA Type + 1 S$	SAII Type
7	Numericals	20% - 23% (12 – 14 Marks	5)
		(As far as possible avoid/ m	ninimize the
		use of Logarithmic tables)	

Evaluation Scheme for Board Practical Examination

for the Academic Year 2024 - 25

1 . Time duration	: 180 minutes		
2. Maximum Marks	: 20		
3. Students would be requir	ed to perform two experiments,		
one from each section A a	and B	08 + 08	= 16
Practical Record (Journal)			= 02
Viva – Voce on Experime	nts		= 02
		Total	=20
4. External Examiner : One	experiment (08) + Viva - Voce (02)		= 10
5. Internal Examiner : One	experiment (08) + Journal (02)		= 10

PRACTICAL PORTION :

At least 12 Experiments [minimum 6 from each section] to be performed by the students during the academic year 2024 -2025].

List of Experiments

SECTION-A

- 1. To determine resistance per cm of a wire by plotting a graph for potential difference versus current.
- 2. To find resistance of a given wire using metre bridge and hence to determine the specific resistance of its material.
- 3. To verify the laws of combination (series) of resistances using a metre bridge.

/OR/

To verify the laws of combination (parallel) of resistances using a metre bridge.

4. To determine resistance of a galvanometer by half-deflection method and to find its figure of merit.

5. To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of desired range and to verify the same.

/OR/

To convert the given galvanometer (of known resistance and figure of merit) into an ammeter of desired range and to verify the same.

6. To find the frequency of AC mains with a sonometer.

7. To draw the I-V characteristic curve for a p-n junction diode in forward bias.

SECTION-B

- 1. To find the value of v for different values of u in case of a concave mirror and to find the focal length.
- 2. To find the focal length of a convex mirror, using a convex lens.
- 3. To find the focal length of a convex lens by plotting graphs between v and u or between 1/v and 1/u.
- 4. To determine angle of minimum deviation for a given prism by plotting a graph between angle of incidence and angle of deviation.
- 5. To determine refractive index of a glass slab using a travelling microscope.
- 6. To find the refractive index of a liquid using convex lens and plane mirror.
- 7. To find the refractive index of a liquid using a concave mirror.