RollNo.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, NOV/DEC 2023

LLERO AU CHENNAL 600 025

INDUSTRIAL ENGINEERING

FIFTH SEMESTER

IE5551 ENGINEERING QUALITY CONTROL

(Use of Statistical Tables are Permitted)

(Regulation2019)

Time:3hrs

Max.Marks: 100

CO1	Students will become familiar with details of quality costs, economies and planning.
CO2	Control the quality of processes using control charts for variables in manufacturing/service
	industries. CO3:. CO4:. CO5:.
CO3	Good understanding and in depth knowledge has been imparted in the process capability study
CO4	Control the occurrence of defects in product or services industries
CO5	Determination of acceptance sampling procedures are practiced
BL – E	Bloom's Taxonomy Levels
(L1-Re	membering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10x2=20Marks) (Answer all Questions)

Q.No	Questions	Mark s	CO	BL
1	What are cost of quality?	2	1	L2
2	How will you compare Quality Assurance and Quality Control?	2	1	L3
3	How will you compare Process Variation with Specification Limits?	2	2	L1
4	How will you differentiate the special cause variation and chance cause variation?	2	2	L1
5	Define Gauge Capability Study with an example	2	3	L2
6	When do we use Multi-vari Chart?	2	3	L2
7	When the standard is specified for non conformities in the C chart, how do you compute control limits?	2	4	L1
8	What are Class 1 and Class 3 defects in charts for demerits per unit?	2	4	L1
9.9 ji	How will you compute the probability of making a decision after the first sample in double sampling plan?	2	5	L3
10	Write note on IS2500 standards	2	5	L4

t

PART- B(5x 13=65Marks) (Restrict to a maximum of 2 subdivisions)

Q.No	Questions	Marks	CO	BL
11 (a) (i)	Discuss the economies and dimensions of quality and the relationship of	13	01	L3
	quality vs reliability as well as the Taguchi's QLF three cases with an example	N 23 &	1383 1940 1940	JAN ST
,	OR	a la	Section of the	
11 (b) (i)	A manufacturer of magnetic tapes is interested in reducing the variability of the thickness of the coating on the tape. It is estimated that the loss to the consumer is \$10 per reel if the thickness exceeds 0.005±0.0004mm. Each reel has 200 m of tape. A random sample of 10 yields the following thickness(inmillimetres):0.0048,0.0053,0.0051,0.0051,0.0052,0.0049,0.0 051,0.0047,0.0054,0.0052. Is it cost effective to use the new process? What is the annual savings or loss? Suppose that the manufacturer can rework the thickness prior to shipping the product at a cost of \$2.00 per reel. What should the manufacturer's tolerance be? Suppose the manufacturer has the ability to center the process such that the average thickness of the coating is at 0.005mm, which is the target value. In doing so, the manufacturer estimates that the standard deviation of the process will be 0.018mm. the cost of making this change in the process is estimated to make this change, compared to the original process? What would the annual savings or loss be if the annual production is 10,000 reels?	13	01	
12 (a) (i)	A manufacturing shop has decided to use modified control limits for the X-bar chart both for process control and product acceptance. A random sample of five items was drawn from the storage bin and inspected. If the sample mean falls outside the reject limits, the items in the storage bin are screened for defectives. Past analysis indicates that the dimensions follow normal distribution with an estimated σ of 3.6mm. the specification spread/range (U-L) is 50 mm. find the following:	13	02	L4
	 (i) Is the process suitable for using reject limits? (ii) Determine reject limits is U=1040 and L=990 mm (iii) If the process is operating at a mean value of 1035 mm, what fraction of defective is produced? 	THE CONTRACT	ER OF CAU	TANINATION

12 (b) (i)	The baking time of painted corrugated sheet metal is of interest. Too much time will cause the paint to flake, and too little time will result in an unacceptable finish. The specifications on baking time are 10+0.2 min. Random samples of size 6 are selected, and their baking times noted. The sample means and standard deviations are calculated for 20	13	02	L4
	samples, with the following results:			
	∑X _i =199.8 ∑S _i =1.40			
	i=1 i=1		3	
$M = \{1, \dots, n\}$	(I)Find the center line and control limits for the X and S charts			
	(II)Estimate the process mean and standard deviation, assuming the process to be in control?			
•	(III)If the process capable? What proportion of the output is nonconforming?			
	(iv)If the mean of the process can be shifted to 10 min, would you recommend such a change?			
13 (a) (i)	The emergency service unit in a hospital has a goal of 3.5 min for the waiting time of patients before being treated. A random sample of 20 patients is chosen and the sample average waiting time is found to be 2.3 min with a sample standard deviation of 0.5 min. Find an appropriate Process capability index. Comment on the ability of emergency service unit to meet the desirable goal. What are some possible actions to consider?	13	03	L2
	OR In an injection molding process, the die wears out gradually. To account for this wear, it is suggested that a trend chart be constructed for the outside diameter of the component produced. Samples of size 5 are selected and the sample average \bar{X} and range R are found. Construct the center line and control limits of a trend chart for the sample average. Is the process in control? If the process is out of control, assume special causes, and revise the limits. Suppose that the specification limits are 110 ± 8 mm. At what point should the die be changed? The results of 20 such samples are shown in Table.	13	UNNAI DO 025	L2

	Sample	Sam	ple rage, X		mple nge, R	Sample	Sam	ple age, X			
	4			1.1.1		11	111.0		-		
	1	107.		3.1		12	113.	I de la companya de l			Ł
-	3	104.		2.0		12	109.				
	4	105.		2.0		13	1109.		-		
	5	105.		3.2		15	108.				
	6	104.		2.5		16	112.		-		
	7	100.		2.8		17	114.				
	8	105.		1.7		18	115.				
	9	112.		2.4		19	112.				
	10	110.	1.2.1	2.0		20	116.				
 Twenty								nakes vinyl			-
	Tak	ole 2: V	Vinyl Tile	Data	а						
Samp			Number		Sample	Number		Number of			
Samp	le Numb Inspec Tiles r	cted	Number Non conform Tiles	ing	Sample	Number Inspecte Tiles n _i	ed	Non conforming Tiles			
Samp 1	Inspe	cted n _i	Non conform	ing	Sample 11	Inspecte	ed	Non conforming			
	Inspec Tiles r	cted ni	Non conform Tiles	ing		Inspecte Tiles n _i	ed	Non conforming Tiles			
1	Inspec Tiles r 20	oted ni 00	Non conform Tiles 6	ing	11	Inspecte Tiles n _i 190	ed	Non conforming Tiles 5			
1	Inspect Tiles r 20 18	cted ni 10 30	Non conform Tiles 6 8	ing	11 12	Inspecte Tiles ni 190 380	ed	Non conforming Tiles 5 4			
1 2 3	Inspect Tiles r 20 18 20	cted ni 10 10 10 10 10	Non conform Tiles 6 8 5	ing	11 12 13	Inspecte Tiles n _i 190 380 200	ed	Non conforming Tiles 5 4 12	ALL	ER OF	
1 2 3 4	Inspect Tiles r 20 18 20 12	cted ni 10 10 10 10 10 10	Non conform Tiles 6 8 5 4	ing	11 12 13 14	Inspecte Tiles ni 190 380 200 210	ed	Non conforming Tiles 5 4 12 8	Non Alexandre	ER DI NAL	The second se
1 2 3 4 5	Inspect Tiles r 20 18 20 12 30	cted hi 00 00 00 00 00	Non conform Tiles 6 8 5 4 4 10	ing	11 12 13 14 15	Inspecte Tiles n _i 190 380 200 210 390	ed	Non conforming Tiles 5 4 12 8 12	IT CONSTITUTION	ER OF CE	A HINATO
1 2 3 4 5 6	Inspec Tiles r 20 18 20 12 30 25	cted ni 00 00 00 00 00 00	Non conform Tiles 6 8 5 4 10 11	ing	11 12 13 14 15 16	Inspecte Tiles n _i 190 380 200 210 390 120	ed	Non conforming Tiles 5 4 12 8 12 6	DE LONARD	ER OF CONNAL DO VAL	A MINATOL
1 2 3 4 5 6 7	Inspec Tiles r 20 18 20 12 30 25 40	cted hi 00 00 00 00 00 00 00	Non conform Tiles 6 8 5 4 10 11 3	ing	11 12 13 14 15 16 17	Inspecte Tiles n _i 190 380 200 210 390 120 190	ed	Non conforming Tiles 5 4 12 8 12 6 4 12 6	DELONATION OF THE OWNER	ER OF CONNAL SOBOLO V	to MINATION
1 2 3 4 5 6 7 8	Inspec Tiles r 20 18 20 12 30 25 40 18	cted ni 00 00 00 00 00 00 00 00	Non conform Tiles 6 8 5 4 10 11 3 5	ing	11 12 13 14 15 16 17 18	Inspecte Tiles n _i 190 380 200 210 390 120 190 380	ed	Non conforming Tiles 5 4 12 8 12 6 4 7	CONTROL ON THE OWNER	ER OF C	A MINATON

14 (b) (i)	A C-chart is used to monitor surface defects on a painted surface. they	13	04	L5
	use 3 sigma control limits and 2 sigma warning control limits to monitor			
	the defects. If a point falls above the control limit or two points in a row		1	
	fall between warning and control limits, the process is stopped, the		1.24	
	central limit is set at an aimed value of Co=2.5.Compute control and		19	
6 N. 1	warning limits If the process suddenly shifts to a men value of 5, what is			
	the probability that a point will fall above the control limits? Under			
F123	conditions of the above, what is the probability that two points fall in a row		1	
	between the warning and control limits? what is the combined probability		Sec.	
	of detection of this shift within the first two units inspected after the shift?			
15 (a) (i)	Design a single sampling plan from the following parameters:	7	05	L3
	AQL=0.02, LTPD=0.08, α=0.05 and β=0.10			
(ii)	For the double sampling plan	6	05	L1
(11)	N= $3000,n1=40,c1=1,r1=4,n2=80,c2=3,r2=4$, find the ASN for batches	Ŭ	05	
	with a proportion non conforming of 0.02, assuming no curtailment		6.25	
	OR			
15 (b) (i)	Let's consider a double sampling plan of lot size 3000 given by the	8	05	L3
	following parameters: n1=40, c1=1, r1=5, n2=80, c2=5, r2=6. For a lot			1.7
	proportion nonconforming value of p=0.03, find the probability of			- 1
	accepting such lots			
(ii)	Find a Sequential sample plan for which P1=0.01, α =0.05, P2=0.06, β =0.10?	5	05	L2

PART- C(1x 15=15Marks) (Q.No.16 is compulsory)

Q.No	Questions	Marks	CO	BL
16. (i)	Three components x_1 , x_2 and x_3 are normally independently distributed with mean $\mu_1=2$ and $\mu_2=1$ and $\mu_3=3$, respectively. The assembly specification is fixed at 6.00±0.06. Determine the component tolerances so that $C_p=1.50$ for the assembly	5	03	L6
(ii)	Show the Assembly tolerance is fixed by functional requirements determining overlapping tolerances for the components and Component tolerances are fixed, determine assembly specification	10	03	L6

