GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

SUBJECT: MATHEMATICS STD : X (2024-2025)

The pattern of assessment for std X for the academic year 2024-2025 is as follows:

1	INTERNAL ASSESSMENT- INNOVATIVE ACTIVITY	20 marks
2	FINAL EXAM	80 marks
	TOTAL	100marks

The following PDFs are provided:

Sr. No.	PDFs		
1	Internal Assessment scheme		
2	Pattern and design of First Mid Test -Level 1 (Standard Mathematics)		
	-Level 2 (Basic Mathematics)		
3	Pattern and design of First Term Exam -Level 1 (Standard Mathematics)		
	-Level 2 (Basic Mathematics)		
4	Pattern and design of Final Exam -Level 1 (Standard Mathematics)		
	-Level 2 (Basic Mathematics)		
5	Practice Question paper with Answer key -Level 1 (Standard Mathematics)		
	-Level 2 (Basic Mathematics)		

MATHEMATICS

INTERNAL ASSESSMENT SCHEME 2024-2025

STD X

- > A list of **9 activities** for **Internal Assessment** of **20 marks** are given.
- Student may choose **any one** activity based on his/her capacity.
- Guidelines for each activity is provided for students. Teacher is free to give additional guidelines.
- > Each activity is allotted maximum 20 marks.

:

- Record of the activity (hard/ soft copy) of each student has to be maintained, for scrutiny by the Board.
- > Assessment criteria for the activities is given below:

CRITERIA	MARKS
1) Model prepared/Data collection (accuracy, neatness, creativity)	4mks.
2) Computation (logarithms may be used for calculations)	4mks
3) Project report (Mathematical content, organisation , presentation, neatness, creativity, diagram if any, resources used)	4mks
4) Oral presentation (clarity, logical sequence, effective communication)	4mks
5) Viva (mathematical reasoning, critical thinking)	4mks
TOTAL	20 MARKS

Sr.no.	TITLE OF ACTIVITY
1)	To find the mean, median and mode of data collected and draw its
	cumulative frequency curves.
2)	Body Mass Index (BMI).
3)	Relationship between volume of a Cylinder and volume of a Cone having equal heights and equal base areas.
4)	To estimate the number of tiles required for the floor of a classroom and cost of painting its walls.
5)	Comparing the volume of Cylinders obtained by folding a rectangular tin/cardboard/thick chart paper sheet along its length and breadth.
6)	To investigate the relationship between the dimensions of a Cuboid, its total surface area and volume.
7)	Fibonacci sequence and Golden rectangle.
8)	Pascal's Triangle.
9)	To measure heights and distances using a Clinometer.

Activity1: To find the mean, median and mode of data collected and draw its cumulative frequency curves.

<u>Aim</u>: To find the mean, median and mode of the data collected and draw its cumulative frequency curves.

Guidelines for students:

- Collect data [for example marks obtained in mathematics by the SSC students of the previous year.]
- Construct a grouped frequency distribution table.
- Find the mean of the data by direct, assumed and step-deviation methods.
- Find the median and the mode of the data.
- Verify the empirical relationship between the three measures of central tendency.
- Draw cumulative frequency curves of the less than type and the more than type on a graph paper.
- Find the median of the data from the graph.

Learning outcomes:

- gain practical knowledge of collecting data and calculating mean, median and mode of grouped data.
- understand the graphical representation of cumulative frequencies.
- enhance their statistical and graphical skills in analyzing and interpreting data.
- appreciate the practical application of descriptive statistics and graphical methods in summarizing data.

Activity 2: Body Mass Index (BMI)

Aim: To calculate the Body Mass Index (BMI) of school students and its implications on personal health

Guidelines for students:

- Explore the concept of BMI, the BMI categories: underweight, normal weight, overweight and obesity and their implications on health.
- Select minimum ten schoolmates and record their height (in meters) and weight (in kilograms) in the table given below:

Schoolmate	height(m)	weight(kg)	$BMI = \frac{weight}{(height)^2}$	Inference
1.				
2.				
10.				

- Calculate the BMI for each selected schoolmate using the formula: $BMI = \frac{weight}{(height)^2}$; where weight is in kg and height is in meters
- Record the calculated BMI values in the above table and draw inference with the help of the table given below:

BMI	INFERENCE	
below 18.5	underweight	
18.5 -24.9	healthy	
25 and 29.9	overweight.	
30 & above	obesity	

- Calculate the average BMI and the percentage of students of the different categories for the selected group of school mates.
- Represent the data using a pie chart.

Note: The BMI of students of the whole school (if number is less) can finally be compiled and represented by a pie chart.

Learning outcomes:

- gain practical experience in calculating BMI and analyzing health data.
- understand the importance of BMI in assessing and maintaining personal health.
- promote awareness of healthy lifestyle choices and provide guidance on maintaining a balanced BMI.

Activity 3: Relationship between volume of a Cylinder and volume of a Cone having equal heights and equal base areas.

Aim : To find the relationship between volume of a Cylinder and volume of a Cone having equal heights and equal base areas.

Guidelines for students:

- Prepare a Cylinder and a Cone having same height and base area using thick chart paper/cardboard.
- Calculate the volume of the Cylinder and the Cone using the formulae.
- Compare the calculated volumes of the Cylinder and the Cone.
- Verify the relationship by filling the Cone with fine sand/salt to its brim and emptying it in the Cylinder until it is completely filled.

Learning outcomes:

- gain practical experience in making geometric shapes (Cylinder and Cone)
- find out and appreciate the relationship between the volume of Cylinder and Cone having equal heights and equal base areas leading to a deeper understanding of the concept of volume of Cylinder and Cone.

Activity 4: To estimate the number of tiles required for the floor of a classroom and cost of painting its walls.

Aim: To draw the floor plan of a classroom and estimate the number of tiles needed for the floor and the amount of paint required for the 4 walls. **Guidelines for students :**

- Measure the length, breadth and height of a classroom.
- Measure the length and breadth of the door and windows of the classroom.
- Draw the plan of the classroom, including doors and windows on a graph paper by choosing an appropriate scale for the above measurements.
- Calculate the total floor area of the classroom.
- Find the dimensions of the tile to be used for the floor and calculate its area.
- Calculate the number of tiles needed to cover the entire floor area.
- Estimate the number of tile boxes required for the entire floor assuming that there are 10 tiles in each box.
- Calculate the total area of the 4 walls.
- Calculate the total area of the door and windows.
- Calculate the area to be painted.
- Find the cost of painting the 4 walls given the cost per square meter and estimate the amount of paint required in litres to paint the 4 walls.

Learning Outcomes:

- gain practical experience in taking measurements, drawing plan, calculating area, and estimating material requirements for tiling and painting.
- enhance their skills in measurement, area calculation and estimation.

Activity 5: Comparing the volume of Cylinders obtained by folding a rectangular tin/cardboard/thick chart paper sheet along its length and breadth.

Aim: To compare the volumes of right circular Cylinders obtained by folding a rectangular tin sheet/cardboard/thick chart paper along its length and breadth.

Guidelines for students:

- Take two congruent rectangular tin/cardboard/ thick chart paper sheets where length is twice the breadth.
- Fold the first rectangular tin/cardboard/thick chart paper sheet along its length to form a hollow cylinder. Fix a circular base, whose circumference is equal to the breadth of the rectangle. Record the radius of the base and height of the resulting Cylinder.
- Similarly create another Cylinder by folding along its breadth. Record the dimensions of this second Cylinder.
- Calculate the volumes $V_1 & V_2$ of the two Cylinders using the formula : $V = \pi r^2 h$
- Repeat the same procedure for another set of congruent rectangles where length is thrice the breadth.

(I) Rectangle Dimensions: $L \times B$; where $L = 2B$						
Case i	Case ii	Comparison by taking				
Cylinder	Cylinder	Positive	Ratio			
obtained by	obtained by	Difference				
folding along its	folding along its					
length	breadth					
r ₁ =	$r_2 = _$					
h₁=	h ₂ =	$V_1 - V_2$	V_1			
V ₁ =	V ₂ =		$\overline{V_2}$			
(II) Rectangle	Dimensions: L×	B; where $L = 3B$				
Case i	Case ii	Comparison by ta	aking			
Cylinder	Cylinder	Positive	Ratio			
obtained by	obtained by	Difference				
folding along its	folding along its					
length	breadth					
r ₁ =	$r_2 = _$					
h ₁ =	h ₂ =	$V_1 - V_2$	V_1			
V ₁ =	V ₂ =		\overline{V}_2			

• Record the observations in the following table

- Compare the volumes of the two Cylinders formed by folding the rectangular tin/cardboard/ thick chart paper sheet along its length and breadth in both the cases.
- Explain how changes in dimensions impact the volumes of the Cylinders.
- Conclude by summarizing the key observations and inferences.

Learning Outcomes:

- gain a practical understanding of how folding a rectangular tin /cardboard /thick chart paper sheet along its length and breadth affects the volumes of the resulting Cylinders.
- observe the impact of changes in dimensions on the volumes of the cylinders.
- connect geometric concepts with real-life applications and enhance their spatial reasoning skills.

Activity 6: To investigate the relationship between the dimensions of a Cuboid, its total surface area and volume.

Aim: To manipulate the dimensions of a Cuboid while keeping the total surface area fixed and observe how these changes affect the Cuboid's volume, specifically identifying a case where the volume is maximized.

Guidelines for students :

Three Dimensional Manipulations:

Manipulation 1 - Unequal dimensions $(1 \neq b \neq h)$:

- Prepare a Cuboid with all three dimensions 1, b and h different.
- Calculate the Total Surface Area and Volume of the Cuboid.

Manipulation 2 – Any two dimensions equal $(1 = b \neq h)$:

• Prepare another Cuboid having same total surface area, by choosing any two dimensions equal and calculate the volume of the resulting Cuboid.

<u>Manipulation 3 – Equal dimensions (1 = b = h):</u>

- Set all three dimensions equal to create a Cube having same total surface area.
- Calculate the volume of the Cube.
- Record your observations in the table given below:

	Solid	Length	Breadth	Height	TSA	Volume
1	Cuboid					
2	Cuboid					
3	Cube					

- Observe the relationship between the dimensions and the volume when the total surface area is kept constant.
- Identify the manipulation that results in the maximum volume.

Learning Outcomes:

- gain hands-on experience in manipulating dimensions of a Cuboid while keeping the total surface area fixed.
- observe how changes in dimensions impact the volume of the Cuboid.
- enhance their understanding of optimization in geometry.
- appreciate the mathematical concepts involved in achieving specific outcomes, such as maximizing volume while fixing the total surface area.
 9

Activity 7: Fibonacci sequence and Golden rectangle

Aim: To explore patterns in numbers through the Fibonacci sequence and the golden rectangle and to understand their applications in real-life situations.

Guidelines for students:

- Explore the Fibonacci sequence as a series of numbers where each number is the sum of the two preceding ones: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- Explore the concept of the golden ratio and the golden rectangle, which arises from the Fibonacci sequence.
- Explore the properties and patterns observed in the Fibonacci sequence, such as the golden ratio (approximately 1.618) and its occurrence in nature, art and architecture.
- Explore the properties and characteristics of the golden rectangle, including its proportions and aesthetic appeal.
- Explore applications of the golden ratio and golden rectangle in art, design, and aesthetics, such as in the compositions of paintings, sculptures, and architecture.
- Investigate examples of the golden ratio and Fibonacci sequence in nature, such as the spiral patterns of sunflowers, pinecones, and seashells.
- Construct a golden rectangle using the golden ratio and discuss the properties and aesthetic appeal of the constructed golden rectangle.

Learning Outcomes:

- gain an understanding of the properties and patterns of the Fibonacci sequence and the golden rectangle.
- appreciate the applications of these mathematical concepts in various disciplines, including art, architecture and nature.
- foster creativity and critical thinking by exploring real-life examples and applications of mathematical patterns.

Activity 8: Pascal's Triangle

Aim: To explore Pascal's Triangle, identify patterns within Pascal's Triangle and understand their applications in real-life situations.

Guidelines for students:

• Explore Pascal's Triangle, its basic properties and its formation, where each number in the triangle is the sum of the two numbers directly above it.

• Explore the patterns within Pascal's Triangle, such as Fibonacci numbers, binomial coefficients and triangular numbers.

• Observe how Pascal's Triangle relates to various mathematical concepts like binomial expansions and probability.

• Create own variations of Pascal's Triangle such as rotating it, skipping rows or using different starting numbers.

• Create visual representations of Pascal's Triangle and its patterns, using diagrams or presentations.

• Prepare a report summarizing the project findings, including explanations of observed patterns and connections to other mathematical concepts.

Learning Outcomes:

- gain an understanding of the properties and patterns of Pascal's Triangle.
- appreciate the applications of Pascal's Triangle in Probability and Algebra.
- foster critical thinking and problem-solving skills by exploring real-life examples and applications of mathematical patterns.

9. To measure Heights and Distances using a Clinometer.

Aim: To enable the students to measure the heights and distances of any object in real life scenarios using a Clinometer.

Guidelines for students:

- Explore the importance of measuring heights and distances accurately in various fields such as surveying, engineering and navigation.
- Prepare a clinometer- a tool to measure angles and know its basic working principle. (Video link is given below for reference) https://youtu.be/gHeiueRpX7U?si=-kaiAyxAL4tKc9fK
- Align the clinometer with the line of sight and measure the angle of elevation/depression.
- Calculate the height/distance of the object using trigonometric ratios.
- In case you want only angles of elevation of 30°, 45° or 60° then adjust your distance in front of the object till you obtain the above angles, then take the required measurement and find the height of the object.

Learning Outcomes:

- enhance their understanding of trigonometric concepts and their practical applications in real-life scenarios.
- summarize the practical applications of using a clinometer in measuring heights and distances.

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO -BETIM GOA 403521

FIRST MID TEST (2024-2025)

Subject: MATHEMATICS(E)- LEVEL 1 (STANDARD MATHEMATICS)

Time: 1HourSTD: XMax. Marks: 20

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	2	10%
2.	Understanding	10	50%
3.	Application	5	25%
4	Skill	3	15%
	Total	20	100%

2. Weightage to the different areas of Content

Ch.no.	Name of the chapter	Marks
2	Polynomials	5
3	Pair of Linear Equations in Two Variables	9
6	Triangles	6
	Total	20

3. Weightage to different form/type of Questions

Sr. No.	Type of Questions	Marks for each question	Number of questions	Total Marks
1	Very Short Answer Type (VSA)	1	4	4
2	Short Answer Type (SA-I)	2	2	4
3	Short Answer Type (SA-II)	3	4	12
		Total	10	20

4. Weightage to Difficulty Level of Questions

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

5. Number of Questions: There will be 10 questions

PATTERN OF SSC FIRST MID TEST QUESTION PAPER (2024-2025) Subject: MATHEMATICS (E) LEVEL - 1 (Standard Mathematics)

Time: 1hr

Std X

Max. Marks: 20

INSTRUCTIONS:

i) This question paper consists of 10 questions.

ii) All questions are compulsory.

iii)This question paper is divided into three Sections - A , B and C

iv) Section A has four questions carrying 1 mark each .

v) Section B has two questions carrying 2 marks each .

vi) Section C has four questions carrying 3 marks each .

vii) There is no overall choice. However an internal choice has been provided in one question of 3mks in section C.

Q.	Торіс	Thrust areas	Type of
No.			Question
		Section A (1mark each)	
	Select and write	te the correct alternative from those given below each statem	ient
		for question 1 and 2:	
1	Polynomials	Any Concept from Polynomials	VSA(MCQ)
2	Triangles	Any Concept from Triangles	VSA(MCQ)
3	Polynomials	 Given a graph of a (linear/quadratic) polynomial to 	VSA
		identify the zero(es)/	
		 To find the zeroes of a quadratic polynomial/ 	
		•To write a quadratic polynomial given sum and product of	
		two zeroes/	
		•To write a quadratic polynomial given its two zeroes/	
		•To find sum / product of zeroes of a quadratic polynomial	
4	Pair of Linear	• Find the value of k for which the given pair of linear	VSA
	Equations in	equations will have a unique solution or no solution or	
	Two Variables	infinitely many solutions /	
		• Find whether the given pair of linear equations are	
		consistent or inconsistent/	
		• If a pair of Linear equations is given by $ax \pm by=m$ and	
		bx \pm ay=n , then find the value of x+ y or x-y	
		Section B (2 marks each)	
5	Pair of Linear	Write a pair of Linear equations in two variables for the	SAI
	Equations in	given word problem.	
	Two Variables		

6	Triangles	Numerical Application on any one of the 4 theorems on	SA I
		Triangles	
		Section C (3 marks each)	
7	Polynomials	• Divide $p(x)$ by $g(x)$ to find $q(x)$ and $r(x)$ and write in the form $p(x) = q(x) \times q(x) + r(x)/d$	SA II
		$p(x) = g(x) \land q(x) + r(x)$	
		• To find $g(x)$ when $p(x)$, $q(x)$ and $f(x)$ are given $f(x)$	
		• To find whether g(x) is a factor of p(x)/	
		 Given two zeroes find remaining two zeroes 	
8	# Pair of Linear	Find the solution of the pair of linear equations by	SA II
	Equations in	Elimination method	
	Two Variables	OR	
		Find the solution of the pair of linear equations by	
		Substitution / Cross multiplication method	
9	Triangles	•To prove a rider on Triangles/	SA II
		•Proof of any one theorem. (B.P.T./ Pythagoras Theorem/	
		converse of Pythagoras theorem)	
10	Pair of Linear	Find solution of a pair of linear equations in two variables	SA II
	Equations in	by graphical method.	
	Two Variables		
		# Internal choice to be provided	

FIRST_MID_TEST (2024-2025) Subject: MATHEMATICS(E)- LEVEL 2 (Basic Mathematics)

Time: 1Hour STD: X Max. Marks: 20

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	2	10%
2.	Understanding	11	55%
3.	Application	4	20%
4	Skill	3	15%
	Total	20	100%

2. Weightage to the different areas of Content

Ch.no.	Name of the chapter	Marks
2	Polynomials	5
3	Pair of Linear Equations in Two variables	9
6	Triangles	6
	Total	20

3. Weightage to different form/type of Questions

Sr. No.	Type of Questions	Marks for each question	Number of questions	Total Marks
1	Very Short Answer Type (VSA)	1	4	4
2	Short Answer Type (SA-I)	2	2	4
3	Short Answer Type (SA-II)	3	4	12
		Total	10	20

4. Weightage to Difficulty Level of Questions

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

5. Number of Questions: There will be 10 questions

PATTERN OF FIRST MID TEST QUESTION PAPER (2024-2025)

Subject: MATHEMATICS (E) LEVEL - 2 (Basic Mathematics)

Time: 1hr

STD X

Max. Marks: 20

INSTRUCTIONS:

i)This question paper consists of 10 questions.

ii)All questions are compulsory.

iii)This question paper is divided into three Sections - A, B and C

iv) Section A has four questions carrying 1 mark each .

v) Section B has two questions carrying 2 marks each .

vi) Section C has four questions carrying 3 marks each .

vii) There is no overall choice. However an internal choice has been provided in one question of 3mks in section C.

Q.	Торіс	Thrust areas	Type of	
No.			Question	
		Section A (1mark each)		
	Select and write the correct alternative from those given below each statement			
1	Polynomials	Any concept from Polynomials	VSA(MCQ)	
2	Triangles	Any concept from Triangles	VSA(MCQ)	
3	Polynomials	 Given a graph of a (linear/quadratic) polynomial to identify the zero(es)/ 	VSA	
		 To find the zeroes of a quadratic polynomial/ 		
		 To write a quadratic polynomial given sum and product of two zeroes/ 		
		•To write a quadratic polynomial given two zeroes/		
		 To find sum / product of zeroes of a quadratic polynomial 		
4	Pair of	• Find the value of k, if x=a and y=b is a solution of the given Linear	VSA	
	Linear	equation in two variables/		
	Equations in	• If a pair of Linear equations is given by $ax \pm by=m$ and $bx\pm ay=n$		
	Two	then find the value of x+ y or x-y		
	Variables			
		Section B (2marks each)		
5	Pair of	• Write the condition for which the pair of Linear equations in	SA I	
	Linear	two variables will have a unique solution or no solution or		
	Equations in	infinitely many solutions and find the value of unknown (k)/		
	Two	• Find which pair of Linear equations in two variables are		
	Variables	consistent or inconsistent		
		(two pairs of Linear equations in two variables are to be given)		

6	Triangles	Numerical Application on any one of the 4 theorems on Triangles	SA I
		Section C (3marks each)	
7	Polynomials	Divide a cubic polynomial p(x)	SA II
		by a linear polynomial g(x) and write the result in the form	
		$p(x) = q(x) \times g(x) + r(x)$	
8	# Pair of	Find the solution of the pair of linear equations by Elimination	SA II
	Linear	method	
	Equations in	OR	
	Two	Find the solution of the pair of linear equations by	
	Variables	Substitution method	
9	Triangles	Proof of any one theorem.	SA II
		•B.P.T./	
		•Pythagoras Theorem/	
		 converse of Pythagoras theorem 	
10	Pair of	Finding solution of a pair of linear equations in two variables by	SA II
	Linear	graphical method.	
	Equations in		
	Two		
	Variables		
		# Internal choice to be provided	

PORTION FOR STD X - MATHEMATICS (LEVEL2)(Basic Mathematics)

Name of the Chapter	Portion
1)Real Numbers	a) Concept of Real numbers.
	b) To find the H.C.F of two numbers by
	Euclid's Division Algorithm
	c)To find HCF/LCM by prime factorisation
	method.
	d) Revisiting Rational Numbers and Their
	Decimal Expansions.
2)Polynomials	a) Concept of a Polynomial, degree & types.
	b) Zero(es) of a Linear Polynomial,
	Quadratic Polynomial ,geometric meaning
	of the zeroes of a Polynomial, relationship
	between zeroes and coefficients.
	c)Finding a Quadratic Polynomial given sum
	and product of zeroes /zeroes.
	d)To find the Quotient and remainder
	when a Cubic Polynomial is divided by a
	Linear polynomial and to express in the
	form:
	Dividend =Divisor x Quotient +Remainder
3)Pair of Linear equations in Two variables	a) General form of a pair of linear
	equations in two variables
	b) Conditions for a pair of Linear equations
	in two variables to have-a unique solution,
	no solution, infinitely many solutions,
	(Consistent/Inconsistent),
	finding the value of the unknown
	c)Find the solution of a pair of linear
	equations in two variables by
	(I) Elimination method
	(II)Substitution method (one equation
	should have coefficient of x or y as one)
	(III)Graphical method (both equations
	should have one coefficient of x or y as
	one)
4)Quadratic Equations	a) Concept of a Quadratic equation -
	standard form
	b) Finding the Roots of a Quadratic
	equation by
	(I)Factorisation method
	(II)Quadratic formula

C)Nature of Roots based on discriminant

5) Arithmetic Progressions	a) Concept of an AP-first term common
SjAntimetic Hogressions	difference
	b) Questions based on oth term sum of n
	torms of an AD
	terms of an AP
6) Triangles	.a) Concept of Similarity of Triangles-Tests
	for similarity of Iriangles
	b) Concept of theorem on Areas of Similar
	Triangles (Proof not for evaluation)
	c)B.P.T., Pythagoras theorem and Converse
	of Pythagoras theorem (Proofs for
	evaluation)
	d)Numerical applications of the above 4
	theorems
7)Coordinate Geometry	Concepts /Applications of
	(I) Distance Formula
	(II)Section Formula
	(III)Area of Triangle Formula
8)Introduction to Trigonometry	a) Concept of Trigonometry
	b) Trigonometric ratios and their
	relationships, k method
	c) Proving the Basic Trigonometric identities
	with the help of a figure.
	I) $\sin^2\theta + \cos^2\theta = 1$
	II) 1+Tan ² θ = Sec ² θ
	III) 1+Cot ² θ = Cosec ² θ
	and their simple applications.
	Alternate method can also be used for
	proofs of identity (II) and (III).
	d)To evaluate expressions involving
	Trigonometric ratios of some specific
	angles:
	0°, 30°,45°,60°,90°
	e) Trigonometric ratios of complementary
	angles
9)Some Applications of Trigonometry	a) Heights and Distances: Angle of
	Elevation and Angle of Depression
	b) Problems on heights and Distances.
	Problems should have only one right
	triangle with either angle of elevation or
	depression.
10)Circles	a) Concept of Tangent
•	Thm.10.1(proof not for Evaluation)
	Thm.10.2(with Proof)
	h) Numerical applications
9)Some Applications of Trigonometry 10)Circles	 a) Heights and Distances: Angle of Elevation and Angle of Depression b) Problems on heights and Distances. Problems should have only one right triangle with either angle of elevation or depression. a) Concept of Tangent, Thm.10.1(proof not for Evaluation)

11)Constructions	a) Construction of Tangents to a Circle from
	a point outside the circle.
	b) Construction of Similar Triangles as per
	given scale factor.
	Note : Angles can also be drawn using a
	protractor
12)Areas Related to Circles	a) Perimeter and Area of a Circle
	b) Areas of Segment, Sector, Quadrant of a
	Circle and Semicircle
	c) Applications to find areas of shaded
	region.
13)Surface Areas and Volumes	Whole topic is included for evaluation
14)Statistics	a) Concept of Mean, Median, Mode and the
	empirical relationship between them
	b) To find Mean of grouped data by
	Direct method
	c)To find Mode of grouped data.
15)Probability	a) Concept of Theoretical Probability
	b) Probability of a Sure event and an
	Impossible event, 0≤P(E)≤1, P (not E)
	c) Problems based on coins,
	Dice (only 1), playing cards, numbered
	cards, items in a box.
(PDF) Logarithms Part 2 (Std X)	a) Laws of Logarithms
	b) Logarithm method and its applications

PORTION FOR STD X - MATHEMATICS (LEVEL 1)(Standard Mathematics)

- 1) Everything is included from NCERT Mathematics text Ch.2 to Ch.15.
- 2) From Ch. 1) Real numbers:

a) Concept of Real numbers.

b) To find the H.C.F of two/three numbers by Euclid's Division Algorithm

c)To Find HCF/LCM by prime factorisation method.

d)Revisiting Rational Numbers and their Decimal Expansions.

- 3) PDF for Logarithms Part 2 (class X) is provided.
- 4) In the topic of Triangles, **Rider and numerical applications** based on the theorems will be tested.
- 5) In the topic of Constructions, a pair of compasses and ruler to be used to draw specific angles.

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

DESIGN OF FIRST TERM EXAM QUESTION PAPER (2024-2025)

Subject: MATHEMATICS (E) - LEVEL 1 (STANDARD MATHEMATICS)

Time : 3 hrsSTD : XMax. Marks :80

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	8	10 %
2.	Understanding	41	51.25%
3.	Application	21	26.25%
4.	Skill	10	12.5%
	Total	80	100%

2. Weightage to the different areas of Content

Chapter	Торіс	Marks
No.		
2.	Polynomials	08
3.	Pair of Linear Equations in Two Variables	10
4.	Quadratic Equations	09
5.	Arithmetic Progressions	08
6.	Triangles	08
7.	Coordinate Geometry	06
8.	Introduction to Trigonometry	09
9.	Some Applications of Trigonometry	03
10.	Circles	06
11.	Constructions	06
PDF	Logarithms	07
	Total	80

3. Weightage to different form/type of Questions

Sr. No.	Form of Questions	Marks for each question	Number of questions	Total Marks
1.	Very Short Answer Type (VSA)	1	20	20
2.	Short Answer Type I (SA-I)	2	8	16
3.	Short Answer Type II (SA-II)	3	12	36
4.	Long Answer Type (LA)	4	2	8
	Total		42	80

Sr. No.	Form of Questions	Approx. time for each question in mins (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) x (n)
1.	Very Short Answer Type (VSA)	2	20	40
2.	Short Answer Type I (SA-I)	3	8	24
3.	Short Answer Type II (SA-II)	8	12	96
4.	Long Answer Type (LA)	10	02	20
	Total		42	180

4. The expected time for different type of questions would be as follows:

5. Weightage to Difficulty level of questions:

Sr. No.	Estimated difficulty level of questions	Percentage
1.	Easy	20%
2.	Average	60%
3.	Difficult	20%
	Total	100%

6. Number of Questions :

There will be **42** questions.

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

BLUE PRINT OF SSC FIRST TERM EXAM QUESTION PAPER (2024-2025)

Subject : MATHEMATICS (E) - LEVEL 1 (Standard Mathematics)

Time: 3 hrs

STD: X

Max. Marks :80

Ch. no	Objectives	Knov	wlee	edge Understanding		Application		Skill										
	Forms of Questions	VSA	SAL		4	VSA	SAI	SA II	١A	ΨSΛ	IAS	II VS	ГV	ASV	SAI	SA II	ΓV	
	Content/marks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	Total
2	Polynomials	1(1)				17(1)		29(3) 30(3)										4(8)
3	Pair of Linear Equations in Two Variables	2(1)				3(1) 18(1)		31(3)									41(4)	5(10)
4	Quadratic Equations	4(1)				5(1)		32(3)					42(4)					4(9)
5	Arithmetic Progressions					7(1) 8(1)		33(3)				34(3)						4(8)
6	Triangles	9(1)				10(1) 19(1)	25(2)					40(3)						5(8)
7	Coordinate Geometry	15(1)				20(1)	26(2) 27(2)											4(6)
8	Introduction to Trigonometry	11(1)				12(1) 13(1)	21(2) 22(2)				23(2)							6(9)
9	Some applications of Trigonometry											39(3)						1(3)
10	Circles	14(1)				6(1)	24(2) 28(2)											4(6)
11	Constructions															37(3) 38(3)		2(6)
PDF	Logarithms	16(1)										35(3) 36(3)						3(7)
	Total	8(8)				12(12)	7(14)	5(15)			1(2)	5(15)	1(4)			2(6)	1(4)	
		8	8(8)				24(41)					7(21)				3(10)		42(80)

NOTE: Figures outside the bracket indicate the question number and figures within the bracket indicate marks .

This is a model Blue print, paper setter may make changes in the objectives chapter wise.

PATTERN OF SSC FIRST TERM EXAM QUESTION PAPER (2024-2025)

Subject : MATHEMATICS (E) - LEVEL 1 (Standard Mathematics)

Time: 3 hrs

STD:X

Max. Marks :80

INSTRUCTIONS:

- i) This question paper consists of 42 questions . All questions are compulsory.
- ii) This question paper is divided into four Sections-A, B, C and D
- iii) In Section A, Question Nos. 1 to 16 are multiple choice questions (MCQs) and Question Nos. 17 to 20 are very short answer type questions (VSA) carrying 1 mark each.
- iv) In Section B, Question Nos. 21 to 28 are short answer type I (SA-I) questions carrying 2 marks each.
- v) In Section C, Question Nos. 29 to 40 are short answer type II (SA-II) questions carrying 3 marks each.
- vi) In Section D, Question Nos. 41 to 42 are long answer (LA) questions carrying 4 marks each.
- vii) There is no overall choice . However an internal choice has been provided in **one question** of **2 marks** in **section B** and **two questions** of **3 marks** each in **section C**.
- viii) In questions on Constructions , the drawing should be clear and exactly as per given measurements. The construction lines and arcs should also be maintained.
- ix) Graph paper and Logarithm tables will be supplied on request
- x) Use of a calculator is not permitted.

Q. No.	ΤΟΡΙϹ	THRUST AREAS	Type of				
-			Question				
	Section A (1 mark each)						
Select a	nd write the correct	alternative from those given below each statement					
for ques	stion 1 to 16:						
1	Polynomials	Any concept from Polynomials	VSA				
			(MCQ)				
2	Pair of Linear	Any concept from Pair of Linear equations in Two	VSA				
	equations in Two	variables	(MCQ)				
	variables						
3	Pair of Linear	Any concept from Pair of Linear equations in Two	VSA				
	equations in Two	variables	(MCQ)				
	variables						
4	Quadratic	Any concept from Quadratic Equations	VSA				
	Equations		(MCQ)				
5	Quadratic	Any concept from Quadratic Equations	VSA				
	Equations		(MCQ)				
6	Circles	Any concept from Circles	VSA				
			(MCQ)				
7	Arithmetic	Any concept from Arithmetic Progression	VSA				
	Progressions		(MCQ)				
8	Arithmetic	Any concept from Arithmetic Progression	VSA				
	Progressions		(MCQ)				
9	Triangles	Any concept from Triangles	VSA				
			(MCQ)				

10	Triangles	Any concept from Triangles	VSA
			(MCQ)
11	Introduction to	Any concept from Introduction to Trigonometry	VSA
	Trigonometry		(MCQ)
12	Introduction to	Any concept from Introduction to Trigonometry	VSA
	Trigonometry		(MCQ)
13	Introduction to	Any concept from Introduction to Trigonometry	VSA
	Trigonometry		(MCQ)
14	Circles	Any concept from Circles	VSA
			(MCQ)
15	Co-ordinate	Any concept from Co-ordinate Geometry.	VSA (NGC)
	Geometry		(MCQ)
16	Logarithms	Any concept from Logarithms	VSA (MCO)
47			(MCQ)
1/	Polynomials	• Find sum or product of zeroes/	VSA
		• write a quadratic polynomial, given sum and	
		product of zeroes/given two zeroes	
		• Find the zeroes of a quadratic polynomial/	
		 Find dividend, given quotient, remainder and 	
		divisor/	
		• Find the value of unknown coefficient 'k' of a	
		quadratic polynomial , given sum of	
10	Dain of Linear	zeroes/product of zeroes	
18	Pair of Linear	Find the value of k for which the given pair of	VSA
	equations in Two	linear equations will have a unique solution	
	variables	or no solution or infinitely many solutions /	
		 Find whether the given pair of linear 	
		equations are consistent or inconsistent/	
		Write a pair of Linear equations in two	
		variables for the given word problem.	
19	Triangles	Numerical application based on concept of	VSA
		similarity.	
20	Co-ordinate	Problem based on any concept of	VSA
	Geometry	co-ordinate geometry	
	T	Section B (2marks each)	
21	Introduction to	Given a trigonometric ratio, to find the value of the	SA I
	Trigonometry	other trigonometric ratio using k method	
22	Introduction to	Evaluate trigonometric expression using known	SAI
	Irigonometry	trigonometric values of specific angles	<u></u>
23	Introduction to	I o prove a trigonometric identity	SAT
	Trigonometry		
24		Numerical problem	SAI
25	inangies	Numerical application on any one of the 4	SAT
20	Co. ordinata	Ineorems on Triangles	C A 1
26	Co-ordinate	formula	SAT
	# Co. ordinata	Using the Area of a triangle formula in	C / I
21	# CO- Orumate	Co-ordinate Geometry find	SAT
	Jeometry	• area of a triangle	
		• area or a triangle • co ordinato k of any one vertex	
		co-orunnate K or any one vertex	
		 area or a special parallelografit (Any two to be asked) 	
1	1		

28	Circles	Numerical problem	SA I
		Section C (3 marks each)	
29	Polynomials	 Divide p(x) by g(x) and find q(x) and r(x) and write in the form p(x) = g(x) × q(x) + r(x)/ Verification of Division Algorithm/ To find g(x) when p(x) ,q(x) and r(x) are given/ To determine if g(x) is a factor of p(x) 	SA II
30	Polynomials	Given two zeroes, find remaining two zeroes	SA II
31	# Pair of Linear equations in Two variables	Find the solution of the pair of Linear equations by elimination method OR Find the solution of the pair of Linear equations by substitution / cross multiplication method	SA II
32	# Quadratic Equations	Find roots of the quadratic equation by factorisation method OR Find roots of the quadratic equation by quadratic formula / completing square method	SA II
33	Arithmetic Progressions	Any numerical problem based on a_n / S_n /both	SA II
34	Arithmetic Progressions	Word problem based on a_n / S_n /both	SA II
35	Logarithms	Evaluate using logarithm method $\frac{a^{n} x \sqrt[m]{b}}{c} \text{ or } \frac{\sqrt[n]{a \times b}}{c} \text{ or } \frac{c}{a^{n} x \sqrt[m]{b}} \text{ or } \frac{c}{\sqrt[n]{a \times b}}$ (where m, n are positive integers ≤ 3)	SA II
36	Logarithms	Evaluate using logarithm method $\sqrt[r]{\frac{a^n \times b^m}{c}}$ or $\sqrt{\frac{c}{a^n \times b^m}}$ or $\sqrt[3]{\frac{a^n \times b^m}{c}}$ or $\sqrt[3]{\frac{c}{a^n \times b^m}}$ (where m , n are positive integers ≤ 3)	SA II
37	Constructions	Construct tangents to a circle from an external point.	SA II
38	Constructions	Construct similar triangles as per given scale factor	SA II
39	Some Applications of Trigonometry	Word problem with figure showing two angles of elevation or two angles of depression or one angle of elevation and one angle of depression.	SA II
40	Triangles	To prove a rider on Triangles Section D (4 marks each)	SA II
11	Dair of Lincar	Eind solution of a pair of Linger equations in two	1 4
41	equations in Two variables	variables by graphical method.	LA
42	Quadratic Equations	Word problem	LA
		# Internal choice to be provided	

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION ALTO – BETIM GOA 403521

DESIGN OF FIRST TERM EXAM QUESTION PAPER (2024 – 2025)

Subject: MATHEMATICS(E)-LEVEL 2 (BASIC MATHEMATICS)

Time: 3 Hours

STD: X

Max. Marks: 80

The Weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1	Knowledge	8	10 %
2	Understanding	44	55 %
3	Application	18	22.5 %
4	Skill	10	12.5 %
	Total	80	100 %

2. Weightage to the different areas of Content

Chapter No.	Торіс	Marks
2	Polynomials	08
3	Pair of Linear Equations in Two Variables	10
4	Quadratic Equations	09
5	Arithmetic Progressions	08
6	Triangles	08
7	Coordinate Geometry	06
8	Introduction to Trigonometry	09
9	Some Applications of Trigonometry	03
10	Circles	06
11	Constructions	06
PDF	Logarithms	07
	Total	80

3. Weightage to different form/type of Questions.

Sr. No.	Types of Questions	Marks for each	Number	Total
		question	of	Marks
			questions	
1	Very Short Answer Type (VSA)	01	20	20
2	Short Answer Type I (SA-I)	02	07	14
3	Short Answer Type II (SA II)	03	14	42
4	Long Answer Type (LA)	04	01	04
		Total	42	80

4. The expected time for different type of questions would be as follows:

Sr. No	Form of Questions	Approx time for each question in mins (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) × (n)
1.	Very Short answer Type (VSA)	2	20	40
2.	Short Answer Type I (SA-I)	3	07	21
3.	Short Answer Type II (SA-II)	$7\frac{1}{2}$	14	105
4.	Long Answer Type (LA)	10	01	10
	Total		42	180

5. Weightage to Difficulty Level of questions

Sr. No.	Estimated Difficulty level of questions	Percentage
1	Easy	20 %
2	Average	60 %
3	Difficult	20 %
	Total	100%

6. Number of Questions:

There will be 42 questions

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

BLUE PRINT OF SSC FIRST TERM EXAM QUESTION PAPER (2024-2025)

Subject: MATHEMATICS (E) - LEVEL 2 (Basic Mathematics)

Time: 3 hrs

STD: X

Max. Marks :80

Ch.																		
No.	Objectives	Knowledge		Understanding			Application				Skill							
	Forms of Questions	VSA	SAI	11 V 3	<	VSA	SAI	SA II	14	VSA	SA I	SA II	14	1.6.4		SAII	ľ	
	Content/marks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	Total
2	Polynomials	1(1) 17(1)					27(2)	28(3)		20(1)								5(8)
3	Pair of Linear Equations in Two Variables	2(1)				3(1) 18(1) 5(1)		30(3) 31(3)									42(4)	5(10)
4	Equations	4(1)				6(1)		32(3)										5(9)
5	Arithmetic Progressions					7(1) 8(1)		33(3)				34(3)						4(8)
6	Triangles					9(1) 10(1)		39(3)		19(1)	25(2)							5(8)
7	Coordinate Geometry	15(1)	26(2)					29(3)										3(6)
8	Introduction to Trigonometry					11(1)	21(2) 22(2) 23(2)			12(1) 13(1)								6(9)
9	Some Applications of Trigonometry											40(3)						1(3)
10	Circles					14(1)	24(2)	41(3)										3(6)
11	Constructions															37(3) 38(3)		2(6)
PDF	Logarithms	16 (1)										35(3) 36(3)						3(7)
				-	-								\vdash		-			
	Total	6(6)	1(2)	-	-	10(10)	5(10)	8(24)		4(4)	1(2)	4(12)	\vdash	-	-	2(6)	1(4)	
	10101	0(0)	7(8)	1	I	10(10)	23(44)	L	()	9(18)	-1771	L		1	3(10)	<u>+(</u> +)	42(80)
		/(0) 23(44)					3(10)						12(00)					

NOTE: Figures outside the bracket indicate the question number and figures within the bracket indicate marks.

This is a model Blue Print. Paper setter may make changes in the objectives chapter wise.

PATTERN OF FIRST TERM QUESTION PAPER (2024 – 2025)

SUBJECT: MATHEMATICS (E) LEVEL – 2 (BASIC MATHEMATICS)

TIME: 3 Hrs

STD: X

MAX. MARKS: 80

Instructions:

- (i) This question paper consists of **42** questions. All questions are **compulsory**.
- (ii) This question paper is divided into four sections **A**, **B**, **C** and **D**
- (iii) In Section A, Question Nos. 1 to 16 are multiple choice questions (MCQs) and Question Nos. 17 to 20 are very short answer type questions (VSA) carrying 1 mark each.
- (iv) In Section B, Question Nos. 21 to 27 are short answer type I (SA- I) questions carrying 2 marks each.
- In Section C, Question Nos.28 to 41 are short answer type II (SA- II) questions carrying 3 marks each
- (vi) In Section D, Question No. 42 is a long answer (LA) type question carrying 4 marks .
- (vii) There is no overall choice. However, an internal choice has been provided in one question of 2 marks in section B and two questions of 3 marks each in section C.
- (viii) In questions on Constructions, the drawing should be clear and exactly as per the given measurements. The construction lines and arcs should also be maintained.
- (ix) Graph paper and Logarithm Tables will be supplied on request.
- (x) Use of calculator is not permitted.

Q.	ΤΟΡΙϹ	THRUST AREAS	Type of							
No.			Question							
	Section A (1mark each)									
Select	and write the correct	alternative from those given below each statement								
for q	uestion 1 to 16 :									
1	Polynomials	Any concept from Polynomials	VSA							
			(MCQ)							
2	Pair of Linear	Any concept from Pair of Linear Equations in Two	VSA							
	Equations in Two Variables	Variables.	(MCQ)							
3	Pair of Linear	Any concept from Pair of Linear Equations in Two	VSA							
	Equations in Two Variables	Variables	(MCQ)							
4	Quadratic Equations	Any concept from Quadratic Equations	VSA							
			(MCQ)							

5	Quadratic Equations	Any concept from Quadratic Equations	VSA				
			(MCQ)				
6	Quadratic Equations	Any concept from Quadratic Equations	VSA				
			(MCQ)				
7	Arithmetic	Any concept from Arithmetic Progression	VSA				
	Progressions		(MCQ)				
8	Arithmetic	Any concept from Arithmetic Progression	VSA				
	Progressions		(MCQ)				
9	Triangles	Any concept from Triangles	VSA				
			(MCQ)				
10	Triangles	Any concept from Triangles	VSA				
			(MCQ)				
11	Introduction to	Any concept from Introduction to Trigonometry	VSA				
	Trigonometry		(MCQ)				
12	Introduction to	Any concept from Introduction to Trigonometry	VSA				
	Trigonometry		(MCQ)				
13	Introduction to	Any concept from Introduction to Trigonometry	VSA				
	Trigonometry		(MCQ)				
14	Circles	Any concept from Circles	VSA				
			(MCQ)				
15	Coordinate	Any concept from Coordinate Geometry	VSA				
	Geometry		(MCQ)				
16	Logarithms	Any concept from Logarithms	VSA				
			(MCQ)				
17	Polynomials	• Find sum or product of zeroes/	VSA				
		• Find the zeroes of a quadratic polynomial/					
18	Pair of Linear	 Find dividend, given quotient, remainder and divisor. Problems based on the existence of solutions of a 	VSA				
10	Equations in Two	pair of linear equations in two variables (Table 3.4)	• 6, (
	Variables	• Find the value of k for which the given pair of linear					
		equations has unique solution or no solution or infinitoly many solutions					
19	Triangles	Numerical application based on concept of similarity.	VSA				
20	Polynomials	 write a quadratic polynomial, given sum and 	VSA				
		product of zeroes/given two zeroes					
		• Find the value of unknown coefficient 'k' of a					
		quadratic polynomial, given sum of zeroes					
Section B (2 marks each)							
--------------------------	--	--	-------	--	--	--	--
21	Introduction to Trigonometry	Given a trigonometric ratio, to find the values of other trigonometric ratios using k method.	SA I				
22	Introduction to Trigonometry	Evaluate given expression by substituting the known values of trigonometric ratios.	SA I				
23	Introduction to Trigonometry	To prove a trigonometric identity • $\sin^2\theta + \cos^2\theta = 1/$ • $1 + \tan^2\theta = \sec^2\theta/$ • $1 + \cot^2\theta = \csc^2\theta$	SA I				
24	Circle	Numerical example on circle	SA I				
25	Triangles	Numerical application based on any one of the four theorems on Triangles.	SA I				
26	# Coordinate Geometry	Problem based on the concept of distance formula OR Problem based on the concept of section formula	SA I				
27	Polynomials	Find the zeroes of a quadratic polynomial and verify the relationship between its zeroes and the coefficients.	SA I				
		Section C (3marks each)					
28	Polynomials	Divide a cubic polynomial p(x) by a linear polynomial g(x) and write the result in the form	SA II				
		$p(x) = q(x) \times g(x) + r(x)$					
29	Coordinate Geometry	Using the Area of a triangle formula in Coordinate Geometry , find area of a special quadrilateral.	SA II				
30	#Pair of Linear Equations in Two Variables	Find the solution of the pair of linear equations by Elimination Method OR Find the solution of the pair of linear equations by Substitution Method	SA II				
31	Quadratic Equations	Find roots of a quadratic equation by Factorisation Method.	SA II				
32	Quadratic Equations	Find roots of a quadratic equation by using Quadratic Formula.	SA II				
33	Arithmetic Progressions	Given an AP, find the common difference, n^{th} term and S_n .	SA II				
34	Arithmetic Progressions	 Simple word problem based on a_n, S_n/ Given any two terms of an AP, to find a, d and first three terms of an AP 	SA II				
35	Logarithms	Evaluate by using the logarithm method $\frac{a^n x b}{c}$ (where n is a positive integer ≤ 3)	SA II				

36	Logarithms	Evaluate by using the logarithm method	SA II				
		$\frac{c}{a^n x b}$					
		a ^{re} x D					
		(where n is a positive integer \leq 3)					
37	Constructions	Construct tangents to a circle from an external point.	SA II				
38	Constructions	Construct similar triangles as per given scale factor.	SA II				
39	#Triangles	Proof of any one theorem	SA II				
		• B.P.T./					
		Pythagoras Theorem/					
		 converse of Pythagoras Theorem 					
		(Any two to be asked)					
40	Some Applications	Problem with figure showing	SA II				
	of Trigonometry	 an angle of elevation 					
		 an angle of depression 					
41	Circles	• Proof of Theorem 10.2 /	SA II				
		Numerical applications					
Section D (4marks)							
42	Pair of Linear	Find solution of a pair of linear equations in two	LA				
	Equations in Two	variables by graphical method.					
	Variables						
		# Internal choice to be provided					

ALTO-BETIM GOA 403521

DESIGN OF SSC FINAL EXAM QUESTION PAPER (2024-2025)

Subject : MATHEMATICS (E) - LEVEL 1 (Standard Mathematics)

Time : 3 hrsStd : XMax. Marks :80

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	8	10%
2.	Understanding	41	51.25%
3.	Application	21	26.25%
4.	Skill	10	12.5%
	Total	80	100%

2.Weightage to the different areas of Content

Chapter No.	Торіс	Marks
1.	Real Numbers	02
2.	Polynomials	05
3.	Pair of Linear Equations in Two Variables	10
4.	Quadratic Equations	07
5	Arithmetic Progressions	04
6.	Triangles	06
7.	Coordinate Geometry	04
8.	Introduction to Trigonometry	07
9.	Some Applications of Trigonometry	03
10.	Circles	04
11.	Constructions	06
12.	Areas Related to Circles	05
13.	Surface Areas and Volumes	05
14.	Statistics	06
15.	Probability	02
PDF	Logarithms	04
	Total	80

3. Weightage to different form/type of Questions

Sr. No.	Form of Questions	Marks for each question	Number of questions	Total Marks
1.	Very Short Answer Type (VSA)	1	20	20
2.	Short Answer Type I (SA-I)	2	9	18
3.	Short Answer Type II (SA-II)	3	10	30
4.	Long Answer Type (LA)	4	3	12
	Total		42	80

4. The expected time for different type of questions would be as follows:

Sr. No.	Form of Questions	Approx. time for each question in mins (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) x (n)
1.	Very Short Answer Type (VSA)	2	20	40
2.	Short Answer Type I (SA-I)	3	9	27
3.	Short Answer Type II (SA-II)	8	10	80
4.	Long Answer Type(LA)	11	03	33
	Total		42	180

5. Weightage to difficulty level of questions:

Sr. No.	Estimated difficulty level of questions	Percentage
1.	Easy	20%
2.	Average	60%
3.	Difficult	20%
	Total	100%

6. Number of Questions:

There will be **42** questions

.....

ALTO-BETIM GOA 403521

BLUE PRINT OF SSC FINAL EXAM QUESTION PAPER (2024-2025)

Subject : MATHEMATICS (E) - LEVEL 1 (Standard Mathematics)

Time: 3 hrs

Std: X

Max. Marks :80

No.	o Objectives		now	ledge		Understanding				Application				Skill				
apter	Forms of Questions	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	Total
Chi	Content / Marks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1	Real Numbers						21(2)											1(2)
2	Polynomials	1(1)				2(1)		30(3)										3(5)
3	Pair of Linear Equations in Two Variables	3(1)				4(1), 17(1)		31(3)	*40(4)								*40(4)	5 (10)
4	Quadratic Equations							32(3)					41(4)					2(7)
5	Arithmetic Progressions	5(1)						33(3)										2(4)
6	Triangles					6(1)	23(2)					34(3)						3(6)
7	Coordinate Geometry		24(2)				25(2)											2(4)
8	Introduction to Trigonometry	7(1)				8(1)	26(2)			9(1)	27(2)							5(7)
9	Some Applications of Trigonometry											35(3)						1(3)
10	Circles					10(1),18(1)	28(2)											3(4)
11	Constructions															36(3), 37(3)		2(6)
12	Areas Related to Circles	11(1)				12(1), 19(1)					22(2)							4(5)
13	Surface Areas and Volumes					13(1), 14(1)						38(3)						3(5)
14	Statistics						29(2)		*42(4)								*42(4)	2(6)
15	Probability					15(1),20(1)												2(2)
PDF	Logarithms	16(1)										39(3)						2(4)
	TOTAL	6(6)	1(2)			13(13)	6(12)	4(12)	*2(8)	1(1)	2(4)	4(12)	1(4)			2(6)	*2(8)	
			7(8	3)	24(41)					8	(21)		3(10)				42(80)	

NOTE: Figures outside the bracket indicate the question number and figures within the bracket indicate marks .

*Indicates any one will be tested from that chapter

NOTE: Questions on Skill

i)If Solution by Graphical method is tested then Mean will be tested.

ii) If Ogive is tested then Word Problem on Pair of Linear Equations will be tested.

This is a model Blueprint, paper setter may make changes in the objectives chapter wise.

PATTERN OF SSC FINAL EXAM QUESTION PAPER (2024-2025)

Subject : MATHEMATICS (E) - LEVEL 1 (Standard Mathematics)

Time: 3 hrs

Std:X

Max. Marks :80

Instructions:

- i) This question paper consists of 42 questions . All questions are compulsory.
- ii) This question paper is divided into four Sections-A, B, C and D
- iii) In Section A, Question Nos. 1 to 16 are multiple choice questions (MCQs) and Question Nos. 17 to 20 are very short answer type questions (VSA) carrying 1 mark each.
- iv) In Section B, Question Nos. 21 to 29 are short answer type I (SA-I) questions carrying 2 marks each.
- v) In Section C, Question Nos. **30 to 39** are short answer type II (SA-II) questions carrying **3 marks** each.
- vi) In Section D, Question Nos. 40 to 42 are long answer (LA) questions carrying 4 marks each.
- vii) There is no overall choice . However an internal choice has been provided in two questions of 2 marks each in section B and two questions of 3 marks each in section C.
- viii) In questions on Constructions , the drawing should be clear and exactly as per given measurements. The construction lines and arcs should also be maintained.
- ix) Graph paper is provided on the answer booklet.
- x) Logarithm and Antilogarithm tables are printed on the last pages of the question paper.
- xi) Use of calculators is not permitted.

Q.NO	TOPIC	TOPIC THRUST AREA								
-		Section A (1 montreach)	QUESTION							
Select	and write the cor	Section A (I mark each) rect alternative from those given below each stater	ment for							
auesti	auestion 1 to 16 ·									
1	Polynomials	Any concept from Polynomials	VSA (MCQ)							
2	Polynomials	Any concept from Polynomials	VSA (MCQ)							
3	Pair of Linear	Any concept from Pair of Linear	VSA (MCQ)							
	Equations in	Equations in Two Variables								
	Two Variables									
4	Pair of Linear	Any concept from Pair of Linear	VSA (MCQ)							
	Equations in	Equations in Two Variables								
	Two Variables									
5	Arithmetic	Any concept from Arithmetic Progressions	VSA (MCQ)							
	Progressions									
6	Triangles	Any concept from Triangles	VSA (MCQ)							
7	Introduction to	Any concept from Introduction to Trigonometry	VSA (MCQ)							
	Trigonometry									
8	Introduction to	Any concept from Introduction to Trigonometry	VSA (MCQ)							
	Trigonometry									

9	Introduction to Trigonometry	Any concept from Introduction to Trigonometry	VSA (MCQ)
10	Circles	Any concept from Circles	VSA (MCQ)
11	Areas Related	Any concept from Areas Related to Circles	VSA (MCQ)
	to Circles		
12	Areas Related to Circles	Any concept from Areas Related to Circles	VSA (MCQ)
13	Surface Areas and Volumes	Any question on Surface Areas	VSA (MCQ)
14	Surface Areas and Volumes	Any question on Surface areas	VSA (MCQ)
15	Probability	Any concept from Probability	VSA (MCQ)
16	Logarithm	Any concept from Logarithm	VSA (MCQ)
	0		
17	Pair of Linear Equations in Two Variables	 Find the value of k for which the given pair of linear equations has a unique solution or no solution or infinitely many solutions / Find whether the given pair of linear equations are consistent or inconsistent/ Write a pair of Linear equations in two variables for a simple word problem. 	VSA
18	Circle	Numerical problem	VSA
19	Areas related to Circles	 Find length of the arc of a circle/ Find the area of a sector of a circle (figure may be provided) (Do not substitute for π) 	VSA
20	Probability	Find the probability of an event	VSA
		Section B (2 marks each)	
21	Real Numbers	 Find HCF of two numbers using Euclid's Division Algorithm/ Find the HCF/LCM by prime factorisation method/ Without performing long division method find whether the given rational number is terminating or nonterminating and hence write its decimal expansion. 	SA-I
22	Areas Related to Circles	Find the area of shaded region	SA-I
23	Triangles	Numerical application based on any one of the four theorems on Triangles	SA-I
24	Coordinate	• Problem based on distance formula /	SA-I
	Geometry	Problem based on section formula	
25	#Coordinate Geometry	 Using the area of a triangle formula in Co-ordinate Geometry find area of a triangle OR unknown co-ordinate 'k' of any one vertex of the triangle OR area of a special parallelogram (Any two to be asked) 	SA-I

26	#Introduction to Trigonometry	 Given a trigonometric ratio, find the value of another trigonometric ratio using k method OR Evaluate trigonometric expression using known trigonometric values of specific angles. 	SA-I
27	Introduction to	Prove a trigonometric identity	SA-I
	Trigonometry	 N.B. (Proof of Basic identities sin²A+ cos²A=1 1 +tan²A= sec²A 1+ cot²A = cosec²A NOT to be asked) 	
28	Circle	Numerical problem	SA-I
29	Statistics	• Find the mode of grouped data /	SA-I
		• Find the median of grouped data	
		Section C (3 marks each)	
30	Polynomials	 Find q(x) and r(x) when p(x) is divided by g(x) and hence express result in the form p(x) = g(x) × q(x) + r(x)/ Verification of Division Algorithm/ To find g(x) when p(x), q(x) and r(x) are given/ Given two zeroes of a polynomial find its remaining two zeroes. 	SA-II
31	#Pair of Linear Equations in Two Variables	 Find the solution of the pair of linear equations by Elimination method OR Find the solution of the pair of linear equations by Substitution /Cross multiplication method 	SA-II
32	#Quadratic Equations	 Find roots of the quadratic equation by Factorisation method OR Find roots of the quadratic equation by using Quadratic formula /Completing square method 	SA-II
33	Arithmetic	• Numerical problem/	SA-II
	Progression	• Word problem based on a_n/S_n /both	
34	Triangles	Prove a rider on Triangles	SA-II
35	Some Applications of Trigonometry	 Word problem with figure showing two angles of elevation / two angles of depression / one angle of elevation and one angle of depression. 	SA-II
36	Construction	Construct tangents to a circle from an external point.	SA-II
37	Construction	Construct similar triangles as per given scale factor	SA-II
38	Surface Area and Volume	Word problem on concept of volume of combination of two or more solids	SA-II

39	Logarithm	Evaluate by using logarithm method:	SA-II
		• $\frac{a^n x \sqrt[m]{b}}{c}$ / • $\frac{n\sqrt{a \times b}}{c}$ / • $\frac{c}{a^n x \sqrt[m]{b}}$ / • $\frac{c}{\sqrt[n]{a \times b}}$ Where m, n are positive integers ≤ 3 Section D (4 marks each)	
40	Pair of Linear	• Word problem /	LA
	Equations in Two Variables	• Find solution of a pair of linear equations in two variables graphically	
41	Quadratic Equations	Word problem	LA
42	Statistics	 Find mean by assumed mean method / step deviation method / Cumulative frequency curve (given 6 class intervals) 	LA
		# internal choice to be provided	

ALTO – BETIM GOA 403521

DESIGN OF SSC FINAL EXAM QUESTION PAPER (2024 – 2025)

Subject: MATHEMATICS(E)-LEVEL 2 (BASIC MATHEMATICS)

Time: 3 Hours

STD : X

Max. Marks: 80

The Weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1	Knowledge	8	10 %
2	Understanding	44	55 %
3	Application	18	22.5 %
4	Skill	10	12.5 %
	Total	80	100 %

2. Weightage to the different areas of Content

Chapter No.	Торіс	Marks
1	Real Numbers	02
2	Polynomials	05
3	Pair of Linear Equations in two Variables	10
4	Quadratic Equations	07
5	Arithmetic Progression	04
6	Triangles	06
7	Coordinate Geometry	04
8	Introduction to Trigonometry	07
9	Some Applications of Trigonometry	03
10	Circles	04
11	Constructions	06
12	Areas Related to Circles	05
13	Surface Areas and Volumes	05
14	Statistics	06
15	Probability	02
PDF	Logarithms	04
	Total	80

3.Weightage to different form/type of Questions

Sr. No.	Types of Questions	Marks for	Number of	Total
		each question	questions	Marks
1	Very Short Answer Type (VSA)	01	20	20
2	Short Answer Type I (SA-I)	02	08	16
3	Short Answer Type II (SA II)	03	12	36
4	Long Answer Type (LA)	04	02	08
		Total	42	80

Sr. No	Form of Questions	Approx time for each question in mins (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) × (n)
1.	Very Short answer Type (VSA)	2	20	40
2.	Short Answer Type I (SA-I)	3	08	24
3.	Short Answer Type II (SA-II)	8 .	12	96
4.	Long Answer Type (LA)	10	02	20
	Total		42	180

.

3. The expected time for different type of questions would be as follows:

4. Weightage to Difficulty Level of Questions

Sr. No.	Estimated Difficulty level of Questions	Percentage
1	Easy	20 %
2	Average	60 %
3	Difficult	20 %
	Total	100 %

5. Number of Questions:

There will be 42 questions

ALTO-BETIM GOA 403521

BLUE PRINT OF SSC FINAL EXAM QUESTION PAPER (2024-2025)

Subject : MATHEMATICS (E) - LEVEL 2 (Basic Mathematics)

Time : 3 hrs

Std:X

Max. Marks :80

Sr No	Objectives		Knowled	lge			Unders	tanding			Applic	ation			ę	Skill		
	Forms of Questions	VSA	SAI	SA II	LA	VSA	SAI	SA II	LA	VSA	SAI	SA II	LA	VSA	SA I	SA II	LA	
	Content/marks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	Total
1	Real Numbers						21(2)											1(2)
2	Polynomials	1(1)				17(1)		29(3)										3(5)
3	Pair of Linear Equations in Two Variables	2(1)				3(1) 18(1)		30(3)									42(4)	5(10)
4	Quadratic Equations	4(1)						31(3) 32(3)										3(7)
5	Arithmetic Progressions					5(1)		33(3)										2(4)
6	Triangles							37(3)		6(1)	26(2)							3(6)
7	Coordinate Geometry		27(2)								28(2)							2(4)
8	Introduction to Trigonometry					7(1) 8(1)	24(2) 25(2)			9(1)								5(7)
9	Some applications of Trigonometry							38(3)										1(3)
10	Circles					10(1)						39(3)						2(4)
11	Constructions															35(3) 36(3)		2(6)
12	Areas related to Circles	11(1)				12(1)	22(2)			19(1)								4(5)
13	Surface Areas and Volumes					14(1)				13(1)		40(3)						3(5)
14	Statistics						23(2)		41(4)									2(6)
15	Probability	15(1)								20(1)								2(2)
PDF	Logarithms	16(1)										34(3)						2(4)
		6(6)	1(2)			9(9)	5(10)	7(21)	1(4)	5(5)	2(4)	3(9)				2(6)	1(4)	
	Total		7(8)				22(44)			10(1	18)			3	(10)		42(80)

NOTE: Figures outside the bracket indicate the question number and figures within the bracket indicate marks.

This is a model Blue print, paper setter may make changes in the objectives chapter wise.

PATTERN OF SSC FINAL EXAM QUESTION PAPER (2024 – 2025)

SUBJECT: MATHEMATICS (E) LEVEL – 2 (BASIC MATHEMATICS)

TIME: 3 Hrs

STD:X MAX.

MAX. MARKS: 80

INSTRUCTIONS:

- (i) This question paper consists of **42** questions. All questions are **compulsory**.
- (ii) This question paper is divided into four sections -A, B, C and D
- (iii) In Section A, questions Nos. 1 to 16 are multiple choice questions (MCQs) and questions Nos. 17 to 20 are very short answer type questions (VSA) carrying 1 mark each.
- (iv) In Section B, Questions Nos. 21 to 28 are short answer type I (SA- I) questions carrying 2 marks each.
- (v) In Section C, Questions Nos. 29 to 40 are short answer type II (SA- II) questions carrying 3 marks each
- (vi) In Section D, Questions Nos. 41 and 42 are long answer (LA) questions carrying 4 marks each.
- (vii) There is no overall choice. However, an internal choice has been provided in **two**

Questions of 2 marks each in section B and two questions of 3 marks each in section C.

- (viii) In questions on constructions, the drawing should be clear and exactly as per the given measurements. The construction lines and arcs should also be maintained.
- (ix) Graph paper is provided on the answer booklet.
- (x) Logarithm and Antilogarithm tables are printed on the last pages of the question paper.
- (xi) Use of calculator is not permitted.

Q.	ΤΟΡΙϹ	THRUST AREAS	Type of							
No.			Question							
	Section A (1 mark each)									
Sele	ect and write the correct a	Iternative from those given below each statement for quest	ion 1 to 16:							
1	1 Polynomials Any concept from Polynomials									
			(MCQ)							
2	Pair of Linear Equations	Any concept from Pair of Linear Equations in Two	VSA							
	in Two Variables	Variables	(MCQ)							
3	Pair of Linear Equations	Any concept from Pair of Linear Equations in Two	VSA							
	in Two variables	Variables	(MCQ)							
4	Quadratic Equations	Any concept from Quadratic Equations	VSA							
			(MCQ)							
5	Arithmetic Progressions	Any concept from Arithmetic Progression	VSA							
			(MCQ)							
6	Triangles	Any concept from Triangles	VSA							

			(MCQ)
7	Introduction to	Any concept from Introduction to Trigonometry	VSA
	Trigonometry		(MCQ)
8	Introduction to	Any concept from Introduction to Trigonometry	VSA
	Trigonometry		(MCQ)
9	Introduction to	Any concept from Introduction to Trigonometry	VSA
	Trigonometry	, , ,	(MCQ)
10	Circles	Any concept from Circles	VSA
		, .	(MCQ)
11	Areas Related to Circles	Any concept from Areas Related to Circles	VSA
		, 1	(MCQ)
12	Areas Related to circles	Any concept from Areas Related to Circles	VSA
		, ,	(MCQ)
13	Surface areas and	Any concept from Surface Areas	VSA
	Volumes	, 1	(MCQ)
14	Surface Areas and	Any concept from Surface Areas	VSA
	Volumes	, ,	(MCQ)
15	Probability	Any concept from Probability	VSA
	,	, , , ,	(MCQ)
16	Logarithms	Any concept from Logarithms	VSA
	5	, , , , , , , , , , , , , , , , , , , ,	(MCQ)
17	Polynomials	• Find sum or product of zeroes/	VSA
		 write a quadratic polynomial given sum and product of 	
		zeroes/given two zeroes/	
		 Given the sum/product of zeroes of a quadratic 	
		polynomial to find the unknown coefficient	
		 Find the zeroes of a guadratic polynomial/ 	
		 Find dividend, given guetient, remainder and divisor 	
10	Dair of Linear Equations	 Find dividend, given quotient, remainder and divisor. Droblems based on the existence of colutions of a pair. 	\/S A
10	in Two Variables	 Problems based on the existence of solutions of a pair of linear equations in two variables (Table 2.4)/ 	VSA
	In Two variables	of linear equations in two variables (Table 3.4)	
		• Find the value of k for which the given pair of linear	
		equations has unique solution or no solution or	
		infinitely many solutions.	
19	Areas Related to Circles	• Find length of arc of a circle/	VSA
		area of sector of a circle.	
		(figure may be provided) (Do not substitute for π)	
20	Probability	Find probability of given events.	VSA
		Section B (2 marks each)	
21	#Real Numbers	 a) Find HCF of two numbers using 	SA I
		Euclid's Division Algorithm. /	
		b) Find HCF/LCM by prime factorisation method.	
		(anyone from a and b to be asked)	
		OR	
		Without performing 'long division' method, to find	
		whether the given rational number is terminating or	
		non-terminating and to write its decimal expansion.	
22	Areas Related to Circles	Find area of shaded region.	SA I
23	Statistics	Find mode of grouped data.	SA I
24	Introduction to	Given a trigonometric ratio, to find the value of other	SA I
	Trigonometry	trigonometric ratio using k method.	
25	Introduction to	Evaluate given expression by substituting the known	SAI
	Trigonometry	values of trigonometric ratios.	

26	Triangles	Numerical application based on any one of the four	SA I
		theorems on Triangles.	
27	#Coordinate Geometry	Problem based on the concept of distance formula.	SA I
		OR	
		Problem based on the section formula.	
28	Coordinate Geometry	Problem based on the concept of area of a triangle.	SA I
		Section C (3 marks each)	
29	Polynomials	Divide a cubic polynomial p(x) by a linear polynomial g(x)	SA II
		and write the result in the form	
		$p(x) = q(x) \times g(x) + r(x)$	
30	# Pair of Linear	 Find the solution of the pair of 	SA II
	Equations in Two	linear equations by Elimination	
	Variables	method.	
		OR	
		• Find the solution of the pair of linear equation by	
		substitution method.	
31	Quadratic Equations	Find roots of a quadratic equation by Factorisation	SA II
		method.	
32	Quadratic Equations	Find roots of a quadratic equation by using quadratic	SA II
		formula.	
33	Arithmetic Progressions	Given an AP, to find common difference, n th term, sum of	SA II
		n terms.	
34	Logarithms	Evaluate by using the logarithm method	SA II
		$\left \frac{a^n \times b}{c}\right $ or $\frac{c}{a^n \times b}$ (where n is a positive integer ≤ 3)	
35	Constructions	Construct tangents to a circle from an external point.	SA II
36	Constructions	Construct similar triangles as per given scale factor.	SA II
37	#Triangles	Proof of any one theorem	SA II
		• B.P.T./	
		Pythagoras Theorem/	
		 converse of Pythagoras theorem 	
		(Any two to be asked)	
38	Some Applications of	Problem with figure showing	SA II
	Trigonometry	 an angle of elevation 	
		an angle of depression	
39	Circles	• Proof of Theorem 10.2 /	SA II
		Numerical applications	
40	Surface Areas and	Word problem on concept of volume of combination of	SA II
	Volumes	two solids.	
		Section D (4 marks each)	
41	Statistics	Find Mean by Direct method. (Given six class intervals)	LA
42	Pair of Linear Equations	Find solution of a pair of linear equations in two variables	LA
	in Two Variables	by graphical method.	
		# Internal choice to be provided	

ALTO-BETIM GOA 403521

SSC FINAL EXAM -PRACTICE QUESTION PAPER (2024 – 2025)

Subject : MATHEMATICS (E) – LEVEL 1 (Standard Mathematics)

Time : 3 hrsStd : XMax. Marks : 80

INSTRUCTIONS:

i) This question paper consists of **42** questions . All questions are compulsory.

ii) This question paper is divided into four Sections-A, B, C and D

iii) In Section A, Question Nos.1 to 16 are multiple choice questions (MCQs) and Question Nos.17 to 20 are very short answer type questions (VSA) of 1 mark each.

iv) In Section B, Question Nos. 21 to 29 are short answer type I (SA-I) questions carrying 2 marks each.

v) In Section C, Question Nos. **30 to 39** are short answer type II (**SA-II**) questions carrying **3marks each.**

vi) In Section D, Question Nos.40 to 42 are long answer (LA) questions carrying 4marks each.

vii) There is no overall choice. However an **internal choice** has been provided in **two questions** of **2marks each in Section B** and **two questions of 3marks each in Section C**.

viii) In questions on Constructions, the drawing should be clear and exactly as per given measurements. The construction lines and arcs should also be maintained.

ix) Graph page is provided on the answer booklet.

x) Logarithm and Antilogarithm tables are printed on the last page of the question paper.

xi) Use of calculators is not permitted.

Section A (1 mark each)

Select and write the correct alternative from those given below each statement for question 1to16 :

1 The quadratic polynomial in x, whose zeroes are -7 and 4, is: • $x^2 + 3x - 28$ • $x^2 - 3x - 28$ • $x^2 + 3x + 28$ • $x^2 - 3x - 28$

2 If one of the zeroes of the quadratic polynomial $(k-1)x^2 + kx+1$ is -3, then the value of k is: • (-4)/3 • (-2)/3 • 2/3 • 4/3

- 3 The pair of linear equations 5x 15y = 8 and 3x 9y = 24/5 have
 •No solution
 •Unique solution
 •Exactly two solutions
 Infinitely many solutions
- 4 Father's age is six times his son's age. Four years hence, the age of the father will be four times his son's age. The present ages, in years, of the son and the father are respectively
 - 4 and 24 5 and 30 6 and 36 7 and 42
- 5 The 11th term of the AP : 25, 50, 75, 100.....is • 225 • 250 • 275
- 6 If △ABC ~△ DEF and AB=4 cm, DE=6 cm, EF=9 cm and FD=12 cm, then the perimeter of △ ABC is:

• 300

- 18 cm 20 cm 21 cm 22 cm
- 7 If $1 + \tan^2 36^\circ = \sec^2 3A$ where 3A is an acute angle, then the value of A is:
 - 12° 18° 36° 54°

8	The simplified form of (cosecA- cotA) (1+cosA) is :• sinA• cosA• cosecA• secA
9	If $\sin A - \cos A = 0$ then the value of $\sin^4 A - \sin^2 A$ is : • $-3/4$ • $-1/4$ • $1/4$ • $3/4$
10	If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm, then length of each tangent is equal to : • $\sqrt{3}$ cm • 6 cm • 3 cm • 3 $\sqrt{3}$ cm
11	The circumference of a circle that can be inscribed in a square of side 10cm is: • 10π cm • 20π cm • 25π cm • 100π cm
12	A wire can be bent in the form of a circle of radius 56 cm. If it is bent in the form of a square, then its area will be: $(\text{Take } \pi = \frac{22}{7})$ • 3520 cm ² • 6400 cm ² • 7744 cm ² • 8800 cm ²
13	A piece of paper is in the shape of a semicircular region of radius 10 cm. It is rolled to form a right circular cone. The slant height of the cone is:• 5 cm• 10 cm• 10 cm• 15 cm• 20 cm
14	When two same solid hemispheres of equal base radius r cm are attached together along with their bases, the total surface area of the combination is: • $6\pi r^2$ • $4\pi r^2$ • $3\pi r^2$ • $2\pi r^2$
15	3 cards of hearts and 4 cards of spades are missing from a pack of 52 cards. A card isdrawn at random from the remaining pack. The probability of getting a black card is:• 23/52• 22/52• 22/45• 23/45
16 17	The value of log 800 - log 8 is : • 1 • 2 • 100 • 792 Find whether the following pair of linear equations is consistent or inconsistent: 4x + 3y - 1 = 5 and $12x + 9y = -18$
18	In the given figure, a circle touches the side DF of \triangle EDF at H and touches ED and EF produced at K & M respectively. If EK = 9 cm, calculate the perimeter of \triangle EDF
19	Find the area of a sector of a circle with radius 6 cm if the angle of the sector is 60° . (Do not substitute for π)
20	Amita calculates that the probability of her winning a lottery is 0.08 . If 6000 tickets were sold find the number of tickets she bought.
21	Find the HCF of 145 and 325 using Euclid's Division Algorithm.
22 23	A race track is in the form of a circular ring whose outer and inner circumference are 396m and 352m respectively. Find the width of the track. In \triangle ABC,DE BC. If AD=4, AE=8, DB = x-2 and EC = 3x-19, then find the value of x

24 If the distance between the points A(2, -2) and B(-1, x) is equal to 5,then find the value of x

25 If P(-3, 2), Q(7, 6) and R(-1, 4) are the vertices of \triangle PQR and QS is its median find the area of \triangle PQS

OR

Find the value of k for which the area of the triangle formed by the points A (1, k), B (4, -3) and C (-9, 7) is 15 square units.

26 In $\triangle APQ$, $\angle APQ = 90^{\circ}$ and $\cos Q = \frac{15}{17}$ Find the length of AP and value of $\cot A$

OR

Evaluate the following trigonometric expression using known trigonometric values: 4 cos $^2\,60^\circ\text{+}$ cosec^245° - 6 cot^230°

- 27 Prove the trigonometric identity: $\frac{\sin A \cdot tanA}{1 cosA} = \sec A + 1$
- In the given figure, a circle is inscribed in a quadrilateral ABCD in which ∠B = 90°.
 If AD = 23 cm, AB = 29 cm and DS = 5 cm, find the radius of the circle.

29 Find the median of the following data:

		0			
CI	0 - 10	10 - 20	20 - 30	30 -40	40- 50
Frequency	5	15	30	8	2

(Write your answer correct up to one place of decimal)

Section C (3 mark each)

- 30 On dividing the polynomial $6x^3 + 8x^2 3x + 8$ by the polynomial g(x), the quotient and the remainder are 3x + 4 and 6x + 20 respectively. Find g(x)
- Find the solution of the pair of linear equations:
 11x 7y = 57 and 14x + 5y = 3 by elimination method
 OR

Find the solution of the pair of linear equations: 7x - 3y = 15 and 5x + 11y - 37 = 0 by cross multiplication method

32 Find the roots of the quadratic equation: $15x^2 - 4x - 3 = 0$ by factorisation method. **OR**

Find the roots of the quadratic equation: $2x^2 - 3x - 5 = 0$ by completing the square method.

- 33 From 15th January, Sheena decided to save her pocket money daily. The amount of saving is equal to the date of the month. On 31st January, she decided to give a gift to her mother worth ` 200 from her savings. What is the amount left with Sheena at the end of the month?
- 34 In the given figure, \Box DEFG is a square and \angle BAC = 90°. Show that FG² = BD × EC.

The angles of depression of the top and bottom of a 50 m high building DC from the top of a tower AB are 45° and 60° respectively. Find the height of the tower and the horizontal distance between the tower and the building, $(take \sqrt{3} = 1.73)$

- 36 Draw a circle with centre O and radius 3.5cm Take a point R at a distance of 7.7cm from O. Construct tangents RS and RP from external point R. Measure and state the length of the tangent segments.
- 37 Using a pair of compasses and ruler construct $\triangle PQR$ with PQ =8.1cm ,QR = 7.5cm and $\triangle PQR$ = 75°. Then construct $\triangle P'Q'R$ whose sides are 5/2 of the corresponding sides of $\triangle PQR$.
- 38 A tent consists of a frustum of a cone, surmounted by a cone. If the diameter of the upper and lower circular ends of the frustum be 14 m and 26 m respectively, the height of the frustum be 8 m and the slant height of the surmounted conical portion be 12 m, find the area of canvas required to make the tent. (Assume that the radii of the upper circular end of the frustum and the base of surmounted conical portion are equal). (take $\pi = \frac{22}{7}$)
- 39 Evaluate the following expression by using the logarithm method:

 $\frac{(6.782)^3 \times \sqrt{0.0043}}{35.29}$

Section D (4 mark each)

40 Find the solution of the following pair of linear equations graphically. 3x + 2y = -4 and 2x - 3y = 19Downits and complete the following tehlow:

Rewrite and complete the following tables:

3x + 2y = -4

2x - 3y = 19

х			х		
у			у		

- 41 Abdul takes 6 days less than the time taken by Ramesh to finish a piece of work. If both Abdul and Ramesh together can finish that work in 4 days, find the time taken by Ramesh to finish the work independently.
- 42 The following table shows the data regarding the height in cms of students of class X . Find the mean height of students of the class taking 'a' as assumed mean of the interval 162-168 using assumed mean method.

Heights	fi	xi	di	fidi
150-156	4			
156-162	7			
162-168	12			
168-174	8			
174-180	6			
180-186	3			
	Σ fi=			Σ fidi=

SSC PRACTICE PAPER

Mathematics (E) Level 1 – Standard Mathematics

Model Answers and Marking Scheme

Note: Any alternative method unless otherwise specified should be considered for full credit

	Section A (1 mark each)	
1	$x^2 + 3x - 28$	1
2	4/3	1
3	Infinitely many solutions	1
4	6 and 36	1
5	40	1
6	18	1
7	12°	1
8	Sin A	1
9	-1/4	1
10	$3\sqrt{3}$	1
11	10π cm	1
12	7744cm ²	1
13	10cm	1
14	$4 \pi r^2$	1
15	22/45	1
16	2	1
17	$\frac{a1}{a} = \frac{4}{a} = \frac{1}{a}$, $\frac{b1}{a} = \frac{3}{a} = \frac{1}{a}$, $\frac{c1}{c1} = \frac{-6}{a} = \frac{-1}{a}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{a^2} = \frac{1}{b^2} \neq \frac{1}{c^2}$ \therefore No solution hence inconsistent $\frac{1}{2}$	1
18	Perimeter of \triangle EDF=ED+DF+EF	
	=ED+DH+HF+EF	
	= ED + DK + FM + EF ^{1/2}	1
	$= EK + EM = 2(EK) = 2 \times 9 = 18 \text{ cm}$ $\frac{1}{2}$	1
19	$\theta = \frac{\theta}{1}$	
	Area of the sector = $\frac{1}{360} \times \Pi r^2 = \frac{1}{360} \times \Pi \times 6^2$ ¹ / ₂	1
	$= 6\pi \text{ cm}^2$	1
20	Let the number of tickets she bought be x	
	P(she wins the lottery) = $\frac{x}{6000}$ =0.08 $\frac{1}{2}$	
	$x = 0.08 \ge 6000 = 480$ ¹ / ₂	1
21	2	
	145 325	
	$290 4$ $\frac{1}{2}$	
	35 145	
	$\frac{140}{140}$ $\frac{7}{1/2}$	
	5 35	
	$\frac{35}{22}$	
		2
	HCF (145, 325) = 5 $\frac{1}{2}$	

22	Let the radius of the outer track and inner track be l	R and r respectively		
	$2\pi R= 396$ and $2\pi r = 352$	1/2		
	$R = \frac{396 \times 7}{2000} r = \frac{352 \times 7}{2000}$	1/2		
	R = 63 = 56	1/2		
	Width of the track = $63 - 56 = 7$ cm	1/2		2
23	$\frac{AD}{AD} = \frac{AE}{AE}$ (DE BC)			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17		
	$\frac{1}{x-2} = \frac{1}{3x-19}$	1/2		
	4(3x-19) = 8(x-2)	1/2		
	12x-76 = 8x - 16	1/2		
	4x = 60	14		
	x - 15	72	2	2
24	$AD = \sqrt{(1-2)^2 + (1+2)^2}$	17		
27	$AB = \sqrt{(-1-2)^2 + (x+2)^2} = 5$	⁴ /2		
	$9 + x^2 + 4x + 4 = 25$	72 1/		
	$x^2 + 4x - 12 = 0$ (x + 6)(x - 2) = 0	72		
	x = -6 or x = 2	1/2		
		,2		2
25	S is the midpoint of PR : $S(\frac{-3-1}{2}, \frac{2+4}{2}) = S(-2, 3)$	1/2		
	$ar (\triangle POS) = \frac{1}{2} [-3(6-3) + 7(3-2) - 2(-2-6)]$	1/2		
	$\frac{1}{2} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ $	1/		
	$= \frac{1}{2} [-9 + 7 + 8]$	*/2		
	$=\frac{1}{2}$ [6] = 3 sq units	$\frac{1}{2}$		
	OR			
	ar ($\triangle ABC$) = $\frac{1}{2}$ [1(-3-7) +4(7-k) -9(k +3)] = 15	1/2		
	[-10 +28 -4k -9k -27] = 30	1/2		
	-9 - 13k = 30	1/2		
	- 13k = 39		0	2
	k = -3	1/2	2	4
- 06				
26	$\cos Q = 15/17$, Let $QP = 15K$, $QA = 17K$	17 117		
	$(8, 15, 17)$ is a Pythagorean triplet \therefore AP = 8k	$\gamma_2 + \gamma_2$		
	$\cot A = \frac{1}{15k} = \frac{1}{15}$	$\frac{1}{2} + \frac{1}{2}$		
	OR			
	$4 \cos^2 60^\circ + \csc^2 45^\circ - 6 \cot^2 30^\circ$			
	$4(\frac{1}{2})^2$ + $(\sqrt{2})^2$ - $6(\sqrt{3})^2$	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
	1 + 2 - 18 = -15	1/2	2	2
27	$\frac{\sin A \tan A}{(1-\cos A)} = \sec A + 1$			
	I I I O Sin A tan A sin2 A	1/		
	$LHS = \frac{1}{(1 - \cos A)} = \frac{1}{\cos A(1 - \cos A)}$	1/2		
	$= \frac{1 - \cos^2 A}{1 - \cos^2 A} = \frac{(1 - \cos A)(1 + \cos A)}{1 - \cos^2 A}$	1/2		
	$\begin{array}{c} \cos A(1-\cos A) & \cos A(1-\cos A) \\ (1+\cos A) & 1 \end{array}$	cosA		
	$= \frac{(1+\cos A)}{\cos A} = \frac{1}{\cos A} + \frac{1}{\cos A$	$\frac{1}{\cos A}$		2
		= secA +1 =RHS	2	4

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	DS = DR = 5c	em			1/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		AR= AD-DR =	23-5= 18			1/2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AQ=AR= 18					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		BQ= AB-AQ =	29-18 = 11			1/2	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		radius = OQ=	BQ = 11cm			1/2	2
$ \begin{array}{ c c c c c c c c } \hline Circle & Curculative Freq} & n = 60, & n/2 = 30 \\ \hline 0 \cdot 10 & 5 & 5 \\ \hline 0 \cdot 20 & 15 & 5 + 15 = 20 \\ \hline 20 \cdot 30 & 30 & 20 + 30 = 50 \\ \hline 30 \cdot 40 & 8 & 50 + 8 = 58 \\ \hline 40 \cdot 50 & 2 & 58 + 2 = 60 \\ \hline \hline & & & & & & & & \\ \hline & & & & & & &$	29					/ 24	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,7	CI	Frequency	Cumulative Freq	n = 60, n/2 = 30		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 - 10	5	5	Median class 20 – 30	<i>l</i> =20	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10 - 20	15	5+15=20	Modion = $1 + \left[\frac{n}{2} - cf\right]$	ch 1/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		20 - 30	30	20 + 30 = 50	$\frac{1}{f} = \frac{1}{f} + \left[\frac{1}{f}\right] \times \frac{1}{f}$.n 72	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		30 - 40	8	50 + 8 = 58	$= 20 + \left[\frac{30 - 20}{30}\right] \times 10$	$\frac{1}{2} + \frac{1}{2}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		40- 50	2	58+2 =60	$= 20 + \frac{10}{2}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	00.2 00	= 23. 3	1/2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							4
$ \begin{array}{c} 6x^3 + 8x^2 - 3x + 8 &= g(x) \times (3x + 4) + (6x + 20) & \frac{1}{2} \\ \frac{6x^3 + 8x^2 - 3x + 8 - 6x - 20}{3x + 4} &= g(x) & \frac{1}{2} \\ \frac{3x + 4}{3x + 4} &= \frac{2x^2 - 3}{6x^2 + 8x^2 - 9x - 12} & \frac{1}{2} \\ \frac{3x + 4}{6x^2 + 8x^2 - 9x - 12} & \frac{1}{2} \\ \frac{-9x - 12}{-9x - 12} & \frac{1}{2}$	30	p(x) = g	(x) x q(x) +	r(x)			
$\begin{bmatrix} \frac{633+932-33+9-63-20}{3x+4} = g(x) & \frac{1}{2} & \frac{1}{2} \\ \frac{3x+4}{3x+4} = \frac{2x^2-3}{6x^4+8x^3-9x-12} & \frac{1}{2} \\ \frac{3x+4}{6x^4+8x^3-9x-12} & \frac{1}{2} \\ \frac{-9x-12}{-\frac{1}{2}} & \frac{1}{2} \\ \frac{-9x-12}{-\frac{1}{2}} & \frac{1}{2} \\ \frac{-9x-12}{-\frac{1}{2}} & \frac{1}{2} \\ \frac{-9x-12}{-\frac{1}{2}} & \frac{1}{2} \\ g(x) = 2x^2-3 & \frac{1}{2} \\ g(x) = 2x^2-3 & \frac{1}{2} \\ g(x) = 2x^2-3 & \frac{1}{2} \\ \frac{11x-7y=57}{55x-35y=285} & \frac{1}{2} \\ \frac{98x+35y=21}{153x=206} & \frac{1}{2} \\ \frac{98x+35y=21}{153x=206} & \frac{1}{2} \\ \frac{98x+35y=21}{153x=206} & \frac{1}{2} \\ \frac{98x+35y=21}{153x=206} & \frac{1}{2} \\ \frac{98x+35y=21}{153x=2} & \frac{1}{2} \\ \frac{1}{11x-(165)} & \frac{1}{2} \\ \frac{x}{276} = 3 \\ x=\frac{276}{92} = 3 \\ x=\frac{276}{92} = 2 \\ \frac{1}{153x=2} & \frac{1}{2} \\ \frac{3}{11} \\ \frac{x}{11x-(165)} = \frac{1}{153x=2} \\ \frac{x}{184} = 2 \\ \frac{x}{184} = 2 \\ \frac{x}{184} = 2 \\ \frac{3}{184} = \frac{3}{184} = 2 \\ \frac{3}{184} = \frac{3}{184} = 2 \\ \frac{3}{184} = \frac{3}{184} = \frac{3}{184} = 2 \\ \frac{3}{184} = \frac{3}{184$		$6x^3 + 8x^2 - 3$	3x + 8 = g(x)	(3x + 4) + (6x + 20)		1/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6x3 +8x2 -3x	$\frac{+8-6x-20}{-20} = 9$	(x)		1/2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3x +	- 4 – g	()		14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 x	² – 3		1/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3x +4 6x ^β +	8x / - 9x - 12		, _	
$\frac{1}{9x-12} - \frac{1}{9x-12} - $			6x/3+ 8	8x ²		1/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_ /			
$\begin{array}{c} -\frac{7}{4} + \frac{1}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} & \frac{7}{4} \\ g(x) = 2 x^2 - 3 & \frac{7}{4} & \frac{7}{4} & \frac{7}{4} \\ g(x) = x = \frac{366}{152} = 2 & \frac{7}{4} & \frac{7}{4} \\ g(x) = x = \frac{366}{152} = 2 & \frac{7}{4} & \frac{7}{4} \\ g(x) = x = \frac{366}{152} = 2 & \frac{7}{4} & \frac{7}{4} \\ g(x) = x = \frac{366}{152} = 2 & \frac{7}{4} & \frac{7}{4} \\ g(x) = x = \frac{7}{11} & \frac{7}{11} - \frac{7}{11} & \frac{7}{11} - \frac{7}{11} & \frac{7}{11} & \frac{7}{11} - \frac{7}{11} & \frac{7}{11} & \frac{7}{11} - \frac{7}{11} & \frac{7}{11} & \frac{7}{11} & \frac{7}{11} & \frac{7}{11} - \frac{7}{11} & \frac{7}{11} &$				-9x - 12		17	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-9x - 12		1/2	
$g(x) = 2 x^{2} - 3 \qquad \frac{1}{2} \qquad \frac{3}{2}$ 31 $11x - 7y = 57 - \dots (i) x 5$ $14x + 5y = 3 - \dots (i) x 7$ $55x - 35y = 285 \qquad \frac{1}{2}$ $98x + 35y = 21$ $153x = 306 \qquad \frac{1}{2}$ $x = \frac{306}{153} = 2 \qquad \frac{1}{2}$ substitute $x = 2 \text{ in } 11x - 7y = 57$ $11(2) - 7y = 57$ $22 - 7y = 57$ $-7y = 57 - 22$ $y = \frac{35}{-7}$ $y = -5 \qquad \frac{1}{2}$ The solution is $x = 2$ and $y = -5$ $0R$ $7x - 3y - 15 = 0 \text{ and } 5x + 11y - 37 = 0$ $b c a b$ $-3 -15 7 -3 \qquad \frac{1}{2}$ $11 -37 5 111$ $\frac{x}{11-(-165)} = \frac{y}{-75-(-259)} \frac{1}{77-(-15)} \qquad \frac{1}{2} + \frac{1}{2}$ $\frac{x}{276} = \frac{y}{92} = 3 \text{ and } y = \frac{184}{92} = 2 \qquad \frac{1}{2}$ The solution is $x = 3$ and $y = 2$ $\frac{3}{2}$							
31 11x - 7y = 57(i) x 5 14x + 5y = 3(ii) x 7 55x - 35y = 285 $\frac{1}{2}$ 98x + 35y = 21 153x = 306 153x = 306 $\frac{1}{2}$ $x = \frac{306}{153} = 2$ $\frac{1}{2}$ substitute x = 2 in 11x - 7y = 57 $\frac{1}{2}$ $22 - 7y = 57$ $\frac{1}{2}$ $y = \frac{35}{7}$ $\frac{1}{2}$ $y = -5$ $\frac{1}{2}$ The solution is x = 2 and y = -5 $\frac{1}{2}$ $0R$ $\frac{1}{2}$ $7x - 3y - 15 = 0$ and $5x + 11y - 37 = 0$ $\frac{1}{2}$ b c a -3 -15 7 -3 $\frac{1}{11 - (-165)} = \frac{y}{-75 - (-259)} \frac{1}{77 - (-15)}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{x}{276} = \frac{y}{184} = \frac{1}{92}$ $\frac{1}{2}$ $\frac{3}{2}$ The solution is x=3 and y = 2 $\frac{3}{2}$		$g(x) = 2 x^2$	- 3			1/2	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
14x + 5y = 3(1) x 7 $55x - 35y = 285$	31	11x - 7y =	= 57	(i) x 5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14x + 5y =	= 3 005	(ii) x 7		1/	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		33X - 33	y = 285			1/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{90x + 30}{153x}$	= 306			1/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1001	$x = \frac{306}{2} = 2$			1/2	
Substitute $-2 \ln 11x - 7y = 57$ 11(2) - 7y = 57 22 - 7y = 57 -7y = 57 - 22 $y = \frac{35}{-7}$ y = -5 The solution is $x = 2$ and $y = -5$ y = -5 1/2 The solution is $x = 2$ and $y = -5$ 1/2 0R 7x - 3y - 15 = 0 and $5x + 11y - 37 = 0b-3$ -15 7 $-311\frac{x}{111 - (-165)} = \frac{y}{-75 - (-259)} \frac{1}{77 - (-15)}\frac{1}{77 - (-15)}\frac{1}{72}\frac{1}{72}\frac{1}{72}x = \frac{276}{92} = 3 and y = \frac{184}{92} = 2The solution is x = 3 and y = 2\frac{1}{72}$		substitute	153 153 $11x$	$-7_{\rm W} - 57$		12	
$22 - 7y = 57$ $-7y = 57 - 22$ $y = \frac{35}{-7}$ $y = -5$ The solution is x = 2 and y = -5 $\frac{1}{2}$ $0R$ $7x - 3y - 15 = 0 \text{ and } 5x + 11y - 37 = 0$ $b c a b$ $-3 -15 7 -3 \qquad \frac{1}{2}$ $11 -37 5 11$ $\frac{x}{111 - (-165)} = \frac{y}{-75 - (-259)} \frac{1}{77 - (-15)}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{x}{276} = \frac{y}{184} = \frac{1}{92}$ 12 The solution is x=3 and y = 2 $\frac{1}{2}$ $\frac{1}{2}$		11(2) - 7v	x = 2 m m	x - 1y - 31		1/2	
$ \begin{array}{c} -7y = 57 - 22 \\ y = \frac{35}{-7} \\ y = -5 \\ The solution is x = 2 and y = -5 \\ 0R \\ 7x - 3y - 15 = 0 and 5x + 11y - 37 = 0 \\ b & c & a & b \\ -3 & -15 & 7 & -3 \\ 11 & -37 & 5 & 11 \\ \frac{x}{111 - (-165)} = \frac{y}{-75 - (-259)} & \frac{1}{77 - (-15)} \\ \frac{x}{276} = \frac{y}{184} = \frac{1}{92} \\ x = \frac{276}{92} = 3 \text{ and } y = \frac{184}{92} = 2 \\ The solution is x=3 and y = 2 \end{array} $		22 - 7v = 5	7			12	
$y = \frac{35}{-7}$ $y = -5$ $y = -5$ $y = -5$ y'_{2} The solution is x = 2 and y = -5 y'_{2} $0R$ $7x - 3y - 15 = 0 and 5x + 11y - 37 = 0$ $b c a a b$ $-3 -15 7 -3$ 11 $\frac{x}{111 - (-165)} = \frac{y}{-75 - (-259)} \frac{1}{77 - (-15)}$ $y'_{2} + y'_{2}$ $\frac{x}{276} = \frac{y}{184} = \frac{1}{92}$ y'_{2} The solution is x=3 and y = 2 y'_{2} 3		-7y = 57 - 2	22				
y = -5 The solution is x = 2 and y = -5 y_2 The solution is x = 2 and y = -5 y_2 The solution is x = 2 and y = -5 y_2 The solution is x = 3 and y = 2 $y = -5$ y_2 The solution is x = 3 and y = -5 y_2 The solution is x = 3 and y = -5 y_2 The solution is x = 3 and y = -5 y_2 The solution is x = 3 and y = -5 y_2 The solution is x = -5		$y = \frac{35}{7}$					
The solution is $x = 2$ and $y = -5$ OR 7x - 3y - 15 = 0 and $5x + 11y - 37 = 0b c a b-3 -15 7 -311 -37 5 11\frac{x}{111 - (-165)} = \frac{y}{-75 - (-259)} \frac{1}{77 - (-15)}\frac{x}{276} = \frac{y}{184} = \frac{1}{92}x = \frac{276}{92} = 3 and y = \frac{184}{92} = 2The solution is x = 3 and y = 2\frac{1}{2}$		y = -7				$\frac{1}{2}$	
OR $7x - 3y - 15 = 0$ and $5x + 11y - 37 = 0$ b c a b -3 -15 7 -3 $\frac{1}{2}$ 11 -37 5 11 $\frac{x}{111 - (-165)} = \frac{y}{-75 - (-259)}$ $\frac{1}{77 - (-15)}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{x}{276} = \frac{y}{184} = \frac{1}{92}$ $\frac{1}{2}$ $\frac{1}{2}$ $x = \frac{276}{92} = 3$ and $y = \frac{184}{92} = 2$ $\frac{1}{2}$ $\frac{3}{2}$ The solution is x=3 and y = 2		The soluti	on is x = 2 an	nd y = - 5		1/2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				OR			
$\begin{vmatrix} b & c & a & b \\ -3 & -15 & 7 & -3 & \frac{1}{2} \\ 11 & -37 & 5 & 11 \\ \frac{x}{111-(-165)} &= \frac{y}{-75-(-259)} & \frac{1}{77-(-15)} & \frac{1}{2}+\frac{1}{2} \\ \frac{x}{276} &= \frac{y}{184} = \frac{1}{92} & \frac{1}{2} \\ x &= \frac{276}{92} = 3 \text{ and } y = \frac{184}{92} = 2 & \frac{1}{2} \\ The solution is x=3 and y = 2 & \frac{1}{2} \end{vmatrix}$		7x - 3 y -	15 = 0 and 5	x + 11y - 37 = 0			
$\begin{vmatrix} -3 & -15 & 7 & -3 \\ 11 & -37 & 5 & 11 \\ \frac{x}{111-(-165)} &= \frac{y}{-75-(-259)} & \frac{1}{77-(-15)} \\ \frac{x}{276} &= \frac{y}{184} = \frac{1}{92} \\ x = \frac{276}{92} = 3 \text{ and } y = \frac{184}{92} = 2 \\ The solution is x=3 \text{ and } y = 2 \\ \end{vmatrix}$		b	С	a b			
$\begin{vmatrix} 11 & -37 & 5 & 11 \\ \frac{x}{111-(-165)} &= \frac{y}{-75-(-259)} & \frac{1}{77-(-15)} \\ \frac{x}{276} &= \frac{y}{184} &= \frac{1}{92} \\ x &= \frac{276}{92} &= 3 \text{ and } y = \frac{184}{92} &= 2 \\ The solution is x=3 \text{ and } y = 2 \\ \end{vmatrix}$		-3	-15	7 -3		$\frac{1}{2}$	
$\begin{vmatrix} \frac{x}{111-(-165)} &= \frac{y}{-75-(-259)} & \frac{1}{77-(-15)} \\ \frac{x}{276} &= \frac{y}{184} &= \frac{1}{92} \\ x &= \frac{276}{92} &= 3 \text{ and } y = \frac{184}{92} &= 2 \\ The solution is x=3 \text{ and } y &= 2 \\ \end{vmatrix}$		11	-37	5 11			
$\begin{bmatrix} x \\ \frac{x}{276} \\ = \frac{y}{184} \\ = \frac{1}{92} \end{bmatrix} = 2$ $\begin{bmatrix} x \\ \frac{276}{92} \\ = 3 \\ \text{ and } y \\ = \frac{184}{92} \\ = 2 \end{bmatrix} = 2$ $\begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$ $\begin{bmatrix} x \\ \frac{276}{92} \\ \frac{1}{92} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$		<u>x</u>	$= \frac{y}{77}$	$\frac{1}{77.(.15)}$		$\frac{1}{2} + \frac{1}{2}$	
$\begin{bmatrix} \frac{276}{92} & = \frac{1}{184} & = \frac{1}{92} \\ x = \frac{276}{92} & = 3 \text{ and } y = \frac{184}{92} = 2 \\ \text{The solution is x=3 and y} & = 2 \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$		x = y	-/5-(-259) 1	//-(-15)		17	
$x = \frac{276}{92} = 3 \text{ and } y = \frac{184}{92} = 2$ The solution is x=3 and y = 2 $\frac{1}{2}$ $\frac{1}{2}$		$\frac{1}{276} = \frac{1}{184}$	$=$ $\frac{1}{92}$			1/2	
$\begin{vmatrix} x = \frac{276}{92} = 3 \text{ and } y = \frac{184}{92} = 2 & \frac{1}{2} \\ \text{The solution is } x=3 \text{ and } y = 2 & \frac{1}{2} \end{vmatrix}$		0.54					
The solution is x=3 and y = 2 $\frac{1}{2}$		$x = \frac{276}{92} = 3$	8 and $y = \frac{184}{92}$	= 2		1/2	
The solution is x=3 and y = 2 $\frac{3}{1/2}$,2)2				2
		The solution	on is x=3 and	l y = 2		1/2	

32	$15x^2 - 4x - 3 = 0$		
	$15x^2 + 5x - 9x - 3 = 0 \qquad \frac{1}{2}$		
	5x(3x + 1) - 3(3x + 1) = 0 ¹ / ₂		
	$(3x + 1) (5x - 3) = 0$ $\frac{1}{2}$		
	(3x + 1)=0 or $(5x - 3)=0$ ¹ / ₂		
	$x = -1/3 \text{ or } x = 3/5$ $\frac{1}{2}$		
	The roots of the equation are $-1/3$ and $3/5$ $\frac{1}{2}$		
	OR		
	$2x^2 - 3x - 5 = 0$		
	$2\mathbf{x}^2 - 3\mathbf{x} = 5$		
	$x^2 - \frac{3}{2}x = \frac{5}{2}$ ¹ / ₂		
	$\mathbf{x}^2 - \frac{3}{2}\mathbf{x} + \frac{9}{9} = \frac{5}{5} + \frac{9}{9}$ 1/2		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\left(x - \frac{3}{4}\right)^2 = \frac{49}{16}$ ¹ / ₂		
	$x - \frac{3}{2} = \mp \frac{7}{2}$ ¹ / ₂		
	3 — 7		
	$\mathbf{x} = \frac{-}{4} + \frac{-}{4}$		
	$x = \frac{3}{4} + \frac{7}{4}$ or $x = \frac{3}{4} - \frac{7}{4}$		
	$x = \frac{10}{5} - \frac{5}{5}$ or $x = \frac{-4}{5} - \frac{1}{5}$		
	$X = \frac{1}{4} = \frac{1}{2} \text{of } X = \frac{1}{4} = \frac{1}{4} \qquad 72$		3
	The roots of the equation are $5/2$ and -1 $\frac{1}{2}$		
33	AP: 15 16 17 18 31	1/2	
	a = 15 $d = 1$ $l = 31$ $n = 31-14 = 17$	1/2	
	$S_{n} = \frac{n}{2} [a + 1]$	1/2	
		14	
	$S_{17} = \frac{1}{2} [15 + 31]$	1/2	
	17		
	$=\frac{17}{2}$ [46] = 391	1/2	
	Amount left with Sheena at the end of the month is $(391 - 200) = 191$	1/2	
			3
34	In \triangle CEF and \triangle BGD, \angle CEF = \angle BDG = 901	1/2	
	In \triangle CEF , \angle CFE + \angle FCE =902		
	In $\triangle ABC$, $\angle ABC + \angle ACB = 90$		
	∠GBD + ∠FCE =903		
	From 2 & 3. $\angle CFE = \angle GBD$ 4	1/2	
	From 1 & 4 $\triangle CEF \sim \triangle GDB$	1/2	
		14	
	CE _ EF _ CF	16	
	$GD - \overline{DB} - \overline{GB}$	12	
	CEVDE - CDVEE		
	$(\Box X DB = FG X FG (\Box DFFG is a square)$	1/2	
	$\Box \Box \Delta D = r \Box \Lambda r \Box \Box D E r \Box Is a square)$	72	
	$FG^2 = CF X DB$		2
			5

35	In $\triangle AB$)C, $\frac{x}{h} = \cot 60^{\circ}$		
	$x = h x \cot 60^{\circ} = h x \frac{1}{\sqrt{3}}1$	1/2	
	In $\triangle AED$, $\frac{x}{1-50} = \cot 45^{\circ}$		
	$x = (h-50) x \cot 45^{\circ} = (h-50) x 1 = h-50$ 2	1/2	
	From 1 & 2, h x $\frac{1}{\sqrt{2}}$ = h-50	1/2	
	$h - h \ge \frac{1}{\sqrt{2}} = 50$		
	$h(1 - \frac{1}{2}) = 50$		
	$h(\sqrt{3}-1) = 50$		
	$n(\frac{1}{\sqrt{3}}) = 50$		
	h = 50 x $\frac{\sqrt{3}}{\sqrt{3}-1}$ x $\frac{\sqrt{3}+1}{\sqrt{3}+1}$	1⁄2	
	$h = 50 x \frac{3 + \sqrt{3}}{2}$		
	h = 25 x $(3 + \sqrt{3})$		
	= 25 x 4.73		
	Height of tower $= 118.25m$	1/2	
	Distance between tower and building = 118.25m -50 = 68.25m	1⁄2	3
36	To draw a circle with centre O and radius 3.5 cm	1⁄2	
	To draw a line segment OR = 7.7 cm	1⁄2	
	To construct the perpendicular bisector of line segment OR	1/2	
	To mark the points P and Q on the circle	1/2	
	To draw the tangent segments RP and RQ	1/2	
	To measure the tangent segments $RP = RQ = (6.8 \pm 0.1)cm$	1/2	3
			Ŭ
37	To construct Δ PQR with the given data	1	
	To draw a ray making an acute angle with side QR.	1⁄2	
	To locate 5 points on the ray using a pair of compasses	1/2	
	To join $R_5 Q' \parallel R_2 Q$ and $Q'P' \parallel QP$	$\frac{1}{2} + \frac{1}{2}$	
	$\Delta P'Q'R$ is the required triangle.		2
			3
38	Frustum of the cone		
	d = 14m r = 7; $D = 26m$, $R = 13m h = 8m$		
	Slant height of Frustum of the cone $L = \sqrt{(R-r)^2 + h^2}$		
	$\sqrt{(13-7)^2 + 8^2}$		
	$=\sqrt{36 + 64}$		
	$=\sqrt{100}$ =10m	1/2	
	Cone $l = 12m$		
	$\overline{\text{Area of canvas required}} = CSA(\text{frustum of the cone}) + CSA (cone)$	1/2	
	$= \pi (R+r)L + \pi r l$		
	$= \pi \{ (13 + 7) \times 10 + 7 \times 12 \}$	$\frac{1}{2} + \frac{1}{2}$	
	$= \pi(200 + 84)$		
	$-\frac{22}{2}$ x 0.84	17	
	$=\frac{7}{7} \times 204$	72	
	$=\frac{6248}{7}$		
	$= 892.57m^2$	1/2	
		12	3

39	Let $x = \frac{(6.782)^3 x \sqrt{0.0043}}{35.29}$ Log $x = 3 \log 6.782 + \frac{1}{2} \log 0.0043 - \log 35.29$ $= 3 x \ 0.8313 + \frac{1}{2} x \ \overline{3.6335} - 1.5476$ $= 2.4939 + \overline{2.8168} - 1.5476$ = 1.3107 - 1.5476 $= \overline{1.7631}$ $\frac{1}{2}$						
	= 0. 5795	001				1/2	3
40	For completing the For completing the Plotting the point Plotting the point The solution is x	ne table1 ne table2 ts and drawin ts and drawin = 2 and y =	ng the line fo ng the line fo -5	or equation 1 or equation 2	2	1/2 1/2 1 1 1	4
41	H1 Let Ramesh alone take x days to finish the work Abdul alone will take x-6 days to finish the work Ramesh's one days work $= \frac{1}{x}$ Abdul's one days work $= \frac{1}{x-6}$ Together they finish the work in 4 days \therefore Their one days work $= \frac{1}{4}$ $\frac{1}{x} + \frac{1}{x-6} = \frac{1}{4}$ 4(x-6) + 4x = x(x-6) $4x - 24 + 4x = x^2 - 6x$ $x^2 - 14x + 24 = 0$ x = 2 or x = 12 x=2 is discarded since x has to be greater than 6 $\therefore x = 12$ Demochoolenge takes 10 days to finish the mode					$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	4
42	Heights 150-156 156-162 162-168 168-174 174-180 180-186 Mean he	fi 4 7 12 8 6 3 $\Sigma f_i=40$ Mean = a = 165 + =165 + =165 + ight is = 167		di 12 6 0 6 12 18		(¹ / ₂ mk for 3 correct entries in each of the 3 columns)	4

ALTO-BETIM GOA 403521

SSC FINAL EXAM -PRACTICE QUESTION PAPER (2024 – 2025)

Subject : MATHEMATICS (E) – LEVEL 2 (Basic Mathematics)

Time : 3 hrs Max. Marks : 80 Std: X

INSTRUCTIONS:

- This question paper consists of 42 questions. All questions are compulsory. **i**)
- This question paper is divided into four Sections.-A, B, C and D. ii)
- In Section A, Question Nos. 1 to 16 are multiple choice questions (MCQs) and iii) Question Nos. 17 to 20 are very short answer type questions (VSA) carrying 1 mark each.
- In Section B, Question Nos. 21 to 28 are short answer type I (SA-I) questions iv) carrying 2 marks each.
- v) In Section C, Question Nos. 29 to 40 are short answer type II (SA-II) questions carrying 3 marks each.
- In Section D, Question Nos. 41 and 42 are long answer (LA) questions carrying vi) 4 marks each.
- There is no overall choice. However, an internal choice has been provided in two vii) questions of 2 marks each in Section B and two questions of 3 marks each in Section C.
- viii) In questions on constructions, the drawing should be clear and exactly as per given measurements. The construction lines and arcs should also be maintained.
- Graph page is provided on the answer booklet. ix)
- Logarithm and Antilogarithm tables are printed on the last pages of the question paper. x)
- Use of calculator is not permitted. xi)

Section A (1 mark each)

Select and write the correct alternative from those given below each statement for question 1 to 16: 1. The product of the zeroes of the quadratic polynomial $2x^2 - 6x - 9$ is:

- $\frac{-9}{2}$ -3
- 3 •
- 9

2. A pair of linear equations $a_1x + b_1y + c_1=0$; $a_2x + b_2y + c_2=0$ is said to be inconsistent, if:

- $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ $\frac{a_1}{a_2} \neq \frac{c_1}{c_2}$

3. The solution of a pair of linear equations 2x + 3y = 1 and x - 3y = 5 is:

- x = 2, y = -1
- x = -2, y = 1
- x = 1, y = -2
- x = -1, y = 2

- 4. The roots of the quadratic equation $3x^2 2x + 6 = 0$ are :
 - rational and unequal
 - irrational and unequal
 - rational and equal
 - non real

5. In an AP, if a = 17, d = -5 and $a_n = -13$ then the value of n is:

- 5
- 6
- 7
- 8

6. A 15m high tower casts a shadow 24m long at a certain time and at the same time , a telephone pole casts a shadow 16m long. Therefore the height of the telephone pole is:

- 10m
- 12m
- •22.5m
- •25.6m

7. If $\sin 2\theta = \frac{\sqrt{3}}{2}$, then the value of θ is :

- 30
- 45°
- 60°
- 90°

8. The value of $\frac{\sin^2 72^\circ}{\cos^2 18}$ is:

- 0
- 1
- 4
- 90
- 9. The simplified form of $\sqrt{1 \cos^2 B}$ is:
 - sin B
 - cos B
 - sin²B
 - cos²B

10. PA and PB are tangents from an external point P to a circle with centre O. If $\angle AOB = 110^{\circ}$, then $\angle PAB$ is:

- 35°
- 55°
- 70°
- 110°
- 11. The area of the sector of a circle of radius 9 cm that subtends an angle of 120° at the centre is:
 - $3\pi \text{ cm}^2$
 - $9\pi \text{ cm}^2$
 - $27\pi \text{ cm}^2$
 - $54\pi \text{ cm}^2$

12. The area of the circle that can be inscribed in a square of side 8 cm is:

- $4\pi \text{ cm}^2$
- $8\pi \text{ cm}^2$
- $16\pi \text{ cm}^2$
- $64\pi \text{ cm}^2$

13. If the lateral surface area of a cube is 324 cm², then its total surface area is:

- 9 cm^2
- 81 cm^2
- 405 cm^2
- 486 cm^2

14. The curved surface area of a hemispherical bowl of radius 3.5 cm is:

(Take $\pi = \frac{22}{7}$)

- $22 \ cm^2$
- $33 \ cm^2$
- $44 \ cm^2$
- $77 \, cm^2$

15. If a dice is thrown once then probability of getting an odd number on it's top face is:

- $\begin{array}{c} 1\\3\\1\\2\\2\\3\end{array}$
- 1

16. The value of $\log_3 729$ is:

- 3
- 6
- 9
- 27
- 17. Find the zeroes of the quadratic polynomial x^2 9
- **18.** If 3x + 2y = 16 and 2x + 3y = 19, then find the value of x + y.
- **19.** In the figure given below, XPY is an arc of a circle with centre O and radius 6 cm. If \angle XOY = 40° and point P lies on arc XY, then Find the length of arc XPY. (Do not substitute for π)

20. Cards numbered from 1 to 30 are put in a box and mixed thoroughly. A card is drawn at random from the box. Find the probability that the number on the card drawn is a multiple of 3 or 5.

Section B (2 marks each)

21. Without actually performing the long division, show that the rational number $\frac{23}{250}$ has terminating decimal expansion. Also find its decimal expansion.

OR

Find the LCM of 294 and 420 by prime factorisation method.

23. Find the mode of the following distribution table:

Class interval	Frequency
10 - 14	3
14 - 18	6
18 - 22	8
22 - 26	14
26 - 30	4

24. In $\triangle APQ$, $\angle APQ = 90^{\circ}$ and $\tan Q = \frac{7}{24}$ Find the length of AQ and the value of cosec A.

25. Evaluate the following expression using known numerical values of trigonometric ratios: $3\sin^2 30^\circ + \frac{2}{1+sec^2 45^\circ}$

26. If $\triangle ABC \sim \triangle PQR$, ar (ABC) = 144 cm², ar (PQR) = 81 cm² and QR = 27 cm, then find the length of BC.

- **27**. Find the distance between the points A (-2, 5) and B (7, -1).
 - OR

Find the coordinates of the midpoint of the join of the points P(7, -3) and Q(-5, -1)

28. If the area of a \triangle PNG formed by points P (6, 2), N (k, 4) and G (4, -3) is 24.5 sq. units, then find the value of k.

- . Section C (3 marks each) 29. Divide the polynomial $2x^3 7x^2 + 7x 9$ by the polynomial 2x 1 and find the quotient and remainder. Hence write the result in the form: $Dividend = Divisor \times Quotient + Remainder$.
- **30.** Find the solution of the pair of linear equations 7x 2y = 20 and 4x + 3y = -1 by elimination method. OR

Find the solution of the pair of linear equations 5x + y = 14 and 3x - 7y = 16 by substitution method.

- **31.** Find the roots of the quadratic equation $4x^2 17x + 15 = 0$ by factorisation Method.
- **32.** Find the roots of the quadratic equation $6x^2 11x 7 = 0$ by using the quadratic Formula.
- **33.** Find the 15th term and the sum of first 51 terms of the AP : -30, -23, -16, -9, -2, ...
- 34. Evaluate the following expression by using the logarithm method.

$(17.64)^2 \times 0.0486$

- 35. Draw line segment RS of length 6.7cm. Taking R as centre and radius 2.5 cm draw a circle. Using a pair of compasses and ruler, construct two tangents SP and SQ to the circle. Measure and state the length of the tangent segments.
- **36.** Using a pair of compasses and ruler, construct ΔXYZ with sides YZ = 6.8 cm, XY = 7 cm and XZ = 5.5 cm. Then construct $\Delta X'YZ'$ whose sides are $\frac{4}{3}$ of the corresponding sides of ΔXYZ .

37. With reference to the given figure and the given conditions, write only the proof with reasons of the following theorem :

Given: In ΔPQR , DE || QR where the points D and E lie on PQ and PR respectively and

DF \perp PR. Prove that : $\frac{PD}{DQ} = \frac{PE}{ER}$

OR

With reference to the given figure and the given conditions, write only the proof with reasons of the following theorem :

Given : In $\triangle DEF$, $DE^2 + EF^2 = DF^2$ and $\triangle XYZ$ is constructed such that DE = XY and EF = YZ,

 $\angle Y = 90^{\circ}$

Prove that : ΔDEF is a right triangle.

38. The angle of elevation of the top 'X' of a building 'XY' from a point Z at a distance of 50 m from its foot on a horizontal plane is 30°. Find the height of the building. (Take $\sqrt{3}$ = 1.73)

39. ABC is a right triangle, right angled at B. A circle is inscribed in it. The lengths of the two sides containing the right angle are 6 cm and 8 cm. find the radius of the circle

40. A solid metallic right circular cone of height 50 cm and radius of the base 21 cm is melted and recast into solid cylinders each of height 10 cm and radius 3.5 cm. Find the number of such cylinders formed.

Section D (4 marks each)

- Weekly pocket Number of money (in ₹) workers $f_i x_i$ x_i (C.I) (f_i) 15 - 25 12 14 25 - 35 35 - 45 21 45 - 55 16 55 - 65 9 8 65 - 75 Total $\Sigma f_i = 80$ $\Sigma f_i x_i =$
- 41. The following table shows the weekly pocket money of 80 students of a class.

Rewrite and complete the table and find the mean weekly pocket money by the Direct Method.

42. Find the solution of the following pair of linear equations graphically:

2x - y = 10 and x + 3y = -2

x		
у		

x + 3y = -2

(Plot at least 3 points for each line on a graph paper.)

SSC PRACTICE PAPER

Mathematics (E) Level 2 – Basic Mathematics

Model Answers and Marking Scheme

Note: Any alternative method unless otherwise specified should be considered for full credit

	Section A	
1	$\frac{-9}{2}$	1
2	$\frac{\overline{a_1}}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	1
3	x = 2, y = -1	1
4	Non real	1
5	7	1
6	10m	1
7	30°	1
8	1	1
9	sin B	1
10	55°	1
11	$27\pi \text{ cm}^2$	1
12	$16\pi \text{ cm}^2$	1
13	486 cm^2	1
14	77 cm^2	1
15	$\frac{1}{2}$	1
16	6	1
17	$x^2 - 9$	
	= (x-3)(x+3) The value of the polynomial $x^2 = 0$ is zero when	1/2
	(x-3) = 0 or $(x + 3) = 0$	
	$\therefore x = 3 \text{ or } x = -3$	14
	\therefore the zeroes are 3 and -3	$\frac{72}{1}$
18	3x + 2y = 16	
	$\frac{2x + 5y - 15}{5x + 5y = 35}$	1/2
	$\therefore x + y = 7$	$\frac{\frac{1}{2}}{1}$
19	Length of arc = $\frac{\theta}{2\pi^2} \times 2\pi r$	
	$=\frac{40}{40} \times 2 \pi \times 6$	1/2
	$=\frac{4\pi}{3}$ cm	<u>1/2</u>
20	$P(F) = \frac{14}{14}$	1 1/2
	$=\frac{1}{7}$	17
	15	1/2
		1

	Section B	
21	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{23}{250} = \frac{23}{2 \times 5^3}$	1/2
	$\therefore \frac{23}{250}$ has a terminating decimal expansion	1/2
	$\frac{23}{250} = \frac{23}{2 \times 5^3}$	
	$=\frac{23 \times 2^2}{2^3 \times 5^3}$	1/2
	$=\frac{92}{1000}$	
	= 0.092	1/2
	OR	2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$294 = 2 \times 3 \times 7^{2}$ $420 = 2^{2} \times 3 \times 5 \times 7$ $LCM = 2^{2} \times 3 \times 5 \times 7^{2}$ = 2940	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ 2
22	Area of trapezium = $\frac{1}{2}$ × (sum of parallel sides) × height	
	$= \frac{1}{2} \times (12 + 7) \times 7$ $= \frac{1}{2} \times 19 \times 7$	
	$= 66.5 \text{ cm}^2$	1/2
	Area of quadrant = $\frac{1}{4}\pi$ r ²	
	$=\frac{1}{4} \times \frac{22}{7} \times 7 \times 7$ $= 38.5 \text{ cm}^2$	1/2
	Area of the shaded region = $66.5 - 38.5$ = 28 cm^2	1/2 1/2
		2

23	$Mod = l + \left(\begin{array}{c} f_1 - f_0 \end{array} \right) \times h$	1/2
	$Mode = i + (2f_1 - f_0 - f_2) \times n$	
	$=22+\left(\frac{14-6}{2(14)-8-4}\right)\times 4$	$\frac{1}{2} + \frac{1}{2}$
	$=22+\frac{6}{16}\times 4$	1/2
	= 23.5	$\frac{72}{2}$
24	$AQ^{2} = (7k)^{2} + (24k)^{2}$	1/2
	$= 49k^2 + 576k^2$ = 625k ²	
	AQ = 25k	1/2
	$\operatorname{cosec} A = \frac{25k}{2} = \frac{25}{2}$	1/2 +1/2
	24 <i>k</i> 24	2
25	$3\sin^2 30^\circ + \frac{2}{3\sin^2 30^\circ}$	
	$\frac{1+\sec^2 45^\circ}{2}$	$\frac{1}{2} + \frac{1}{2}$
	$ \begin{bmatrix} -3(\frac{1}{2}) & +\frac{1}{1+(\sqrt{2})^2} \\ 3 & 2 \end{bmatrix} $	12 1 12
	= - +	1/2
	$=\frac{17}{12}$	1⁄2
	12	2
26	$\frac{ar(ABC)}{ar(BOR)} = \left(\frac{BC}{OR}\right)^2$	
	$\frac{144}{144} = \left(\frac{BC}{C}\right)^2$	1/2
	$\begin{array}{ccc} 81 & (27) \\ 12 & = \frac{BC}{2} \end{array}$	1/2
	$^{9}BC = \frac{27}{27 \times 12}$	1/2
	BC = 36 cm	1/2
27		2
27	AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$= \sqrt{\left(7 - (-2)\right)^2 + (-1 - 5)^2}$	1/2
	$=\sqrt{81+36}$	1/2
	$=\sqrt{117}$	$\frac{1/2}{1/2}$
	OR	2
	$x = \frac{7-5}{2}$ $y = \frac{-3-1}{2}$	17 - 17
	x = 1 $y = -2$	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2}$
	\therefore The coordinates of the midpoint are (1, -2)	$\frac{1/2}{2}$
28	$\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=24.5$	1/2
	$ \therefore [6(4+3) + k(-3-2) + 4(2-4) = 24.5 \times 2 \therefore 42 - 5k - 8 = 49 $	1/2 1/2
	$\therefore -5k + 34 = 49$	12
	$\begin{vmatrix} \therefore & -5k \\ \vdots & k \end{vmatrix} = 15$	1/2
		$\frac{12}{2}$

	Section C	
29		
	$2x - 1 \underbrace{) \begin{array}{c} x^2 - 3x + 2 \\ 2x^3 - 7x^2 + 7x - 9 \\ 2x^3 - x^2 \\ - + \end{array}}_{+}$	1/2
	$ \begin{array}{r} -6x^2 + 7x - 9 \\ -6x^2 + 3x \\ + - \end{array} $	1/2
	$ \begin{array}{r} 4x - 9 \\ 4x - 2 \\ + \end{array} $	1/2
	$Q = x^2 - 3x + 2$ R = -7	1/2 1/2
	$2x^{3} - 7x^{2} + 7x - 9 = (2x - 1)(x^{2} - 3x + 2) + (-7)$	¹ / ₂
		3
30	7x - 2y = 20(1) 4x + 3y = -1(2)	
	28x - 8y = 80(3) 28x + 21y = -7(4) + - + + + + +	1/2 1/2
	-29y = 87 y = -3	1/2
	substituting the value of y in equation (1) we get 7x - 2(-3) = 20 $\therefore 7x + 6 = 20$ $\therefore 7x = 14$	1/2
	$\therefore x = 2$ The solution is $x = 2$ and $y = -3$	1/2 1/2
	OR	3
	y = 14 - 5x(1) Substituting the value of y in equation (2) we get	1/2
	3x - 7y = 16 3x - 7(14 - 5x) = 16 3x - 98 + 35x = 16 3x + 35x = 16 + 98 38x = 114	1⁄2
	x = 3	1/2
	From (1) $y = 14 - 5(3)$ y = 14 - 15	1/2
	y = -1 ∴ The solution is $x = 3$, $y = -1$	1/2 1/2
		3

31	$4x^{2} - 17x + 15 = 0$ $4x^{2} - 12x - 5x + 15 = 0$ 4x (x - 3) - 5 (x - 3) = 0 (x - 3) (4x - 5) = 0 (x - 3) = 0 or (4x - 5) = 0 $x = 3 \text{ or } x = \frac{5}{4}$	1/2 1/2 1/2 1/2 1/2 1/2
	\therefore The roots are 3 and $\frac{5}{4}$	$\frac{1/2}{2}$
32	$D = b^{2} - 4ac$ = (-11) ² - 4 × 6 × -7 = 121 + 168	3
	$= 289$ $x = \frac{-b \pm \sqrt{D}}{2\pi}$	1/2
	$=\frac{\frac{2a}{11\pm\sqrt{289}}}{\frac{2\times6}{11\pm17}}$	1/2
	$=\frac{11 \pm 17}{12}$ x= $\frac{11+17}{12}$ or $x=\frac{11-17}{12}$	1/2
	$x = \frac{28}{12}$ or $x = \frac{-6}{12}$	
	$x = \frac{7}{3}$ or $x = \frac{-1}{2}$	1/2
	\therefore The roots are $\frac{7}{3}$ and $\frac{-1}{2}$	1/2
		3
33	$a = -30 \qquad d = -23 - (-30) = 7$ $a_{15} = -30 + (15 - 1) \times 7$ = -30 + 98	1/2
	= 68 S $-\frac{n}{2} [2n + (n - 1) d]$	$\frac{1/2}{1/2}$
	$= \frac{51}{2} [2(-30) + (51 - 1) \times 7]$	1/2
	$= \frac{51}{2} [-60 + 350]$ = $\frac{51}{2} \times 290$	1/2
	= 7395	$\frac{\frac{1}{2}}{3}$
34	Let $x = \frac{(17.64)^2 \times 0.0486}{0.9642}$	
	log x = 2log 17.64 + log 0.0486 - log 0.9642 = 2 × 1.2465 +\overline{2}.6866 - \overline{1}.9842 = 2.4930 +\overline{2}.6866 - \overline{1}.9842 = 1.1954	$\frac{1/2}{1/2+1/2+1/2}$ $\frac{1}{2}$
	x = antilog 1.1954 = 15.68	1⁄2
		3
35	To draw a line segment $RS = 6.7$ cm	1/2
----	--	-----------------------------
	To draw a circle with centre R and radius 2.5 cm	1/2
	To construct the perpendicular bisector of line segment RS	1/2
	To mark the points P and Q on the circle	1/2
	To draw the tangent segments from the point S	1/2
	To measure and write the length of the tangent segments.	
	$SP = SQ = 6.2 \pm 0.1$	1/2
		3
36	To construct Δ XYZ with the given data	1
	To draw a ray making an acute angle with side YZ.	1/2
	To locate 4 points on the ray using a pair of compasses	1/2
	To join $Y_4Z' \parallel Y_3Z$ and $Z'X' \parallel ZX$	1/2 + 1/2
	$\Delta X'YZ'$ is the required triangle.	
27	$Ar(APDF) = \frac{1}{2} \times PF \times DF$	3
37	(i) $\frac{Ar(\Delta RDE)}{Ar(\Delta RDE)} = \frac{72 \times RE \times DF}{\frac{1}{2} \times ER \times DF}$ Area of $\Delta = \frac{1}{2} \times b \times h$	1/2
	(ii) $\frac{Ar(\Delta PDE)}{E} = \frac{PE}{E}$	1/2
	(11) $Ar(\Delta RDE)$ ER	/2
	Ar(APDE) PD	
	(iii) Similarly $\frac{Ar(\Delta DD)}{Ar(\Delta QDE)} = \frac{1}{DO}$	1/2
	(iv) $Ar(\Delta RDE) = Ar(\Delta QDE)$ Triangles having same base DE	$\frac{1}{2} + \frac{1}{2}$
	and lying between the same	
	parallels DE and QR	
	$(v) \frac{Ar(\Delta PDE)}{Ar(\Delta PDE)} = \frac{Ar(\Delta PDE)}{Ar(\Delta PDE)}$ from (ii), (iii) and (iv)	
	$\begin{array}{ccc} Ar(\Delta RDE) & Ar(\Delta QDE) \\ \hline & PE & PD \end{array}$	
	$(V1) \qquad \frac{1}{ER} = \frac{1}{DQ}$	1/2
		2
	OR	5
	(i) $XY^2 + YZ^2 = XZ^2$ Pythagoras theorem	
	(ii) $DE^2 + EF^2 = DF^2$ Given	1/2
	(iii) $XY^2 + YZ^2 = DF^2$ $DE = XY \text{ and } EF = YZ$	1/2
	(iv) $XZ^2 = DF^2$ from(i) and(iii)	
	(v) $XZ = DF$	1/2
	(vi) $DE = XY$ and $EF = YZ$ Given	
	(vii) $XZ = DF$ Step (v)	1/
	(viii) $\Delta DEF \cong \Delta XYZ$ SSS congruence rule	1/2
	$\begin{array}{c} (1X) \angle E = \angle Y \\ (1) \Box = \Box \\ (1) $	72
	$\begin{array}{c} (\mathbf{x}) \ \ \ \ \ \ \ \ \ \ \ \ \$	
	$\begin{array}{c} (X1) \angle E = 90^{\circ} \\ (vii) ADEE is a right triangle \end{array}$	1/2
	(XII) ΔDEF is a right triangle.	
		3
38	$\tan 30^\circ = \frac{XY}{XZ}$	1/2
	YZ	
	$\frac{1}{1} = \frac{XY}{1}$	
	$\sqrt{3}$ 50	1/2
	$\sqrt{3} XY = 50$	1/
	$XY = \frac{30}{\sqrt{3}}$	1/2
	$XY = \frac{50\sqrt{3}}{3}$	
	3	

	$XY = \frac{50 \times 1.73}{3}$	1/2
	XY = 28.83 \therefore the height of the building is 28.83 m	$\frac{1/2}{1/2}$
		3
39	Let $OD = OE = OF = r$ Since the tangents to a circle from an external point are equal AE = AD = (8 - r) cm	
	and $CF = CE = (6 - r) cm$	1/2
	= 14 - 2r	1/2
	$AC^{2} = AB^{2} + BC^{2}$ $AC^{2} = 64 + 36$	1/2
	$AC^{2}=100$ $\therefore AC=10$	1/2
	$\therefore 14 - 2r = 10$ $2r = 4$	1/2
	r = 2 \therefore The radius of the circle is 2 cm	$\frac{1/2}{2}$
40	Let the number of cylindrical pieces be n $n = \frac{Volume \ of \ Cone}{Volume \ of \ each \ Cylinder}$	1/2
	$=\frac{\frac{1}{3}\pi R^2 H}{\pi r^2 h}$	17 - 17
	$=\frac{\frac{1}{3}\times21\times21\times50}{25\times25\times10}$	$\frac{1}{2} + \frac{1}{2}$
	= 60	$\frac{1}{2} + \frac{1}{2}$
	\therefore the number of cylinders formed is 60	1/2
	Section D	3
41	Weekly pocket Number of x_i $f_i x_i$	
	money (in \gtrless)studentsC. I.fi	
	15 - 25 12 20 240 1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	45 - 55 16 50 2 800 2	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\Sigma fi = 80 \qquad \Sigma fi xi = 3400$	
	$Mean = \frac{3400}{80}$	1/2
	= 42.5	$\frac{\frac{1}{2}}{4}$

For plotting the points of each line correctly	$\frac{1}{2} + \frac{1}{2}$
Drawing lines for each equation	$\frac{1}{2} + \frac{1}{2}$
Solution is $x = 4$, $y = -2$	1
	4
THE END	