GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

PORTION AND MARKS DISTRIBUTION FOR STD X (2022-2023)

SUBJECT: MATHEMATICS

FIRST INTERNAL TEST (LEVEL 1 and LEVEL 2)

Ch.no.	Name of the chapter	Marks
2	Polynomials	5
3	Pair of Linear equations in two variables	7
7	Co-ordinate Geometry	5
10	Circles	3
	Total	20

SECOND INTERNAL TEST (LEVEL 1 and LEVEL 2)

Ch.no.	Name of the chapter	Marks
1	Real numbers	4
15	Probability	4
8	Introduction to Trigonometry	7
12	Areas related to Circles	5
	Total	20

THIRD INTERNAL TEST (20marks) (LEVEL 1 and LEVEL 2)

INNOVATIVE TEST on any two /three chapters given below or

Presentation/Project/Assignment based on anyone of the following chapters

Ch.no.	Name of the chapter
6	Triangles
7	Co-ordinate Geometry
9	Some Applications of Trigonometry
13	Surface areas and Volumes
14	Statistics

FIRST TERM EXAM (MCQs) (LEVEL 1 and LEVEL 2)

Ch.no.	Name of the chapter	Marks
1	Real Numbers	5
2	Polynomials	5
3	Pair of Linear equations in two variables	7
15	Probability	3
8	Introduction to Trigonometry	7
7	Co-ordinate Geometry	5
10	Circles	3
12	Areas related to Circles	5
	Total	40

SECOND TERM EXAM (Subjective) (LEVEL 1 and LEVEL 2)

氡

Ch.no.	Name of the chapter	Marks
4	Quadratic Equations	8
5	Arithmetic Progressions	5
14	Statistics	7
6	Triangles	5
9	Some Applications of Trigonometry	3
11	Constructions	6
13	Surface Areas and Volumes	6
	Total	40

PORTION FOR STD X MATHEMATICS (LEVEL2)

Name of the Chapter	Portion
1)Real Numbers	whole topic is included for evaluation
2)Polynomials 3)Pair of Linear equations in two	 a) Concept of a Polynomial, degree-types b) Zero of a Linear Polynomial ,Quadratic Polynomial-relation between zeroes and coefficients c)Finding a Quadratic Polynomial given sum and product of zeroes/zeroes d)To find the Quotient and remainder when a Cubic Polynomial is divided by a Linear polynomial and to express in the form: Dividend =divisor x Quotient +Remainder a) General form of a pair of linear
variables	a) General form of a pair of finear equations in two variables b) Conditions for a pair of Linear equations in two variables to have-a unique solution, no solution, infinitely many solutions -finding the value of the unknown c)Find the solution of a pair of linear equations in two variables by (I) Elimination method (II)Substitution method (one equation should have coefficient of x and y as one) (III)Graphical method (one equation should have coefficient of x and y as one and the other equation should have coefficient of any one x or y as one)

4)Quadratic equations	a) Concept of a Quadratic equation-
	standard form
	b) Finding the Roots of a Quadratic
	equation by
	(I)Factorisation method
	(II)Quadratic formula
	C)Nature of Roots based on discriminant
5)Arithmetic Progressions	a) Concept of an AP-first term, common difference
	b) Direct sums based on nth term, sum of
	n terms of an AP
6)Triangles	a) Concept of Similarity of Triangles-Tests
	for similarity of Triangles
	b) Concept of theorem on Areas of
	Similar Triangles (Proof not for
:	evaluation)
	c)B.P.T., Pythagoras theorem and
· · ·	Converse of Pythagoras theorem (Proofs
	for evaluation)
	d)Simple numerical applications of the
7)Co. andinata Coomatmy	above 4 theorems
7)Co-ordinate Geometry	Concept of (I) Distance Formula
	(II)Section Formula (III)Area of Triangle
	Formula and direct questions based on them
8)Introduction to Trigonometry	a) Concept of Trigonometry
spint oudetion to mgonometry	b) Trigonometric ratios and their
	relationships, k method
	c) Proving $\sin^2\theta + \cos^2\theta = 1$ with the figure
	d)Expressions involving Trigonometric
	ratios of some specific angles:
	0°, 30°,45°,60°,90°
	e) Trigonometric ratios of
	complementary angles

9)Some applications of Trigonometry	a) Heights and Distances: Angle of
	Elevation and Angle of Depression
	b) Simple problems on heights and
	Distances. Problems should have only
	one right triangle with either angle of
	elevation or Depression.
10)Circlo	a) Concept of Tangent,
10)Circle	Thm.10.1(proof not for Evaluation)
	Thm.10.2(with Proof)
	b) Simple numerical applications
11)Constructions	a) Construction of Tangents to a Circle
	from a point outside the circle
	b) Construction of Similar Triangles as per
	given scale factor.
	Note : Angles can also be drawn using a
	protractor
12)Areas related to Circles	a) Perimeter and Area of a Circle
	b) Areas of Segment, Sector, Quadrant
	of a Circle and Semicircle
	c)Simple applications to find areas of
	shaded region involving only two plane
	figures
13)Surface Areas and Volumes	Whole topic is included for evaluation
14)Statistics	a) Concept of Mean, Median, Mode
	b) To find Mean of grouped data by
	Direct method
	c)To find Mode of grouped data.
15)Probability	a) Concept of Theoretical Probability
	b) Probability of a Sure event and an
	Impossible event, 0≤P(E)≤1, P (not E)
	c)Simple problems based on
	coins(max2), Dice (only 1), playing cards,
	numbered cards, items in a box.

PORTION FOR STD X MATHEMATICS (LEVEL 1)

a) Everything is included from ch. 1 to ch.15.

b) In the topic of Triangles , **Rider and numerical applications** based on the theorems will be tested.

c)In the topic of Constructions, a pair of compasses and ruler to be used to draw specific angles

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION FIRST INTERNAL TEST

MODEL PAPER (2022-2023)

MAX MARK S: 20

STD: X SUBJECT : MATHEMATICS (E) : LEVEL 1 and LEVEL 2 TIME : 1 hr

Weightage to Content/Subject Units

Sr. No.	Units	Marks
1	Polynomials	05
2	Pair of Linear Equations in Two Variables	07
3	Coordinate Geometry	05
4	Circles	03
	TOTAL	20

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION FIRST INTERNAL TEST

MODEL PAPER (2022-2023)

	1AX MARKS: 20 TIME : 1 <i>hr</i>
Q.1.A) Select and write the correct alternative from those given below. The value of 'k' for which the pair of linear equations $3x - 4y = 7$ and has no solution is:	(1) $6x + ky = 5$
a) 8 b) 2 c) -2 d) -8	
B) Find the solution of ANY ONE of the following pair of linear equations:	(3)
i) $2x - 3y = 13$ and $4x + 5y = -7$ (By Elimination method	l)
ii) $7x + 2y = 11$ and $5x - y = 20$ (By Cross multiplication	n method)
C) Find all the zeroes of the polynomial $2x^3 + x^2 - 6x - 3$ if two of its zeroes $\sqrt{3}$ and $-\sqrt{3}$.	eroes (3)
D) The area of a rectangle gets reduced by 8 cm ² , if its length is reduced by breadth is increased by 3 cm. If we increase the length by 3 cm and the breat the area increases by 74 cm ² . Find the length and the breadth of the rectan	adth by 2 cm,
Q.2.A) Select and write the correct alternative from those given below. The distance between the points A(2, -3) and B(2, 2) is : (a) 2 units (b) 3 units (c) 4 units (d) 5 units	(1)
 B) Attempt the following. i) If m and n are the zeroes of the polynomial x² − 7x + 12 then find the value of 1/m + 1/n ii) Determine if -2 is a zero of the polynomial p(x) = x³ + x² - 2x 	(2)
C) In the adjoining figure, \triangle ABC is right angled at B such that BC = 6 cm and AB = 8 cm. Find the radius of the circle.	(3)
D) i) Find the ratio in which the point P(2,-5) divides the line segment joinir A(-3, 5) and B(4, -9) internally.	ng the points (2)
ii) Find the area of rectangle ABCD if its vertices $A(1 - 3) B(13 - 9) C(10 - 1)$	2) (2)

ii) Find the area of rectangle ABCD if its vertices A(1, -3), B(13, 9), C(10, 12)
(2) and D(-2, 0) are taken in order.

------ (÷ × + –) ------

N.B: In Q.1.D), Word problem or Graphical solution may be tested from the topic 'Pair of L.E in two variables'.

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

FIRST INTERNAL TEST

MODEL PAPER (2022-2023) STD: X MAX MARK S: 20 SUBJECT : MATHEMATICS (E) : LEVEL 2 TIME : 1 hrQ.1.A) Select and write the correct alternative from those given below. (1) If 9x - 7y = 15 and 7x - 9y = 13, then the value of x + y is: (a) -3 (b) -1 (c) 1 (d) 3 B) Find the solution of ANY ONE of the following pair of linear equations: (3) i) 3x + 4y = 18 and 7x - 3y = 5 (By Elimination method) ii) x - y = 7 and 2x + 7y = -13 (By Substitution method) C) Divide the polynomial $(2x^3 - 5x^2 - 3x + 7)$ by (2x - 3) and find the quotient (3) and remainder. Also, express the dividend in the form: " Dividend = divisor × quotient + remainder " D) Find the solution of the following pair of linear equations graphically : (3) x - y = 5and 2x + y = 7Rewrite and complete the following tables. (Plot at least 3 points for each line on a graph paper) x - y = 52x + y = 7Х Х y V Q.2.A) Select and write the correct alternative from those given below. (1) The distance of the point P(12, -5) from the origin is : (a) 7 unit (b) 17 units (c) 14 units (d) 13 units B) Attempt the following. (2) i) If the sum of the zeroes of the polynomial $3x^2 - 2kx + 6$ is 3, then find the value of k. ii) Find a quadratic polynomial in variable x whose zeroes are $\sqrt{5}$ $and - \sqrt{5}$. C) Given: Point O is the centre of the Circle. Two tangent (3) segments PA and PB are drawn from an external point P to the Circle at A and B respectively. Prove that : PA = PB D) i) Find the area of Δ ABC formed by joining the points A(10, -6), B(2, 5) and C(-1, 3). (2)

ii) Find the coordinates of the point P (x, y) which divides the line segment joining (2) the points A(5, -2) and B(9, 6) internally in the ratio 3 : 1.

------ (÷ × + –) ------

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION SECOND INTERNAL TEST

MODEL PAPER (2022-2023)

STD : X

SUB – MATHEMATICS(E) (LEVEL – 1 AND LEVEL -- 2)

MAX. MARKS: 20 TIME : 1 Hr

Weightage to Content/Subject Units

Sr. No	Units	Marks
1	Real Numbers	04
2	Probability	04
3	Introduction to Trigonometry	07
4	Areas Related To Circles	05
	TOTAL	20

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION SECOND INTERNAL TEST

MODEL PAPER (2022-2023)

SUB – MATHEMATICS (E): LEVEL 1 TIME : 1 Hr	SIDIX	IVIAA. IVIARKS. ZU
	SUB – MATHEMATICS (E): LEVEL 1	TIME : 1 Hr

B) Attempt the following

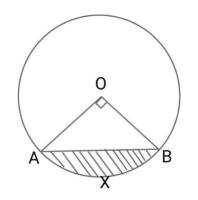
i) A box contains tickets numbered from 21 to 50. If one ticket is picked at random, (2) then find the probability of getting—

- a) a prime number b) a number which is a multiple of both 2 as well as 3.
- ii) From a deck of 52 playing cards, red kings are removed and from the remaining (2) cards, a card is picked at random.

Find the probability of getting-

a) a red card. b) a face card.

C) Find the H.C.F of 741 and 1173 using Euclid's division algorithm. (3)


Or

- C) Prove that $\sqrt{5}$ is an irrational number.
- D) In the adjoining figure, 'O' is the centre of a circle with radius 28 cm. If arc AXB subtends an angle of 90⁰ at the centre, then

find-

i) the area of quadrant O-AXB

ii) the area of minor segment AXB

NANY NAADVC. 20

(3)

(2)

- Q 2 A) Select and write the most appropriate alternative from those given below. (1) If tan A = cot $(2A - 30)^{\circ}$, where 2A is an acute angle, then the value of $A = _$ ______. (a) 20° (b) 30° (c) 40° (d) 90°
- B) Evaluate the following expression using known numerical values of (3) trigonometrical ratios.

 $\frac{5 \tan^2 30^0 - \cos^2 60^0 + 3 \sin^2 45^0}{5 \sin 30^0}$

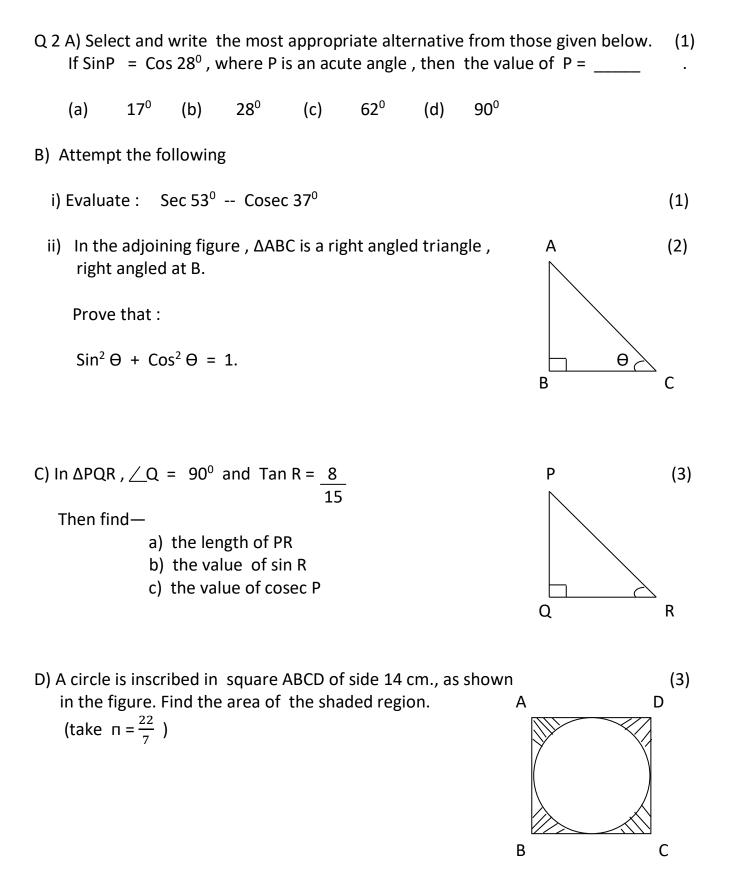
C) Prove the following Identity.

 $(\operatorname{Cosec} A - \operatorname{Sin} A)(\operatorname{Sec} A - \operatorname{Cos} A) = \frac{1}{\operatorname{Tan} A + \operatorname{Cot} A}$

D) A circular running track of width 3.5 m is to be constructed around a circular (3) ground of area 5,544 m². Find the total cost of construction of the track at Rs 900/- per m².

(3)

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION SECOND INTERNAL TEST


MODEL PAPER (2022-2023)

STD : X

SUB – MATHEMATICS (E): LEVEL 2

MAX. MARKS: 20 TIME : 1 Hr

Q 1 A) Select and write the most appropriate alternative from those given below. (1) If the product of two numbers is 432 and their L.C.M. is 72, then their H.C.F. is : (a) 6 (b) 8 (c) 12 (d) 16 B) Attempt the following i) A box contains 12 red balls , 15 orange balls and 9 blue balls. If one ball is picked (2) at random, then find the probability of gettinga) an orange ball. b) not a blue ball. ii) From a deck of well shuffled 52 playing cards, a card is picked at random. (2) Find the probability of getting a) a diamond. b) a king. C) Assuming that $\sqrt{3}$ is irrational, prove that 5 -- $\sqrt{3}$ is also irrational. (3) Or C) Find the H.C.F of 168 and 580 using Euclid's division algorithm. (3) D) In the adjoining figure, arc AXB subtends an angle of 60⁰ at (2) the centre 'O' of a circle. If the radius of the circle is 14 cm, then findi) length of arc AXB. n <u>60</u>° ii) area of sector O-AXB. (take $\pi = \frac{22}{7}$) А В Х

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

DESIGN OF THE QUESTION PAPER

FIRST TERM EXAM (2022-2023)

Class: X Subject: Mathematics - Level 1 (English) Time: 1hr 45min Max. Marks: 40

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to Learning Outcomes

S.No.	Learning Outcomes	Marks	Percentage of Marks
1.	Knowledge	8	20%
2.	Understanding	20	50%
3.	Application	12	30%
	Total	40	100%

2. Weightage to Content / Subject Units

S.No.	Units	Marks
1.	Real Numbers	5
2.	Polynomials	5
3.	Pair of Linear Equations in Two Variables	7
4.	Introduction to Trigonometry	7
5.	Co-ordinate Geometry	5
6.	Circles	3
7.	Areas related to circles	5
8.	Probability	3
	Total	40

3. Weightage to Difficulty level of questions

S.No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

4. Number of Questions :

There will be **40** questions of **1 mark** each.

Goa Board Of Secondary And Higher Secondary Education Blue Print (First Terminal Examination 2022-23) Std X : Mathematics Level 1 (English)

Duration : 1hr 45min

Type of Question : VSA type

S.No.	Content/Unit		Objectives		Total	
		Knowledge	Understanding	Application		
1.	Real Numbers	1(1)	9(1)	33(1)	5(5)	
		25(1)	17(1)			
2.	Polynomials	5(1)	13(1)	37(1)	5(5)	
			21(1)			
			29(1)			
3.	Pair of Linear Equations	2(1)	10(1)	26(1)	7(7)	
	in Two Variables	18(1)	30(1)	38(1)		
			34(1)			
4.	Introduction to	3(1)	19(1)	39(1)	7(7)	
	Trigonometry	11(1)	27(1)			
			31 (1)			
			35(1)			
5.	Co-ordinate Geometry		4(1)	12(1)	5(5)	
			20(1)	36(1)		
			28(1)			
6.	Circles		7(1)		3(3)	
			15(1)			
			23(1)			
7.	Areas related to circles	8(1)		16(1)	5(5)	
				24(1)		
				32(1)		
				40(1)		
8.	Probability		6(1)	14(1)	3(3)	
			22(1)			
	Total	8(8)	20(20)	12(12)	40(40)	

Note : Figures outside the bracket indicate the question number and figures inside the bracket indicate the marks.

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION FIRST TERM EXAMINATION MODEL PAPER (2022-2023)

STD X SUBJECT : MATHEMATICS - LEVEL 1 (ENGLISH) MARKS : 40 TIME : 1HR 45MIN

Instructions :

1. Each question is provided with four alternatives. Choose the correct alternative.

2. Each question carries one mark . There is no negative marking for incorrect choice.

1.	The prime factorisation of 1176 is (A) $2^2 \times 3^3 \times 7$ (B) $2^3 \times 3^2 \times 7$ (C) $2^2 \times 3 \times 7^2$ (D) $2^3 \times 3 \times 7^2$
2.	If the lines given by $4x + ky = 12$ and $x + 2y = 3$ coincide, then the value of k is(A) -8(B) 4(C) 8(D) 12
3.	If $1 + \tan^2 36^\circ = \sec^2 2A$ where 2A is an acute angle then the value of A is(A) 18° (B) 36° (C) 54° (D) 72°
4.	The midpoint of the line segment joining the points P (-3, 4) and Q (7, -2) is (A) (-2, -1) (B) (2, -1) (C) (-2, 1) (D) (2, 1)
5.	One of the zeroes of the quadratic polynomial $4x^2$ - 25 is (A) 4/25 (B) 2/5 (C) 25/4 (D) 5/2
6.	From a deck of 52 playing cards all the ace cards are removed. If a card is then drawn at random, the probability that it is a face card is (A) 1/4(B) 3/14(C) 3/13(D) 2/13
7.	The length of the tangent drawn from a point P which is at a distance of 7cm from the centre O of a circle of radius 3cm is (A) $2\sqrt{10}$ cm (B) $\sqrt{58}$ cm (C) 10 cm (D) 100cm
8.	The length of the arc of a circle of radius r and angle with degree measure θ is (A) $\frac{\theta}{180} \times \prod r$ (B) $\frac{\theta}{360} \times \prod r^2$ (C) $\frac{\theta}{180} \times 2\prod r$ (D) $\frac{\theta}{180} \times \prod r^2$
9.	Which of the following is irrational? (A) $\sqrt{729}$ (B) $(\sqrt{3} - 2)(\sqrt{3} + 2)$ (C) $\frac{3+2\sqrt{3}}{\sqrt{3}}$ (D) $\sqrt{2}(\sqrt{2} - \sqrt{8})$
10.	If one equation of a pair of consistent linear equations is $3x - 2y + 4 = 0$ then the second equation can be (A) $6x - 4y + 1 = 0$ (B) $- 6x + 4y + 1 = 0$ (C) $6x + 4y + 1 = 0$ (D) $9x - 6y + 1 = 0$
11.	If \triangle PQR is right angled at P and \angle Q= 60° then the value of cos R is(A) 1(B) 1/2(C) 1/V2(D) $\sqrt{3}/2$
12.	The perimeter of a triangle with vertices A(0,6) ; B(0,0) ; C(-8, 0) is(A) 10 units(B) 12 units(C) 24 units(D) 36 units
13.	If the product of the zeroes of the quadratic polynomial $5x^2 - 20x - m$ is 3, then the value of m is(A) - 15(B) - 4(C) 4(D) 15
14.	A box contains cards which are numbered from 5 to 102. If a card is drawn at random from the box, thenthe probability that it bears a two digit number which is a multiple of 7 is(A) 13/98(B) 1/7(C) 13/97(D) 14/97

15.	In the figure MA and MB are tangents to the circle with centre O and radius 5cm. If OM = 13cm then perimeter of \Box AOBM is (A) 18 cm (B) 27 cm (C) 34 cm (D) 36 cm
16.	ABCD is a rectangle . If AB=5cm and the radius of the semicircle AM=7cm then area of the shaded portion is (Take π = 22/7)
	(A) 56 cm ² (B) 73.5 cm ² (C) 74.5 cm ² (D) 76.5 cm ² $B C$
17.	Which of the following rational numbers has a terminating decimal expansion?(A) $\frac{7}{12}$ (B) $\frac{17}{45}$ (C) $\frac{27}{72}$ (D) $\frac{37}{168}$
18.	The solution of the pair of linear equations $8x - 3y = -2$ and $3x + y = -5$ is(A) $x = -1, y = 2$ (B) $x = 1, y = -2$ (C) $x = 1, y = 2$ (D) $x = -1, y = -2$
19.	The value of the trigonometric expression : $\sin^2 30^\circ + \cos^2 45^\circ - 7\tan^2 60^\circ$ is(A) - 81/4(B) - 79/4(C) 79/4(D) 81/4
20.	The ratio in which the point K(1,3) divides the line segment joining the points M(-1, 7) and N(4, -3)internally is(A) 1 : 3(B) 3 : 1(C) 2 : 3(D) 3 : 2
21.	The quadratic polynomial whose sum and product of zeroes are -9 and 20 respectively is(A) $x^2 - 9x - 20$ (B) $x^2 + 9x - 20$ (C) $x^2 - 9x + 20$ (D) $2x^2 + 18x + 40$
22.	Two dice are thrown simultaneously. The probability that the sum of the numbers appearing on top of boththe dice is 4 is(A) 1/12(B) 1/9(C) 1/2(D) 2/3
23.	If PA and PB are tangents from an external point P to the circle with centre O such that $\angle APB = 80^{\circ}$ then the measure of $\angle AOP$ is(A) 10° (B) 50° (C) 100° (D) 160°
24.	The length of the minute hand of a clock is 21cm. Therefore the area swept by the minute hand in6 minutes is(A) 13.2 cm²(B) 15.4 cm²(C) 23.1 cm²(D) 138.6 cm²
25.	The product of two numbers is 1440. If their HCF is 4 , then their LCM is(A) 10(B) 36(C) 90(D) 360
26.	If the pair of linear equations $(k - 7)x - 2y = -5$ and $4y - (k+1)x = 2$ have no solution then the value of k is(A) 0(B) 1(C) 15(D) 16
27.	The simplified form of (cosecA- cotA) (1+cosA) is(A) sinA(B) cosA(C) cosecA(D) secA
28.	If the area of the triangle with vertices A(4,0) ; B(-5, 0) ; C (2, k) is 36 square units then the value of k is (A) - 8 (B) - 4 (C) 4 (D) 8
29.	(A) - 8(B) - 4(C) 4(D) 8The remainder when $p(x)=2x^3-5x^2-4x-7$ is divided by $g(x)=x^2-2$ is(A) -17(B) - 3(C) 3(D) 17

30.	If 114x +156y = 426 and 156x + 114y = 384 ; then the value of x - y is
	(A) -3 (B) -1 (C) 1 (D) 3
31.	The value of the trigonometric expression: $sin65^{\circ} cos 25^{\circ} + cos65^{\circ} sin25^{\circ}$ is
	(A) - 1 (B) 0 (C) 1 (D) 2
32.	If the perimeter of a cominication well piece is 100cm, then the diameter of the well piece is
52.	If the perimeter of a semi circular wall piece is 108cm , then the diameter of the wall piece is (Take Π =22/7)
	(A) 21cm (B) 28cm (C) 42cm (D) 56cm
33.	Toffees from two toffee jars containing 210 and 240 toffees are to be packed in small packets. The
	maximum number of packets that can be packed if each packet has equal number of toffees is
	(A) 9 (B) 18 (C) 30 (D) 36
34.	Five years hence Tom will be x years old and Jerry will be y years old. Therefore the sum of their present
54.	ages in years is
	(A) $x + y - 5$ (B) $x + y + 5$ (C) $x + y + 10$ (D) $x + y - 10$
35.	If 17sinA = 8 , then tanA =
	(A) 8/15 (B) 15/8 (C) 15/17 (D) 17/15
26	
36.	The point which divides the line segment joining the points (7, -6) and (3,4) in the ratio 1:2 internally lies in the
	(A) I quadrant (B) II quadrant (C) III quadrant (D) IV quadrant
37.	If the zeroes of the quadratic polynomial $x^2 + (m+1)x + n$ are 2 and -3 , then
	(A) m = -7, n = -1 (B) m = 5 , n = -1 (C) m = -2 , n = -6 (D) m = 0, n = -6
38.	If the digit in the unit's place of a two digit number is 3x and the digit in the ten's place is y then the two
	digit number formed after interchanging the digits is (A) 3xy (B) 3x + y (C) 3x + 10y (D) 30x +y
	(A) 5xy (B) 5x + y (C) 5x + 10y (D) 50x + y
39.	If sinA – cosA = 0 then the value of sin ⁴ A - sin ² A is
	(A) -3/4 (B) - 1/4 (C) 1/4 (D) 3/4
40.	If the radius of a wheel is 0.63m, then the distance covered by the wheel in 400 revolutions is
	(Take $\pi = 22/7$)
	(A)142.56m (B) 1584m (C) 14256m (D) 15840m

ANSWER KEY

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION FIRST TERM EXAMINATION MODEL PAPER (2022-2023)

STD X SUBJECT : MATHEMATICS - LEVEL 1 (ENGLISH)

Q No		Answer
1.	D	2 ³ x 3 x 7 ²
2.	С	8
3.	А	18°
4.	D	(2, 1)
5.	D	5/2
6.	А	1/4
7.	А	$2\sqrt{10}$ cm
8.	А	$\frac{\theta}{180} \times \prod r$
9.	С	$\frac{3+2\sqrt{3}}{\sqrt{3}}$
10.	С	6x + 4y +1 = 0
11.	D C	√3/2
12.	С	24units
13.	A	-15
14.	A C	13/98
15.		34cm
16.	В	73.5cm ²
17.	С	27/72
18.	D	x= -1, y= -2
19.	А	- 81/4
20.	С	2:3
21.	D	$2x^2 + 18x + 40$
22.	А	1/12
23.	В	50
24.	D	138.6 cm ²
25.	D	360
26.	С	15
27.	A	sinA
28.	A A	-8
29.	A	-17
30.	В	-1
31.	С	1
32.	С	42
33.	С	30
34.	D	x + y - 10
35.	А	8/15
36.	D	IV quadrant
37.	D	m = 0, n = - 6
38.	D	30x +y
39.	В	-1/4
40.	В	1584m

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION FIRST TERM EXAMINATION MODEL PAPER (2022 – 2023) DESIGN OF THE QUESTION PAPER

STD : X SUBJECT: MATHEMATICS – LEVEL 2 (ENGLISH)

MARKS : 40 TIME: 1 HOUR 45 MINUTES

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to Learning Outcomes:

Sr. No.	Learning Outcomes	Marks	Percentage of Marks
1.	Knowledge	08	20 %
2.	Understanding	24	60 %
3.	Application	08	20 %
	Total	40	100 %

2. Weightage to Content/Subject Units

Sr. No.	Units	Marks
1.	Real Numbers	05
2.	Polynomials	05
3.	Pair of Linear Equations in Two Variables	07
4.	Introduction to Trigonometry	07
5.	Coordinate Geometry	05
6.	Circles	03
7.	Areas Related to Circles	05
8.	Probability	03
	Total	40

3. Weightage to Difficulty level of questions:

Sr. No.	Estimated difficulty level of questions	Percentage
1.	Easy	20 %
2.	Average	60 %
3.	Difficult	20 %
	Total	100 %

4. Number of Questions:

There will be **40** questions of **1 mark** each

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION FIRST TERM EXAMINATION MODEL PAPER (2022 – 2023) BLUE PRINT

STD : X SUBJECT: MATHEMATICS – LEVEL 2 (ENGLISH)

MARKS : 40 TIME: 1 HOUR 45 MINUTEs

Type of Questions : VSA type

S. No.	Content/Unit		Objectives		Total
		Knowledge	Understanding	Application	
1.	Real Numbers	2(1) 15(1) 24(1) 29(1) 38(1)			5(5)
2.	Polynomials	1(1) 12(1)	6(1) 17(1) 34(1)		5(5)
3.	Pair of Linear Equations in Two Variables		4(1) 8(1) 11(1) 20(1) 27(1) 32(1) 36(1)		7(7)
4.	Introduction to Trigonometry		3(1) 14(1) 18(1) 39(1)	9(1) 22(1) 31(1)	7(7)
5.	Coordinate Geometry		7(1) 16(1) 25(1) 33(1)	37(1)	5(5)
6.	Circles	28(1)	5(1)	19(1)	3(3)
7.	Areas Related to Circles		26(1) 35(1)	13(1) 23(1) 40(1)	5(5)
8.	Probability		10(1) 21(1) 30(1)		3(3)
	Total	8(8)	24(24)	8(8)	40(40)

Note: Figures outside the bracket indicate the question number and figures inside the bracket indicate the marks.

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

FIRST TERM EXAMINATION MODEL PAPER (2022-2023)

STD: X	MARKS
SUBJECT: MATHEMATICS-LEVEL 2 (ENGLISH)	TIME: 1

MARKS: 40 TIME: 1 HOUR 45 MINUTES

Instructions:

1. Each question is provided with <u>four</u> alternatives. Choose the correct alternative.

2. Each question carries <u>one</u> mark. There is no negative marking for incorrect choice.

					<u> </u>		
1.	The product of zero	_	tic polynom	_	7 is	7	
	(A) $\frac{-5}{2}$	(B) $\frac{-7}{2}$		(C) $\frac{5}{2}$		(D) $\frac{7}{2}$	
2.	The prime factorisa	ation of 504 is					
	-	(B) $2^3 \times 3^2 \times$	7	(C) 2 ³ × 3 ×	: 7²	(D) 2² ×	$3^2 \times 7^2$
3.	If tan (A + 40)° = co	t 32°, where A is a	an acute ang	gle, then the	value of A i	S	
	(A) 18°	(B) 50°		(C) 58°		(D) 72°	
4.	The solution of the	pair of linear equ	ations $4x +$	y = 7 and $x -$	- y = 3 is		
	(A) <i>x</i> = - 2, y = - 1	(B) $x = -2, y =$	= 1	(C) $x = 2, y =$	= - 1	(D) <i>x</i> =	2, y = 1
5.	From an external point Q, the length of the tangent to a circle is 15 cm. If the radius of the circle is 8 cm, then the distance of Q from the centre is						
	(A) $\sqrt{23}$ cm	(B) 7 cm		(C) 17 cm		(D) √16	01 cm
6.	The quadratic poly	nomial having the	sum and pr	oduct of its z	eroes as -2	and -5 re	spectively is
		(B) y² - 2y - 5	-			(D) y² +	
7	The distance betwe	en the points P(1	, 4) and Q(4	, 0) is			
		(B) 3 units	, , , ,	(C) 5 units		(D) 25 เ	inits
8	The equation which	n has (2, -3) as one	e of its solut	ion is			
-		(B) $3x + 2y =$		(C) $5x + y =$	9	(D) <i>x</i> + 2	2y = - 4
9	A	In figure, ΔABC is	right angled	d at B. If AB =	10 cm, the	n the leng	th of BC is
		(A) $\frac{20\sqrt{3}}{3}$ cm				-	
10	A die is thrown ond	e. The probability	of getting a	an odd prime	number is		
	(A) $\frac{1}{6}$	(B) $\frac{1}{3}$	0 0	(C) $\frac{1}{2}$		(D) $\frac{2}{3}$	
	6	(-/3		$\left(0\right) _{2}$		(-/3	
11	The value of 'k' for solutions is	which the pair of	linear equa	tions $2x + 3y$	= 4 and 4 <i>x</i>	- ky = 8 h	as infinitely many
	(A) -6	(B) $\frac{-8}{3}$		(C) $\frac{8}{3}$		(D) 6	
12	The degree of the p	olynomial (2n ² - ¹	$5)(3 - 4n^3)i$	c			
12	(A) 2	(B) 3	5)(5 -p)i	(C) 5		(D) 6	
13.					-	-	tht 14 cm. If the 20 cm, then the
		area of the sha	-				$e \pi = 22/7)$
		(A) 56 cm ²	(B) 188		(C) 266	-	(D) 364 cm ²
14.	If cos A = $\frac{3}{5}$, then se		(-/ 200	-	(-) -00		()
	. 5	0		$(c)^{5}$		(D) ²⁵	
	(A) $\frac{4}{5}$	(B) $\frac{9}{25}$		(C) $\frac{5}{3}$		(D) $\frac{25}{9}$	

4 5		1400 :		
15	The HCF of 84 an (A) 4	d 108 is (B) 12	(C) 756	(D) 9072
16	The area of ∆ABC (A) 6 sq. units	C with vertices A(-4, 2), B (B) 12 sq. units	(2, 2) and C(0, -4) is (C) 18 sq. units	(D) 20 sq. units
17			$(x + 1)$ gives $(x^2 - 2)$ as the qu - 5 (C) $x^3 - x^2 - x + 2$	Notient and 5 as the remainder is (D) $x^3 - x^2 - 3x + 6$
18	The simplified for (A) sin ² A	rm of $\sqrt{1 - \cos^2 A}$ is (B) $\cos^2 A$	(C) cos A	(D) sin A
19		point T, TP and TQ are t circle and ∠POQ = 130° (B) 50°		ircle at P and Q respectively. If O is (D) 130°
20	The pair of linear (A) intersecting li		and $3x - 6y = 5$ represents (C) coincident lines	(D) skew lines
21	The probability o (A) $\frac{1}{52}$	f getting a red king from (B) $\frac{1}{26}$	a well shuffled deck of 52 p (C) $\frac{3}{26}$	laying cards is (D) $\frac{3}{13}$
22	If ∆ ABC is right a (A) 0	ngled at C, then the valu (B) 1	ue of cosec (A + B) is (C) 2	(D) not defined
23	and inner circles		nd 15 cm. Therefore, the are $(C)~35\pi~cm^2$	ea of the region between the outer (D) 5 π cm ²
24	The rational num (A) $\frac{8}{15}$	ber having a terminating (B) $rac{5}{7}$	g decimal expansion is (C) $\frac{23}{20}$	(D) $\frac{19}{12}$
25	If the point $P(x, y)$ (A)3x = 2y	() is equidistant from A(5 (B) $x = 5y$	5, 1) and B(-1, 5), then (C) 2 <i>x</i> = 3y	(D) $2x = y$
26	The area covered (A) 2π	by the minute hand of (B) 6π	a clock of length 6 cm in 20 r (C) 10π	minutes is (D) 12π
27	If (-1, 3) is the sol (A) -2	ution of the equation 3 (B) -4	x - ky = 9, then the value of (C) 2	k is (D) 4
28	The length of the (A) 1.8 cm	longest chord of a circle (B) 2.7 cm	e of radius 5.4 cm is (C) 5.4 cm	(D) 10.8 cm
29	If the product of (A) 14	two numbers is 756 and (B) 21	their HCF is 6, then their LC (C) 108	M is (D) 126
30	of getting a ball v	which is not yellow is		yellow balls, then the probability $(D)^{13}$
31	(A) $\frac{2}{5}$ The value of the t	(B) $\frac{3}{5}$	(C) $\frac{3}{4}$ n sin ² 20° + sin ² 70° - cosec ² 45	(D) $\frac{13}{20}$
	(A) -1	(B) O	(C) ½	(D) 1
32	If 5 <i>x</i> + 7y = 15 an (A) -2	id 7 <i>x</i> + 5y = 21, then the (B) -3	e value of x + y is (C) 2	(D) 3

33	The y-coordinate of the ratio 1 : 3 inter	•	des the line segme	nt joining the poi	nts P(6, 4) and Q(2, -8) in
	(A) -5	(B) 1	(C) 3	(D) 5	
34	On dividing the po	lynomial $(x^3 + 3x^2 - 4x)$	(x - 12) by $(x - 2)$,	the quotient is	
	(A) $x^2 + x - 6$	(B) $x^2 + 5x - 6$	(C) :	$x^2 + 5 x + 6$	(D) $x^2 + x + 6$
35	In a circle of radius	s 7 cm, if an arc subten	ds an angle of 90°		en the length of the arc
	is			(Take π	$=\frac{22}{7}$)
	(A) 11 cm	(B) 22 cm	(C) :	38.5 cm	(D) 77 cm
36	The pair of linear e other than	equations $kx + 6y = 7a$	and $2x - 3y = 8$ has	a unique solutio	n for all the values of 'k'
	(A) k = -4	(B) k = -9	(C) k	= 4	(D) k = 9
37	If A(1, 1), B(-1, 2),	C(2, 5) and D(a, 4) are	the vertices of a pa	arallelogram ABC	D, then the value of 'a' is
	(A) -4	(B) -3	(C) 3		D) 4
38	Which of the follo	wing real numbers is ir	rational?		
	(A) √49	(B) 2 + √6	(C) ₁	$\sqrt{3} \times 4\sqrt{3}$	(D) (5 - √7)(5 + √7)
39	If tan 3θ = sin45° of	cos 45° + sin 30°, then t	the value of θ is		
	(A) 15°	(B) 20°	(C) 30)°	(D) 45°
40		The area of a circ	le that can be insc	ribed in a square	of side 8 cm is
		(A) 4π cm ²	(B) 8π cm²	(C) 16π cm ²	(D) 64π cm²
	← 8 cm →				

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION FIRST TERM EXAMINATION MODEL PAPER (2022 – 2023) ANSWER KEY

STD: X SUBJECT: MATHEMATICS – LEVEL 2 (ENGLISH)

MARKS: 40 TIME : 1 HOUR 45 MINUTES

Q. No		Answer	Q. No		Answer
1	D	$\frac{7}{2}$	21	В	$\frac{1}{26}$
2	В	2 ³ x 3 ² x 7	22	В	1
3	А	18°	23	А	$175 \pi \mathrm{cm^2}$
4	С	x = 2, y = - 1	24	С	$\frac{23}{20}$
5	С	17 cm	25	А	3x = 2y
6	А	y ² + 2y - 5	26	D	12π cm ²
7	С	5 units	27	В	-4
8	D	x + 2y = -4	28	D	10.8 cm
9	С	$10\sqrt{3}$ cm	29	D	126
10	В	$\frac{1}{3}$	30	В	3/5
11	А	-6	31	А	-1
12	С	5	32	D	3
13	А	56 cm ²	33	В	1
14	D	<u>25</u> 9	34	С	$x^{2} + 5x + 6$
15	В	12	35	А	11 cm
16	С	18 sq. units	36	А	K = -4
17	А	$x^3 + x^2 - 2x + 3$	37	D	4
18	D	sin A	38	В	$2 + \sqrt{6}$
19	А	25°	39	А	15°
20	А	Intersecting	40	С	16π cm ²

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION DESIGN OF THE SSCE QUESTION PAPER (FOR ACADEMIC YEAR 2022 – 2023) SECOND TERM EXAMINATION

CLASS : X

MATHEMATICS (E) LEVEL -1

TIME : 1 HOUR 45 MINUTES

MARKS: 40

1. Weightage of Learning Outcomes

Sr.	Learning Outcomes	Marks	Percentage of
No.			Marks
1	Knowledge	8	20%
2	Understanding	16/13*	40%
3	Application	10	25%
4	Skill	6/9*	15%
	Total	40	100%

2. Weightage to Content /Subject Units

Sr. No.	Units	Marks
1	Quadratic Equations	8
2	Arithmetic Progression	5
3	Statistics	7
4	Triangles	5
5	Some Applications of Trigonometry	3
6	Constructions	6
7	Surface Areas and Volumes	6
	Total	40

3. Weightage to Forms of Questions

Sr. No.	Forms of Questions	Marks for each question	Number of questions	Total Marks
1	Long Answer Type (LA)	04		00
	Long Answer Type (LA)	04	02	08
2	Short Answer Type (SA-II)	03	07	21
3	Short Answer Type (SA-I)	02	04	08
4	Very Short Answer Type (VSA)	01	03	03
			Total	40

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

4. Weightage to Difficulty Level of Questions

5. Number of Main Questions and Scheme of options:

There will be 04 main questions of 10 marks each. There is no overall choice. However internal choice will be provided in one question of 3 marks

1(4) 2(6)	(4)	(4)	(4)	1	2(6)			1(4)	3(9)	1(2)	1(1)			3(6)	2 (2)	Total	
Q4C(3)	Q4C(3)	Q4C(3)	Q4C(3)	Q4C(3)										Q4B(2)		Triangles	7
									Q4D(3)		Q3A(1)			Q4A(2)		Surface Areas and Volumes	6
Q3D(3)	Q3D(3)	Q3D(3)	Q3D(3)	Q3D(3)												Some Applications of Trigonometry	σ
Q3C(3)																	
Q3B(3)																Constructions	4
Q1D(4)	Q1D(4)	Q1D(4)	Q1D(4)						Q1C(3)						Q1A(1)	Quadratic Equations	ω
									Q2C(3)					Q2B(2)		Arithmetic Progression	2
								Q2D(4)		Q1B(2)					Q2A(1)	Statistics	4
2 3 4 1 2 3 4	3 4 1 2	3	ω		2	1	1	4	ω	2	1	4	ω	2	4	Content /Marks	
SA-I SA-II LA VSA SA-I SA-II LA	SA-II LA VSA SA-I	SA-II LA	SA-II		SA-I	1	A VS	₽	SA-II	SA-I	VSA	Þ	SA-II	SA-I	VSA	Forms of questions	
Application Skill		Application	Application	Applicatio	Ā	1			anding	Understanding			ge	knowledge		Objectives	Sr. No
Maximum Marks : 40	2							3 (1) - 15		שוט אי ואיא וחבואא ווכש (ב) – בב אבר ד					es	Duration : 1hour 45 Minutes	Dura
GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION BLUE PRINT (SECOND TERMINAL EXAMINATION) STD X - MATHEMATICS (F) _ LEVEL 1	Y EDUCATION ION)	Y EDUCATION ION)	Y EDUCATION ION)	Y EDUCATION ION)	Y EDU	コア	ondai Minat	HER SEC	' AND HIG ND TERMI	ARD OF SECONDARY AND HIGHER SECONDARY ED BLUE PRINT (SECOND TERMINAL EXAMINATION) STD X : MATHEMATICS (E) _ LEVEL 1	ARD OF SI BLUE PRI	OA BO	G				

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION SECOND TERM EXAMINATION MODEL PAPER (2022-2023)

Class : X		Max Marks : 40
Subject :Mathemat	ics(E) Level – 1	Time :1 hour 45 minutes
INSTRUCTIONS :	I)Answer each main question	on a fresh page.
	II) All questions are compulso	ry
	III)The question paper consist	s of 4 questions each of 10 marks
	IV) There is no overall choice I provided in one question of	however internal choice has been of 3 marks

V) In questions of construction the drawing should be clear and exactly as per the given measurements. The construction lines and arcs should also be maintained

VI) Use of calculator and mathematical tables is not permitted.

Q1A) Write the equation $x + \underline{1} = 2$ in the form of $ax^2 + bx + c = 0$ (1)

B) The distribution below shows the weight of 30 employees in a (2) factory.Calculate the median weight of the employees.
 (Write your answer correct upto one decimal place)

Weight in Kg	No. of employees
40 - 45	6
45 — 50	7
50 – 55	8
55 – 60	9

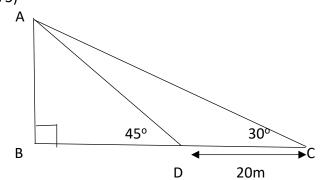
- C) Find the roots of (**ANY ONE**) of the following quadratic (3) equations
 - i) $5x^2 + 2x 39 = 0$ (By Factorization method)
 - ii) $3x^2 + 6x + 1 = 0$ (By completing the square method)
- D) A number consists of 2 digits . The digit in ten's place is greater (4) than the digit in units place by 4. The sum of the squares of the digits is 15 less than the original number. Find the original number .

Q2A) Write the modal class of the following frequency distribution table

Class Interval	0 – 20	20 - 40	40 - 60	60 - 80
Frequency	6	10	18	4

- B) For the AP: 3, 15,27 , 39,------Find :
 - i) The 21st term.
 - ii) Which term of the AP is 363 ?
- C) A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: Rs 200 for the first day and then Rs 50 (3) more on every succeeding day . Find the total amount the contractor has to pay as penalty for delaying the job by 30 days.

The following table shows the marks scored by 60 students in a test						
	Marks	No. of	Class Marks	Deviation	fidi	(4)
	Scored	students	Xi	d _i = x _i - a		
	(C.I)	(f _i)				
	0-20	10				
	20 - 40	12				
	40 -60	8				
	60 - 80	14				
	80 - 100	9				
	100 - 120	7				
	Total	Σf _i = 60			Σf _i .d _i =	


D) The following table shows the marks scored by 60 students in a test

Taking the class mark denoted by 'a' of class interval 60 - 80 as the assumed mean , rewrite and complete the table and find the mean of the marks obtained by the assumed mean method.

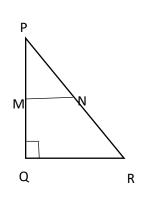
- Q3A) The inner radii of the 2 circular ends of a toy bucket are 10cm and 6cm (1) respectively. If the height of the bucket is 15cm then find the capacity of the bucket (Take $\pi = 22/7$)
 - B) Draw a line segment AB = 7.5cm. Taking A as the centre and radius 3cm (3) draw a circle and taking B as centre draw another circle of radius 2.5 cm .Using a pair of compasses and ruler construct tangents to each circle from the centre of the other circle.
 - C) Using a pair of compasses and ruler, Construct $\triangle ABC$ with BC = 6cm, (3) AB = 5.5cm and $L ABC = 60^{\circ}$. Then construct $\triangle A'BC'$ whose sides are $\underline{5}$ of 3

the corresponding sides of ΔABC .

D) A tree 'AB' casts a shadow when the sun is 30° above the horizon . But (3) when it rises 45° above the horizon , the length of the shadow reduces by 20 metres. Find the height of the tree correct upto one place of decimal . (Take $\sqrt{3} = 1.73$)

(1)

(2)


Q4A) A wooden article was made by scooping out a hemisphere from one end (2) of a cylinder . If the height of the cylinder is 10 cm and its base is of diameter 7cm then find :

i)The Curved surface area of the hemispherical part (Do not substitute for π)

ii)TheCurved surface area of the cylindrical part (Do not substitute for π)

B) In ΔPQR , L PQR = 90° and Line segment MN || QR as shown in the figure (2) .If PM = 9cm , MQ = 2cm and $ar(\Delta PMN) = 81$ sqcm then Find $ar(\Delta PQR)$

C) In $\triangle ABC$, P and Q are points on the sides AB and AC respectively such (3) that PQ ∥ BC. Prove that the median AD drawn from A to BC bisects PQ

> A F D В

D) A container shaped like a right circular cylinder having diameter 12cm and height 15cm is full of ice cream . This ice cream is to be filled into cones of height 12cm and diameter 6cm, having a hemispherical shape on the top . Find the number of such cones which can be filled with the ice cream.

(3)

SSCE Second Term Examination Mathematics (E) – Level 1 (2022 – 2023) Model paper : Answers and Marking Scheme

Note : Any Alternative method unless otherwise specified should be considered for full marks.

Q1A)
$$x + \frac{1}{2} = 2$$

 x
 $\frac{x^2 + 1}{x} = 2$
 x
 $x^2 + 1 = 2x$
 $x^2 + 1 = 2x$
 $x^2 - 2x + 1 = 0$

 $\begin{array}{r}
21 \\
30 \\
n = 30 \\
n = 30 = 15 \\
2 & 2 \\
Median class = 50 - 55 \\
l = 50 \\
cf = 13 \\
f = 8 \\
h = 5
\end{array}$

cf

6 13

Median = I +
$$\begin{bmatrix} \underline{n} - cf \\ \underline{2} \\ f \end{bmatrix}$$
 x h
= 50 + $\begin{bmatrix} 15 - 13 \\ 8 \end{bmatrix}$ x 5
= 50 + $\underline{2}$ x 5
8
= 50 + $\underline{10}$
8
= 50 + 1.25
= 51.25
= 51.3 kg

1⁄2

1/2 + 1/2

1∕₂

C)i)
$$5x^2 + 2x - 39 = 0$$

 $5x^2 + 15x - 13x - 39 = 0$
 $5x (x + 3) - 13(x + 3) = 0$
 $(x + 3) (5x - 13) = 0$
Either $x + 3 = 0$ or $5x - 13 = 0$
 $x = -3$ or $x = \frac{13}{5}$
 \therefore roots are -3 and $\frac{13}{5}$
 5

ii)
$$3x^{2} + 6x + 1 = 0$$

 $3x^{2} + 6x = -1$ ½
Dividing by 3 on both the sides
 $x^{2} + 2x = -1$
3
Last term = $\begin{bmatrix} 1 \\ 2 \end{bmatrix}^{2} = 1$ ½

Adding 1 on both the sides of the equation

$$x^{2} + 2x + 1 = -\frac{1}{3} + 1$$

$$(x + 1)^{2} = -\frac{1 + 3}{3}$$

$$(x + 1)^{2} = \frac{2}{3}$$

$$(x + 1) = \pm \frac{\sqrt{2}}{\sqrt{3}}$$

$$(x + 1) = \pm \frac{\sqrt{2}}{\sqrt{3}}$$

$$(x + 1) = \frac{\sqrt{2}}{\sqrt{3}} + 1 = -\frac{\sqrt{2}}{\sqrt{3}}$$

$$(x + 1) = \frac{\sqrt{2}}{\sqrt{3}} + 1 = -\frac{\sqrt{2}}{\sqrt{3}}$$

$$(x + 1) = \frac{\sqrt{2}}{\sqrt{3}} + 1 = -\frac{\sqrt{2}}{\sqrt{3}}$$

$$(x + 1) = \frac{\sqrt{2}}{\sqrt{3}} + 1 = -\frac{\sqrt{2}}{\sqrt{3}} + 1 = -\frac{\sqrt{2}}{\sqrt$$

D) Let the digit in the units place be x

$$\therefore$$
 the digit in the tens place is x + 4
Original number = 10 (x + 4) + x
= 10x + 40 + x
= 11x + 40
 $x^2 + (x + 4)^2 = 11x + 40 - 15$
 $x^2 + x^2 + 8x + 16 = 11x + 25$
 $2x^2 + 8x - 11x + 16 - 25 = 0$
 $2x^2 - 3x - 9 = 0$
 $2x^2 - 6x + 3x - 9 = 0$
 $2x(x - 3) + 3(x - 3) = 0$
(x - 3) (2x + 3) = 0
Either x - 3 = 0 or 2x - 3 = 0

$$x = 3 \text{ or } x = -\frac{3}{2}$$

$$x = -\frac{3}{2}$$

$$\frac{1}{2}$$

1

B)i) $a_n = a + (n - 1) d$ $a_{21} = 3 + (21 - 1) 12$ $= 3 + 20 \times 12$ = 3 + 240 = 243 $\frac{1}{2}$

ii)
$$a_n = 363$$

 $a = 3$
 $d = 15 - 3 = 12$
 $a_n = a + (n - 1) d$
 $363 = 3 + (n - 1) 12$
 $363 - 3 = (n - 1) 12$
 $360 = (n - 1) 12$
 30
 $360 = n - 1$
 12
 $30 = n - 1$
 $30 + 1 = n$
 $n = 31$ $\frac{1}{2}$

1⁄2 C) AP: 200, 250, 300, 350, ----a = 200 d = 250 - 200 = 50 n = 30 $S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$ $S_{n} = \frac{n}{2} \left[2x 200 + (30-1)50 \right]$ 1/2 + 1/2 = 15 - [400 + (29 x 50)] 1/2 = 15 (400 + 1450) 1⁄2 = 15 x 1850 = 27750 ∴ the contractor has to pay Rs 27,750 as penalty for 1∕₂

delaying the job by 30 days.

Marks scored	Number of	Class Marks	Deviation $d_i = x_i - a$	f _i d _i
(C.I)	students	Xi	a = 70	
	(f _i)			
0 - 20	10	10	-60	-600
20 – 40	12	30 1/2	-40 _1/2	-480 -1/2
40 – 60	8	50	-20	-160
60 - 80	14	70	0	0 7
80 - 100	9	90 1/2	20 -1/2	180 –1/2
100 -	7	110	40_	280
120				
Total	Σf _i = 60			Σf _i d _i = -780

Mean =
$$a + \frac{\Sigma f_i d_i}{\Sigma f_i}$$

= 70 - $\frac{13}{60}$
= 70 - 13
= 57

3

Q3A) r₁ = 10 cm

D)

r₂ = 6cm h = 15cm

V(Frustum of the cone) = $\frac{1}{2}\pi h (r_1^2 + r_2^2 + r_1r_2)$ 3 $5 = \frac{1}{3} \times \frac{22}{7} \times \frac{15}{5} (10^2 + 6^2 + 10 \times 6)$ 1/2 28 =<u>22</u> x 5 x 196 7

$$= 3080 \text{ cm}^3$$
 $\frac{1}{2}$

B)	To draw line segment AB = 7.5cm	1/2
	To draw a circle with centre A and radius 3cm	1/2
	To draw a circle with centre B and radius 2.5cm	1/2
	To bisect line segment AB	1/2
	To mark points on the two circles	1⁄2
	To draw tangent segments to each circle from the centre of	
	both the circles .	1⁄2

C)	To construct ΔABC with the given data To draw a ray making an acute angle with side BC To locate 5 points on the ray using a pair of compasses To join B ₃ C and construct B ₅ C' B ₃ C To draw C'A' CA ΔABC is the required triangle	1 ½ ½ ½ ½
D)	Let the height of the tree by 'x' metres and BD = y metres In ΔABD	
	Tan $45^\circ = \frac{x}{\gamma}$ $1 = \frac{x}{\gamma}$ y x = y	1/2
	In $\triangle ABC$ Tan $30^\circ = \frac{x}{Y+20}$	1/2
	$\frac{1}{\sqrt{3}} = \frac{x}{x+20}$	1/2
	$x + 20 = x\sqrt{3}$ $20 = x\sqrt{3} - x$ $20 = x(\sqrt{3} - 1)$ $\frac{20}{\sqrt{3} - 1} = x$ $\sqrt{3} - 1 \qquad \sqrt{3} + 1 = x$ $\sqrt{3} - 1 \qquad \sqrt{3} + 1$ $\frac{20(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = x$ $\frac{20x(1.73 + 1)}{3 - 1} = x$ 3 - 1 10(2.73) = x 27.3 = x	1/2
	∴The height of the tree is 27.3 metres	1/2
	C.S.A (hemispherical part) = $2\pi r^2$ = $2 \times \pi \times (3.5)^2$ = 24.5π sq. cm	¥2 ¥2
ii)	C.S.A (cylindrical part) = 2π rh = $2 \times \pi \times 3.5 \times 10$ = 70π sq.cm	1/2 1/2

B)	LPMN = LPQR Corresponding angles	1/2
	$\Delta PMN \sim \Delta PQR$ By AA similarity test	1⁄2
	$\frac{\text{ar}(\Delta PMN)}{\text{ar}(\Delta PQR)} = \left[\frac{PM}{PQ}\right]^2$	
	$\frac{81}{\text{ar}(\Delta PQR)} = \begin{bmatrix} 9\\11 \end{bmatrix}^2$	1/2
	ar (ΔPQR) = $\frac{81 \times 11 \times 11}{9 \times 9}$	
	= 121 sq .cm	1⁄2
C)	In $\triangle APE$ and $\triangle ABD$ LPAE = LBAD common angle LAPE = LABD corresponding angles	1⁄2
	ΔAPE ~ ΔABDBy AA similarity test <u>AE</u> = <u>PE</u> corresponding sides of similarADBDtriangles are proportional	1/2
	Similarly $\Delta AEQ \sim \Delta ADC$ By AA similarity test	
	<u>AE</u> = <u>EQ</u> corresponding sides of similar AD DC triangles are proportional	1/2
	$ \frac{PE}{BD} = \frac{EQ}{DC} $	1⁄2
	<u>PE</u> = <u>BD</u> EQ DC	
	= 1 Since BD = DC	1⁄2
	<pre> PE = EQ Median AD drawn from A to BC bisects PQ</pre>	1⁄2

Let the number of cones to be filled with icecream be 'n^{τ} D) $R_{cylinder} = 6cm$ $r_{cone} = 3cm$ 1/2 $h_{cone} = 12cm$ $H_{cylinder} = 15 cm$ V(Cylinder) = n x $\left\{ V(each cone) + V(each hemisphere) \right\}$ $\pi R^2 H = n \times \begin{bmatrix} \underline{1} & \pi r^2 h + \underline{2} & \pi r^3 \end{bmatrix}$ 1⁄2 $\pi R^2 H = n \times \frac{1}{3} \pi r^2 (h + 2r)$ $6 \times 6 \times 15 = n \times \frac{1}{2} \times \frac{3}{2} \times 3 (12 + 2 \times 3)$ 1/2 + 1/2 $6 \times 6 \times 15 = n \times 3 \times 18$ $n = \frac{2}{6} \times \frac{1}{5} \times \frac{5}{3} \times \frac{15}{3}$ 1/2

$$n = 10$$

 \therefore the number of cones to be filled with icecream are 10 \int 1/2

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

DESIGN OF THE SSCE QUESTION PAPER (FOR ACADEMIC YEAR 2022 – 2023) SECOND TERMINAL EXAMINATION MATHEMATICS (E) - LEVEL 2

TIME : 1HR 45 MINUTES

MAX MARKS : 40

1. Weightage to Learning Outcomes

Sr. No	Learning Outcomes	Marks	Percentage of Marks
1	Knowledge	08	20%
2	Understanding	18	45%
3	Application	08	20%
4	Skill	06	15%
	Total	40	100%

2. Weightage to Content / Subject Units

Sr. No	Units	Marks
1	Quadratic Equations	8
2	Arithmetic Progressions	5
3	Statistics	7
4	Triangles	5
5	Some Applications of Trigonometry	3
6	Constructions	6
7	Surface Areas and Volumes	6
	Total	40

3. Weightage to Forms Of Questions

Sr. No	Forms of Questions	Marks for	Number of	Total Marks
		each	questions	
		question		
1	Long Answer Type (LA)	04	02	08
2	Short Answer Type (SA-II)	03	07	21
3	Short Answer Type (SA-I)	02	04	08
4	Very Short Answer Type (VSA)	01	03	03
		Total	16	40

4. Weightage to Difficulty level of questions :

Sr. No	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

5. Number of Main Questions :

There will be $\underline{04}$ main questions of $\underline{10}$ marks each.

Goa Board of Secondary and Higher Secondary Education Blue Print (Second Terminal Examination) STD X : Mathematics (E) - Level 2

Duration : 1hr 45 minutes

Maximum Marks : 40

	`	J	đ			5		4	ω		2		1				No	Sr.	
'Total	and Volumes	Curfana Araas	Constructions	Trigonometry	Applications of	Some		Triangles	Statistics	Progressions	Arithmetic	Equations	Quadratic	Content/Marks	Questions	Forms of		Objectives	
3(3)	3/4(1) 4/4(1)	14/ AC							1A (1)					1		VSA			
2*(3)											1B(2)	1	2A*(i)	2		SAI		Knowledge	
1*(2)										(2)	1B(2) 1C*(i)(ii)			8		S.A II		edge	
														4		2			
														1		VSA		5	
1(2)									2B(2)					2		S.AT SAT		Understanding	
4* (10)								4C(3)		(1)	1C* (iii)	2D(3)	2C (3)	ω		SAII		nding	
2*(6)	(2)								1D (4)					4		۶			
														1		VSA			
2*(3)								4B(2)				1	2A*(ii)	2		S.A.I		Application	
1(3)						3D(3)								8		S.A II		cation	
1*(2)	40° (ii) (2)	AD*/III												4		5			
														1		VSA			
														2		S.A I		Skill	
2(6)		10100	3B(3) 3C (3)											ω		S.A II		á	
														4		۶			
16(40)	(a)c	12/10	2(6)			1(3)	-	2(5)	3(7)		2(5)		3(8)					Total	

NOTE : Figures outside the brackets indicate the questions number and figures within the brackets indicate the marks. * Indicates objectives of the Question are shared.

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION SECOND TERM EXAMINATION

MODEL PAPER (2022 – 2023)

STD : X SUBJECT : MATHEMATICS (E) - LEVEL 2 MAX MARKS : 40 TIME : 1hr 45 minutes

(3)

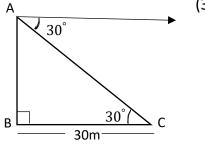
INSTRUCTIONS : i) Answer each main question on a fresh page .

- ii) All questions are compulsory.
- iii) The question paper consists of four questions, each of 10 marks
- iv) There is no overall choice.
- v) In questions on constructions , the drawing should be clear and exactly as per the given measurements. The construction lines and arcs should be maintained.
- vi) Use of calculators and mathematical tables is not permitted.

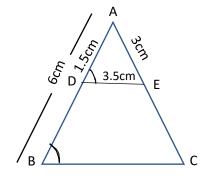
Q1A) Find the class size of the class intervals 25 - 55, 55 - 85, 85 - 115,... (1)

- B) Attempt the following : (2)
- (i) Write the first four terms of an AP having first term as 19 and common difference as -3.
- (ii) State with reason if the given list of numbers is an AP or not.1, 3, 9, 27,...
- C) Answer the following questions with reference to the given Arithmetic Progression : 11 , 15 , 19 , 23 ,...
- (i) Find the 20^{th} term of the AP.
- (ii) Find the sum of the first 12 terms of the AP.
- (iii) Find which term of the AP is 91.
- D) The following table shows the donation given by 50 students towards a Charitable trust.

Donation in Rs	No of students	Class marks	$f_i x_i$
C.I	f_i	x_i	
0 - 20	5		
20 - 40	8		
40 - 60	10		
60 - 80	12		
80 - 100	7		
100 - 120	8		
	$\sum f_i = 50$		$\sum f_i x_i =$

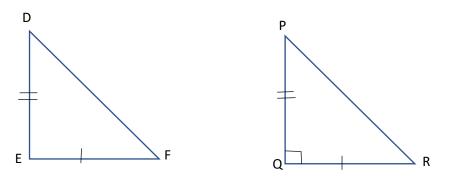

Rewrite and complete the table and find the mean donation by using the Direct Method . (4)

Q2A) Attempt the following :


- (i) If the sum and product of the roots of the quadratic equation are 5 and – 6 respectively, then write the quadratic equation in x.
- (ii) If one root of the quadratic equation $2x^2 + mx 15 = 0$ is -5, then find the value of m.
- B) Find the mode of the following frequency distribution table : (2)

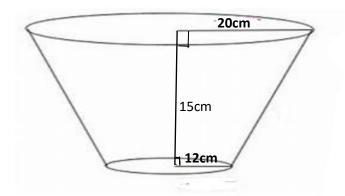
Class Interval	Frequency
20 - 30	5
30 - 40	12
40 - 50	20
50 - 60	8

- C) Find the roots of the Quadratic Equation $5x^2 14x + 8 = 0$ by using the "Factorisation Method." (3)
- D) Find the roots of the Quadratic Equation $3x^2 4x 7 = 0$ by using the "Quadratic Formula Method." (3)
- 3A) Find the total surface area of a hemisphere of radius 7cm. (1) (Do not substitute the value of π)
 - B) Draw a line segment AB of length 7.5cm. Taking A as centre and radius 3cm, draw a circle. Using a pair of compasses and ruler, Construct tangents BP and BQ to the circle.
 Measure and state the length of the tangent segments. (3)
 - C) Construct Δ PQR with sides PQ = 6.5cm, QR = 7cm and \angle PQR = 60°. Using a pair of compasses and ruler, construct Δ P'QR' similar to Δ PQR whose sides are $\frac{3}{4}$ of the corresponding sides of Δ PQR. (3)
 - D) From the top 'A' of a tower 'AB' a man finds that the angle of depression of a car at point 'C' on the ground to be 30° . If the car is at a distance of 30m from the foot of the tower, then find the height of the tower. (Take $\sqrt{3} = 1.73$)


- 4A) Two identical solid cubes of side 2cm are joined end to end . Find the volume of the resulting cuboid.
- B) D and E are points on the sides AB and AC respectively of $\triangle ABC$, such that $\angle ADE = \angle ABC$. If AD = 1.5cm, AB = 6cm, AE = 3cm and DE = 3.5cm, then find i) EC ii) BC

(1)

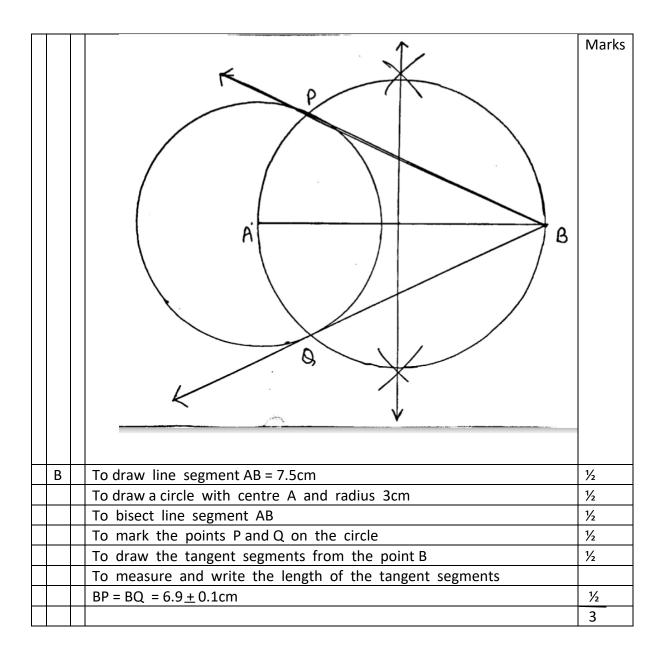
(2)


C) With reference to the given figure and the given conditions , write only the proof with reasons of the following theorem :

Given : In Δ DEF , $DE^2 + EF^2 = DF^2$

 Δ PQR is constructed such that PQ = DE , QR = EF and \angle Q = 90⁰ Prove that : Δ DEF is a right angled triangle. (3)

- D) Attempt the following :
- (i) In the figure given below an open steel bucket is in the shape of a frustum of a right circular cone of height 15cm. If the radii of its lower and upper ends are 12cm and 20cm respectively, then find
 - a) The slant height of the bucket
 - b) The curved surface area of the bucket (2) (Do not substitute the value of π)


ii) A solid metallic cylinder of base diameter 6cm and height 32cm is melted to form 8 solid spheres of the same size.Find the radius of each sphere.

xxxxxxxxxxxxx The End xxxxxxxxxxxxxxxxxxxx

			SSC SECOND TERM EXAMINATION (MODEL PAPER)	Marks
			MATHEMATICS (E) - Level 2 (S – 2024)	
			MODEL ANSWERS AND MARKING SCHEME	
			NOTE : Any alternative method unless otherwise specified	
			should be considered for full credit.	
1	А		30	1
	В	(i)	a = 19 , d = - 3	
			\therefore The first four terms of the AP are	
			a = 19	1/2
			a + d = 19 + (-3) = 19 - 3 = 16	
			a + 2d = 19 + 2(-3) = 19 - 6 = 13	1/2
			a + 3d = 19 + 3(-3) = 19 - 9 = 10	1
		(ii)	In the given list of numbers : 1 , 3 , 9 , 27 ,	
			$a_2 - a_1 = 3 - 1 = 2$	
			$a_3 - a_2 = 9 - 3 = 6$	1/2
			$a_4 - a_3 = 27 - 9 = 18$	
			Since the given list of numbers does not have a	1/2
			common difference it is not an AP	1
	С	(i)	a = 11 , d = 15 – 11 = 4	
			$a_{20} = a + 19d$	
			= 11 + 19(4)	1/2
			= 11 + 76	
			= 87	1/2
				1
		(ii)	a = 11, d = 4, n = 12, S _n = ?	
			$S_n = \frac{n}{2} \left(\frac{2a + (n-1)d}{2} \right)$	
			= 12 2(11) + (12 - 1)4	1/2
			= 6 (22 + 44)	
			= 6 (66)	1/2
			= 396	1
		(iii)		
			$a_n = a + (n - 1) d$	
			91 = 11 + (n - 1) 4	1/2
			91 - 11 = (n - 1)4	
			80/4 = (n-1)	
			20 + 1 = n	
			21 = n	
			The 21^{st} term of the AP is 91	1/2
				1

	D		Donation in Rs	No of students	Class marks		Marks					
			C.I	f_i	x _i	$f_i x_i$	TVTCT K5					
			0 - 20	5	10] ½	<u>אר</u> 50 זע						
			20 - 40	8	30	240						
			40 - 60	10	<u>50 ک</u> ر 50	<u>2 וסן</u> 1⁄2 ג ר 500						
			60 - 80	12	70 _	840						
			80 - 100	7	90 J ½	630 ½						
			100 - 120	8	110	880 5						
			100 120	$\Sigma f_i = 50$		$\Sigma f_i x_i = 3140$						
		Note:	Any 2 correct valu									
		Note.	Mean of dona			½ mark						
				$\frac{10H - 2f_i x_i}{\Sigma f_i}$		/2 ጠብ ሺ						
				= 3140			1/2					
				50			72					
				= 62.8			1/2					
				52.0			4					
2	Α	(i)	The quadratic ec	x in x is								
_		(.)	-	roots) x + produc	ct of the roots	= 0						
			$x^2 - 5x + (-6) =$	= 0			1/2					
			$x^2 - 5x - 6 =$	= 0			1/2					
				ALTERNATIVE MI	ETHOD		1					
			Sum of the roots $= -b = 5$									
			Product of the roots = $c = -6$									
				а								
			∴ a = 1, b = -5	, c=-6								
			The quadratic e	quation in x is	$x^2 - 5x - 6 =$	0	1/2					
							1					
		(ii)	$2x^2 + mx - 15 =$	0								
			$2(-5)^2 + m(-5) - 15 = 0$									
			50 – 5m – 15 = 0									
			35 – 5m = 0									
			- 5 <i>m</i> = -									
			m = 7				1/2					
							1					
	В		$I = 40$, $f_1 = 20$, f_0			are correct)						
			Mode = I + $\left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)$ x h									
			$= 40 + \left(\frac{20 - 12}{2(20) - 12 - 8}\right) \times 10 $ ^{1/2}									
			= 40 + 8	x 10			1/2					
				0								
			= 40 + 4	<i>J</i>								
			= 44				1/2					
							2					

	С	$5x^2 - 14x + 8 = 0$	Marks
		$5x^2 - 10x - 4x + 8 = 0$	1/2
		5x(x-2)-4(x-2)=0	1/2
		(5x-4)(x-2) = 0	1/2
		Either $5x - 4 = 0$ OR $x - 2 = 0$	1/2
		x = 4 $x = 2$	1/2
		$\begin{array}{ccc} x &= 4 & x &= 2 \\ \hline 5 & \end{array}$	
		∴ The roots are 4 and 2	1/2
		5	3
	D	$3x^2 - 4x - 7 = 0$	
		a = 3 , b = -4, c = -7	
		$D = b^2 - 4ac$	
		$= -4^2 - 4$ (3) (-7)	
		= 16 + 84	
		= 100	1/2
		$x = -b + \sqrt{b^2 - 4ac}$	
		$x = -\underline{b + \sqrt{b^2 - 4ac}}$	
			1/2
		$x = -(-4) \pm \sqrt{100}$ 2(3)	
		$x = 4 \pm 10$	1/2
		<u> </u>	
		<i>Either</i> $x = 4 + 10$ OR $x = 4 - 10$	1/2
		6 6	
		$x = \underline{14} \qquad \qquad x = \underline{-6}$	
		6 6	
		$x = \underline{7} \qquad \qquad x = -1$	1/2
		3	
		\therefore The roots are 7 and -1	1/2
		3	3
3	А	Total surface area of hemisphere = $3\Pi r^2$	
		= 3П x 7 x 7	1/2
		$= 147 \Pi cm^2$	1/2
			1
L			

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}$	Marks
	84X X	
С	To construct Δ PQR with the given data	1
	To draw a ray making an acute angle with side QR	1/2
	To locate four points on the ray using a pair of compasses	1/2
	To join $Q_3 R' \parallel Q_4 R$ and $R'P' \parallel RP$ $\frac{1}{2}$ +	1/2
	Δ P'QR' is the required triangle	3
D	In right Δ ABC	
	$\tan 30^{\circ} = AB$	
	BC	
	$1 = AB$ $\frac{1}{2}$	1/2
	$\sqrt{3}$ 30	
	$\underline{30} = AB$	1/2
	$\sqrt{3}$	
	$30\sqrt{3} = AB$	
	3	
	$10\sqrt{3} = AB$	1/2
	10x3 - AB 10x1.73 = AB	1/2
\vdash	$10 \times 1.73 = AB$ 17.3m = AB	1/2 1/2
	The height of the tower is 17.3 m	/2
		3
┝──└		<u> </u>

4	А	l = 4cm , b = 2cm , h = 2cm	Marks
		Volume of the cuboid = $1 \times b \times h$	
		= 4 x 2 x 2	1/2
		$= 16cm^3$	1/2
	В		1
		Δ ADE ~ Δ ABC By AA Similarity Criterion \neg	
		AD = AE	1/2
		AB AC	
		<u>1.5</u> = <u>3</u>	
		6 AC	
		$AC = \underline{3 \times 6}$	
		1.5	
		AC = 12cm	
		EC = AC - AE = 12 - 3 = 9cm	1/2
		$\underline{AD} = \underline{DE}$	
		AB BC	
		<u>1.5</u> = <u>3.5</u>	1/2
		6 BC	
		$BC = \underline{3.5 \times 6}$	
		1.5	
		BC = 14cm	1/2
			2
	C	In \triangle PQR	
		1) $PQ^2 + QR^2 = PR^2$ By Pythagoras theorem	1/2
		2) $DE^2 + EF^2 = PR^2$ Since PQ = DE , QR = EF	1/2
		3) $DE^2 + EF^2 = DF^2$ Given	
		4) $PR^2 = DF^2$ Statements (2) & (3)	1/
		5) PR = DF Statement (4)	1/2
		6) $\triangle PQR \cong \triangle DEF$ SSS Congruence rule	1/2
		7) $\angle Q = \angle E$ C.P.C.T	1/2
		8) But $\angle Q = 90^{\circ}$ Given	
		9) $\therefore \angle E = 90^{\circ}$ From (7) & (8)	1/
		10) $\therefore \Delta$ DEF is a right angled triangle	1/2
			3

(i)(a)	h = 15cm , Upper radius (R) = 20cm , Lower radius (r) = 12cm	
	$=\sqrt{15^2 + (20 - 12)^2}$	1/2
-	$=\sqrt{15^2+8^2}$	
-		
	= 17cm	1/2
(b)	C.S.A of the bucket = $\Pi (R + r)I$	
		1/2
	$= 544 \Pi cm^2$	1/2
		2
(ii)		
	h = 32 cm	
	Sphere : radius (R) = ?	
	Volume of 8 spheres = Volume of cylinder	
	$8 \times 4 \ \Pi R^3 = \Pi r^2 h$	
<u> </u>	3	
	$9 \times 4 \times 2^3 - 2 \times 2 \times 2^2 = 1/$	+ ½
	$\frac{8 \times 4 \times R^2}{3} = \frac{3 \times 3 \times 3 2}{72}$	+ /2
	$R^3 = 3 \times 3 \times 32 \times 3$	
	8 x 4	
	$R^3 = 27$	1/2
	R = 3cm	1/2
	The radius of each sphere is 3cm	
		2
		(b) C.S.A of the bucket = $\Pi (R + r) I$ = $\Pi (20+12) 17$ = $\Pi x 32 x 17$ = $544 \Pi cm^2$ (ii) Cylinder : $r = d = 6$ = $3 cm$ 2 2 h = $32 cm$ Sphere : radius (R) = ? Volume of 8 spheres = Volume of cylinder 8 x 4 ΠR^3 = $\Pi r^2 h$ 8 x 4 $x R^3$ = $3 x 3 x 32$ R^3 = $3 x 3 x 32 x 3$ R^3 = $3 x 3 x 32 x 3$ R^3 = $3 x 3 x 32 x 3$ R^3 = 27 R = $3 cm$