25. <u>SYLLABI: NEE-III</u>

(For 3-year Diploma holder applicants in the allied disciplines / branches, see Appendix-III, seeking admission to Degree Module in Engineering & Technology).

Full Marks : 150 SECTIONS: Section-A Physics Section-B Chemistry

25 marks.25 marks.

Time: 3 Hours.

Section-C	Mathematics	30	marks.
Section-D	BRANCH SUBJECT	70	marks.

Section-A PHYSICS

25 Marks.

Units: Fundamental & derived units with particular reference to S.I. units-illustrations. Explanation of dimensions with examples.

Mechanics: Explanation of vector and scalar quantities with examples. Displacement as vector quality. Concepts of instantaneous velocity, acceleration. Equations of motion. Definition and explanation of Laws of motion, force, mass and weight with mathematical expressions, Universal Laws of gravitation and Projectile motion. Explanation of circular motion, Satellite motion in an orbit: Kepler's Laws, escape velocity. Rigid body motion, moment of inertia, angular momentum, torque, Centre of mass, conservation of angular momentum. Simple harmonic motion and its geometric representation. Derivation of its equation. Concepts of amplitude, Oscillation, time period, frequency and phase with their mathematical expressions. Definition and explanation of work, power and energy with mathematical relation. Problems involving potential and kinetic energies and conservation of energy. Conservative and non-conservative forces. Static and Dynamic friction.

Properties of Solids: Definition and explanation of strain, stress, elastic limit, ultimate strength, Hooke's Law and Young's modulus. Compression bending, twisting and shear. Elastic moduli and their relations, Poisson's ratio. Concepts and examples of properties e.g. hardness, malleability, ductility, brittleness, toughness abrasion resistance, fatigue.

Properties of Liquids: Thrust of a liquid and pressure, Pressure at different depths, Pascal's Law and Hydraulic press, Buoyancy, Archimedes' Principle: definition and explanation with illustration; surface tension, viscosity, fluidity and volatility.

Heat & Thermodynamics: Heat and temperature, Construction of mercury thermometers. Measurement, measuring scales and devices.

Definition and explanation of linear expansion. Area and volume expansion with mathematical relation. Expansion of gas at constant temperature and at constant pressure. Ideal gas equation.

Measurement of specific heat capacity, relation between Cp and Cv, Isothermal and adiabatic process. Explanation of change of state of matter with change of temperature. Definition of latent heat of fusion and vaporization and numerical examples. Transfer of heat, Explanation and examples of conduction, Convection and radiation processes. Thermal conductivity. Idea of black body radiation. Stefan-Boltzmann Law. Explanation of first and second laws of Thermodynamics with examples.

SOUND: Wave motion, Concept of longitudinal and transverse waves; Definition of period, frequency, wave length, amplitude and phase; Speed of sound wave; wave propagation in a medium; Doppler effect. Properties of sound waves, Reflection, Refraction and Superposition of waves, stationary waves, beats, Vibration of Strings and Air columns, concept of resonance; Echo, Reverberation.

LIGHT: Explanation of light wave, wave front, ray, velocity of light.

Laws of reflection, reflection in different types of mirrors (plane, spherical, cylindrical, parabolic) with their geometrical drawing. Definition of image, focal length, radius of curvature, magnification with formula, numerical examples and application.

Laws of refraction, refractive index, total internal reflection, concave and convex lenses and image formation through them, formula connecting object and image distances, application in telescopes, microscopes, theodolite etc., refraction through prism.

Elementary ideas of electromagnetic waves. Wave nature of light. Young's double slit experiment and Fringe width. Single slit diffraction, polarisation.

Electrostatics: Explanation of charge on the basis of electron theory, charging by friction, force between electric charges, concept of unit charge, electric field and electric potential, p.d. and its measurement, definition of capacitance of parallel plate capacitor, capacitors in series and parallel. Dielectric constant.

Current Electricity: Definition of e.m.f, potential difference, and current with illustrations. Basic direct current circuits: Units of current, resistance and conductance, Ohm's Law and solution of simple problems, effect of temperature on resistance. Series and parallel connections of resistors. Kirchoff's rules, their applications and examples.

Magnetic Properties of Materials: Type of magnetic substances, magnetic flux, flux density, relative permeability, magnetic properties of soft iron and steel.

Electromagnetism: Nature of magnetic field due to a straight conductor, a circular conductor and a solenoid, Fleming's left hand and right hand rules, Effect of current flowing through two parallel conductors, Biot - Savart Law.

Electromagnetic induction: e. m. f. induced in a coil by magnet, Faraday's law of induction, Calculation of e.m.f., Direction of induced e .m .f. Lenz's Law, Explanation of eddy current and explanation of self and Mutual induction, Calculation of self and mutual inductance.

Generation of alternating e.m.f. Concept of reactance : Capacitive and inductive, Impedance. Simple a.c. circuits analysis.

Modern Physics: Photoelectric effect, structure of atom, atoms and molecules, intermolecular forces, chemical bonding. Crystal structure with simple examples.

Radio-activity: Explanation of fission and fusion processes.

Semiconductors: Properties and basic principles, p and n types, Action of transistors.

Section-B CHEMISTRY

25 Marks.

Physical Chemistry:

States of Matter: Gaseous State: Postulates of kinetic theory of ideal gases; Derivation of kinetic equation; Derivation of Ideal gas equation. Continuity of states, Liquefaction of gases. Solid State: Structure of solids, unit cell, fcc, bcc, ccp structure of solids.

Solution and Colloidal solution: Concentration of solutions: Mass percent, Mass fraction, Mole fraction, Molality, Normality, Molarity. Dilute solutions: Raoult's law, its statement and explanation; Ideal and non-ideal solutions; Colligative properties: Relative lowering of vapour pressure, Elevation in boiling point, Depression in freezing point, Osmotic pressure and its determination. Determination of molecular masses based on colligative properties; Van't Hoff theory of dilute solutions, Van't Hoff factor.

Colloidal solutions: Definition, Classification, and Preparation of colloidal solutions; Properties of colloidal state: Tyndall effect, Electrophoresis, Brownian movement; Protective colloids.

Thermodynamics and Thermochemistry: First law of thermodynamics, mathematical formulation of the law, Isothermal and adiabatic changes; Relation between heat capacities at constant pressure and constant volume; Second law of thermodynamics: Carnot cycle and derivation of an expression for efficiency of a reversible engine. Concept and physical significance of Entropy, Gibbs energy and work-function relation; Gibbs energy change and chemical spontaneity. Thermochemistry: Heats of reaction, Hess's Law of constant heat summation.

Kinetics and Chemical Equilibrium: Rate of reaction, law of mass action, velocity constant. Reversible reactions and chemical equilibrium, Equilibrium constant. Le Chatelier's principle (statement, explanation and it's industrial applications). Molecularity and Order of reaction, First and Second order of reactions, Rate law equation and mechanism of reactions.

Ionic Equilibria: Modern Ionic theory; Modern concepts on acids and bases; Strength of acids and bases, Ionic product for water, pH scale. Common-ion effect and Solubility product, Their applications in qualitative inorganic analysis and indicators.

Inorganic Chemistry:

Atomic Structure and Chemical Bonding: Electrons, protons and neutrons, their charges and relative masses. The early models of the atom. Rutherford's model, Hydrogen spectra; Failure of Rutherford's model. Bohr's model of hydrogen and hydrogen like atoms; Dual nature of electron, de-Broglie equation, Uncertainty principle. Quantum numbers (i.e., quantum numbers and their application to electronic structure of atoms), Concept of atomic orbital, Pauli's exclusion principle, and Hund's rule, Aufbau principle.

Ionic Bonds: Definition, factors influencing the formation of ionic compounds, Lattice energy of ionic compounds. Covalent Bonds: Nature of covalent bond (Lewis concept), Concept of orbital overlap in bond formation, Sigma and pi bonds, Hybridization of atomic orbital (sp, sp,² sp³ hybridization), Properties of covalent compounds, Structure of simple molecules such as H₂O, NH₃, CH₄, C₂H₄, C₂H₂, PCI₅ and SF₆. Co-ordinate covalent bonds: Lewis concept, structure of H₃O⁺ and NH₄⁺ ions on the basis of hybridization, Properties of co-ordinate covalent compounds.

Metallic bonds: Bonding in metals (elementary treatment only), Insulators, Conductors and Semiconductor, Extrinsic semi-conductors (n-type and p-type). Hydrogen bond: Types of hydrogen bond, Consequences of hydrogen bonding.

Periodic Properties of Elements : Mendeleef's periodic table and periodic law; Long form of periodic table, its merits and demerits. General characteristics, Properties of s-block, p-block and d-block elements. Trend of periodic properties of elements such as atomic volume, atomic radii, ionization potential, electron affinity and electronegativity in periodic table (qualitative treatment only).

Metallurgy: General principles of extraction of metals, Occurrence of metals, sources of different metals. General method of extraction of metals by pyrometallurgical process and by electrolysis (different principles only).

Ferrous metallurgy: Ores of iron, Metallurgy of iron and manufacture of steel. Properties of Cast iron, Wrought iron, Steel; Effects of carbon, silicon, phosphorous, sulphur, manganese on cast iron and steel.

Non-ferrous metallurgy: Ores of aluminium and copper, Metallurgy of aluminium and copper; Properties and uses of Lead, Zinc, Tin and Chromium.

Alloys: Effects of carbon and other alloying elements on the properties of steel. Composition and uses of the following alloys: Brass, Bronze, German silver, Bell metal, Gun metal, Duralumin, Nanganin, Type metal, Nichrome and Solder.

The chemistry of some chemicals: Ammonia, Nitric acid, Sulphuric acid, Hydrochloric acid, Hydrogen and Oxygen.

Organic Chemistry:

Introduction: Classification and nomenclature of organic compounds. Qualitative detection of Nitrogen, Sulphur and Halogens.

Hydrocarbons: Saturated and unsaturated aliphatic hydrocarbons. Preparation and properties with special reference to methane, ethane, ethylene, acetylene. Aromatic hydrocarbons: Preparation and properties of benzene; Structure of benzene.

Haloalkanes and Haloarenes: Preparation, properties and uses of haloalkanes and polyhalogenderivatatives such as CHCl₃, CHI₃, DDT.

Compounds with functional groups containing oxygen: General methods of preparation and properties of Alcohols and phenols, Aldehydes and ketones, Carboxylic acid and acid derivatives. **Compounds with functional groups containing nitrogen:** Preparation and properties of Nitrocompounds, Amines and Azo-compounds.

Industrial Chemistry: Plastics & Polymers: Definition of a polymer; Polymerization (Addition and condensation); Thermoplastic and thermosetting resins; Some commercially important plastics. Rubbers and their vulcanization.

Fuels: Definition of fuel, classification of fuels with examples; Calorific value (gross and net). Solid Fuels: Different types of solid fuels, ignition point, Carbonization of coal, Destructive distillation of wood (name of different products only).Liquid fuels: Fractional distillation of crude oil (only names of different fractions, boiling ranges and uses of different fractions); Properties of liquid fuels: Flash point, power point, viscosity, specific gravity carbon residue; Octane and cetane number. Gaseous fuels: Different commercial gaseous fuels with their composition and calorific value; Manufacture of Producer gas and Water gas (principles with physico-chemical reactions only).

Water: Hard and soft water, Boiler feed water, Scale formation, Priming and foaming, Caustic embrittlement, Water softening methods, Treatment of water for town supply and sewage disposal.

Corrosion and its protection: Definition, Theories of corrosion, Factors affecting rate of corrosion, Rusting of iron, Demerits of corrosion, Prevention of corrosion by various methods.

Environmental Pollution: Air and water pollution: causes and remedy.

Section-C MATHEMATICS

30 Marks.

Algebra: Arithmetic, Geometric and Harmonic Progressions, Permutation and Combination, Binomial expansion for positive index, middle term, greatest term, binomial expansion for general index. Determinants up to third order, their properties and application to solve linear algebraic equations (Cramer's rule), concept of a matrix, types of matrices, equality of matrices, operations of addition, scalar

multiplication and multiplication of matrices, determinant of a square matrix, transpose, adjoint and inverse of a matrix, consistency and inconsistency of a system of linear equations, solving a system of linear equations in two or three variables using inverse of a matrix.

Trigonometry: Inverse trigonometric functions, solution of inverse trigonometric equations.

Coordinate Geometry(2D): Points and their coordinates in a plane, distance formula, area of a triangle, condition for the collinearity of three points and section formula, various forms of equations of a line, intersection of lines, angles between two lines, condition of concurrency of three lines distance of a point from a line, pair of lines, circle, tangents and normal to a circle, simple problems on parabola, ellipse and hyperbola.

Differential Calculus: Partial derivatives, maxima & minima of single & two variables, tangent and normal, curvature and derivative of arc.

Integral Calculus: Integration of rational and irrational functions, integration of transcendental functions, definite integration, area bounded by curves, length of arc and volume of surface revolution.

Differential equation: Linear differential equations of first and second order & their applications.

Vector Calculus: Gradient, divergence & curl, line integral, surface integral & volume integral.

Coordinate Geometry (3D): Points and coordinates on 3-dimensional space, Distance between points, direction cosines, direction ratios, projections, equation to a plane, angle between planes, distance of a point from a plane, angle between lines & planes, condition of co planarity of two lines, shortest distance between two lines, condition for the intersection of two lines.

Probability: Problems on probabilities, conditional probability, Bye's Theorem, Binomial & Poisson distributions.

Section- D BRANCH SUBJECT (70 marks).

Note: Applicants should choose only one Branch subject from Sl. No. 1 to 6 appropriate to their academic qualification in 3-year Diploma.

1. AGRICULTURAL ENGINEERING

(70 marks).

General Engineering Science: Laws of thermodynamics: Zeroth law, first law, second law. Concept of enthalpy, internal energy, entropy and absolute temperature. Properties of pure substances and mixtures, reversibility and irreversibility. Thermodynamic cycles, Carnot cycle and steam power cycles, otto, disel and dual cycles.

Equivalent forces at a point, simplest resultants in two and three dimensions, equations of equilibrium, free body diagrams and reactions. Two dimensional frames and trusses. Principle of virtual work, frication forces. Belt, rope and chain drive and power screws. Centroids, mass centers, second moment and product of inertia of plant area. Velocity, acceleration, rectilinear, curvilinear co-ordinate system and relative motion, particle dynamics, equation of motion.

Concept of stress and strain, normal and shearing stresses and stains. Stress-strain diagrams for uniaxial loading. Deformation of axially loaded members, torsion of circular shafts. Stress and deflections in closed coiled helical strings subjects to flexural loads. Reactions for statically determine beams, relationships between load, shearing force and bending moment, shear force and bending moment diagrams. Theory of simple bending stresses, shearing stresses in beams, principal stresses and principal planes, principal strains, principal stresses in 3D, relation between elastic constants, combined torsion and bending, pressure vessels, biaxial, stresses, yield theories, deflection of beams.

Properties of fluids: Pressure and its measurement. Hydrostatic forces on surface. Kinematics and dynamics of fluid flow. Dimensional analysis and similitude. Laminar and turbulent flow in pipes, general equation for head loss, energy loss trough pipe fittings.

Measurement of distance and areas: Principle and methods of chain surveying, prismatic compass and chain traversing. Theodolite traversing. Plane table surveying including two point and three point problems. Leveling and contouring, measurement of areas and volumes.

Engineering properties of granular materials, soil classifications, fundamental definitions and relationships. Determination of index properties of soil. Permeability and seepage analysis. Stress distribution. Shear strength. Mohr's circle of stresses. Compaction. Active and passive earth pressures. Stability analysis of earthen slopes.

Farm Power and Machinery: Salient features of various source of farm power used in India, Farm engine, tractors and power tillers, their selection, operation and adjustment. Principles of working and construction of I.C. engine. Engine valves and operating mechanism, fuel and combustion. Different systems of I.C. engine such as fuel, lubrication, cooling, intake, exhaust etc. Study of clutch, brake, gearbox, differential, final drive hydraulic and electrical system of farm tractors. Use of electrical motors as a source of farm power.

Scope, need and constraints of mechanization. Types of implements, field capacities, constructional details, design criteria and principals of operations of different types of hand tools. Animal, power tiller and tractor operated primary and secondary tillage implements such as indigenous plough, mould board plough, disk plough, rototillers, harrow, cultivator, subsoilar, leveler etc. Types principles and constructional details of weeder, seed and fertilizer drill, planters, transplanters, sprayer, duster, mower, vertical conveyor reaper, threshers and combine harvesters.

Soil and Water Conservation Engineering: Water resources utilization in India. Ground water resources development and utilization, Hydraulics of wells, open well and tube well design and construction. Water lifts and irrigation pumps. Measurement of irrigation water. Water conveyance and its control. Irrigation efficiencies, irrigation scheduling. Design of irrigation channel and seepage analysis. Design of underground pipelines. Soil-plant-water relationships. Land grading and field layout for efficient irrigation. Introductory concept of farm irrigation methods: border, check basin, furrow, sprinkler and drip. Drainage: importance, problems, types and requirements in agriculture, drainage coefficient, dynamics of soil-water, measurement of soil permeability, field drainage layout patterns.

Hydrology: Hydrologic cycle, precipitation, infiltration, evaporation, runoff and its estimation and measurement. Types and mechanics of wind and water erosions, biological and engineering measures of controlling erosion, gully control and gully control structures. Vegetative waterways and their design, stream bank erosion and its control, design, construction and maintenance of farm ponds. Introduction to watershed management.

Post Harvest/Process, Food Engineering and Farm Structures: Engineering properties of biological materials: Rheology of agricultural products. Mixing and mixers. Psychrometry; theory of grain drying, different types of grain dryers and dryer efficiency. Size-reduction and energy requirement, Kick's law and Rittinger's law, roller mill, burr mill and hammer mill. Storage of grains, lateral and vertical pressure relationship. Importance of agricultural processing: process of cleaning, grading and sorting, and related equipments. Material handling equipments. Processing of cereals, pulses, oil seeds. Layout, maintenance and testing of related machinery and plant. By-products utilization; combustion, gasification and other chemical and bio chemical transformations. Properties and classification of building material like bricks,

lime, cement, sand, coarse aggregates, timber, asbestos, glass etc. Animal shelters and storage structures in fans.

2. CIVIL ENGINEERING

(70 marks).

Strength of Materials & Theory of Structures:

Normal stress, shearing stress, Normal strain, Hooke's Law, Stress-strain behaviour of mild steel, Poisson's Ratio, Shearing strain, Torsion of Circular Shaft, Relations among load, Shear and Bending Moment, Shear and Bending-Moment Diagrams, Pure Bending, Bending of Members Made of several Materials, Shearing Stresses in a Beam, Mohr's Circle for Plane Stress, Principal Stresses, Maximum Shearing Stress, Euler's Formula for Pin-Ended Columns and columns with other End conditions.

Equation of the Elastic Curve by Double Integration Method, Slope and Deflection of Determinate Beams by Moment-Area Theorems, Deflections and Slope by Energy Methods, Castigliano's Theorem, Stability

and Degree of Indeterminacy, Rolling loads and Influence lines for Determinate Beams, Trusses, and Floor Girders, Cables and Three-Hinged Arch.

Water Resources Engineering: Hydrology: rainfall, stream flow measurements, runoff, hydrographs, flood studies, reservoir and channel routing, flood forecasting, flood protection measures, river training works, well hydraulics; Irrigation: Command area, duty and delta, canal outlets, crop-water requirement.

Fluid Mechanics: Properties of Fluid, Manometry, Forces on Plane and Curved surfaces, Flow classification, Continuity Equation, Momentum Equation, and Energy Equation and their Applications, Orifices, Venturimeter, Weirs and Notches, Laminar and Turbulent Flow through Pipes, Darcy Weisbach Equation, Moody Diagram, Steady Uniform Flow in Open Channels, Manning's Formula.

Geotechnical Engineering: Preliminary definitions & relationship, Determination of index properties, classification of soils, soil structure and clay mineralogy, permeability, Darcy's law, seepage analysis, compaction, one dimensional consolidation, Terzaghi's theory, shear strength, theoretical consideration and tests, shallow and deep foundations, soil exploration.

Highway and Railway Engineering: Highway Geometric Design: Cross sectional elements, Sight distances, horizontal and vertical alignments; Types and components of Pavement structures, Design of Flexible Pavements; Traffic Characteristics: Road user and vehicular characteristics, traffic volume studies, O-D studies and traffic capacity studies;

Railways: Components, construction and maintenance of rail tracks, points and crossings.

Surveying: Contouring, Theodolite and its adjustment, measurement of angles and setting out lines, Trigonometrical leveling, Tacheometry, Curves and different methods of setting out curves, Introduction to electronic Theodolites and Total Stations.

Structural Design: Working stress methods of design, singly and doubly reinforced sections, rectangular and Tee beams, shear, torsion and development length, one and two way slabs, short and long column, Design of isolated footings, Introduction of limit state design, Design for flexure, shear and compression, Design of riveted and welded connections, tension and compression members, splicing and lacing, Beam column connection, roof trusses.

Environmental Engineering: Estimation of quantity of water, per capita demand, population forecasting, water quality parameters, treatment of water, distribution system, Estimation of quantity of sewage, dry weather flow and storm run off, sewer appurtenances, characteristics of sewage, treatment and disposal of sewage, sludge digestion.

3. COMPUTER SCIENCE AND ENGINEERING

(70 marks).

Operating System & System Software:

Overview of Operating Systems, Operating Systems Structures, Uses, Types and Functions of Operating Systems. File Systems, File System Implementation. Concept of Process-Process Management, Process Synchronization and Deadlocks, Inter-process Communications, CPU Scheduling. Memory Management – Allocation Schemes, Paging Segmentation, Virtual Memory, Demand Paging, Paging Replacement Algorithms. Disk Management – Disk Scheduling Algorithms. System Softwares- Functions and Uses of System Software, Assemblers, Loaders, Linkers, Pass Structure of an Assembler, Loading Schemes, Macro and Co-Routines, Macro Processing and Macro Calls, Sub-Routines and Sub-Routine Calls.

Digital Electronics & Elements of Logic Design: Various Number Systems and their Implementation, Binary Arithmetic, 1's Complement, 2's Complement, 9's Complements & 10's Complements of a number. Floating Point Numbers, Boolean Algebra and Logic Functions. Different Methods of Minimizing Boolean Functions. Design of Combinatorial Circuits – Adders, Multiplexer, Demultiplexer, Decoder, Parity Generator and Checker, Comparator Etc. Switching Algebra, Function Decomposition, Symmetric Function, Contact Networks, Design of Sequential Circuits (Synchronous & Asynchronous) Flip-Flops, Register, Counter Fault Tolerant, Hazard, Stuck-At-Fault, Bridging Fault, Stuck-Open-Fault.

Microprocessor, Computer Architecture &Organization :8085 Microprocessor Architecture, Instruction Set, Assembly Language Program, Counters and Delays, Interrupts, Interfacing Data Converters, Programmable Interface Devices : 8155 Multipurpose Programmable Device, 8279 Keyboard/Display Interface, 8254 Interval Timer, 8259 Interrupt Controller, 8237 DMA Controller.

CPU Structure and Function, Basic Idea of Hardware And Software, Instruction Sets : Characteristics, Functions and Formats, Addressing Modes; Computer Arithmetic, Control Unit : Microprogram Control, Hardwired Control; Memory : Internal Memory Organization, External Memory (Magnetic Disk, RAID, Optical Memory, Magnetic Disk), Cache Memory and Mapping Procedures; I/O Organization : Interrupts, Programmed I/O, Interrupt-Driven I/O, DMA, I/O Channels, Standard I/O Interfaces; RISC and CISC Processor, Basics of Parallel Processing, Pipelining.

Programming Language Concepts : Programming in C And C++, Syntax, Preprocessor Directives, Built-In Data Types, User-Defined Data Types, Operators and Precedence, Loops and Conditional Flow of Control, Enumerated Types, Arrays, Variable Types and Scope of Variables, Global, File and Namespace, Functions, Pass By Value, Pass By Reference, Input and Output Handling, File Handling. Operator and Function Overloading, Single Inheritance, Polymorphism, Virtual Member Functions, Constructor and Destructor, Information Hiding, Encapsulation, Data Members, Member Functions, Public and Private Access.

Data Structures: Arrays, Link Lists, Stacks, Queues, Trees, Graphs : Representations, Implementations and their Applications – Arithmetic Expression Evaluation, Recursion, Priority Queues, Etc., Graph and Tree Traversals, Basic Search Techniques : Tree Searching: Binary Search Trees, Avl Trees, Etc., Hashing Techniques.

Basic Sorting Techniques : Bubble Sort, Insert Sort, Selection Sort, Radix Sort, Tree Indexes : M-Way Search Trees, B-Trees, B+Trees.

4. ELECTRONICS & COMMUNICATION ENGINEERING

(70 marks).

Electronic Devices and Circuits:

Analog Devices and circuits: Physics of Semiconductor Materials & Components, Energy band diagram, Fermilevel, Hall effects.

Devices: Diodes, BJT, s FET, s, Thristors, Tunnel diodes, Basics of IC, s and operational amplifiers.

Circuits: Biasing circuits of transistors, Design of power supplies using Diodes and transistors-voltage Regulator Circuits Transistor Amplifier (BJT & FET), Power amplifiers, feedback amplifiers, oscillators (qualitative analysis only). Multivibrators, Time base circuits. Regulated Power supply. Time base circuit Saw-tooth voltage and current generators, transistor switches, wave shaping circuit (diode and transistors)

Electro-static and magnetic deflection methods, low frequency h-parameter transistor & FET models, Pi models.

Digital Devices and Circuits: **Number systems:** logic gates-Boolean Algebra-Transistor as a switch-logic families-Arithmetic and logic circuits-Counters and shift registers-A/D and D/A converters, Multiplexer, Demultiplexer, Encoder, Decoder.

Microprocessors: Architecture-Assembly language programming of 8085-peripheral devices-Interfacing of memory and devices.

Semi Conductor Memories: RAM, ROM, Storage devices, printer, Connectors, floppy drives, Organization of computer, simple programme.

Electronic Instrumentation and Measurements:

Systems, units and standards of Measurement, AC and DC indicating instruments, AC and DC bridge circuits, Error Analysis of generalized measurement systems, transducers (Strain gauge, LVDT. Thermistor, Thermocouple etc.) Electronic Measuring Instruments, CRO, Digital Ammeter, Millimeter, Voltmeter, Time and Frequency measurements, Signal Generators, Q-meter, Wattmeter, Energy meter.

Networks-Filters And Microwave Engineering:

Network theorems, Single and Two port networks, T-type, II-type ladder type networks. Transmission lines: Characteristics impedances, Attenuators, Equalizers, Basics of wave guides-Transmission line charts.

Filters: type, simple design problems, Basics of Electromagnetic theory, Maxwell's equations. Basics principles of wave propagation. Fundamentals of Antennas and Radar, Basics of Microwaves, EM Spectrum Principles of microwaves devices and circuits.

Communication Engineering: Introduction to signal analysis-Fourier series and Fourier transform. Sampling theorem, Parseval's theorem, convolution, Transmission through linear systems: AM,FM PM, Pulse modulation; PCM: Amplitude limiting in FM, Pre-emphasis, De-emphasis; Noise in AM and FM: Multiplexing-FDM, TDM; ASK, FSK, Block schematic of different transmitters for AM, FM,SSB, ISB systems; Superheterodyne receivers, Mixers, AGC, AFC, spectrum of EM waves; Propagation of EM waves-sky waves- sky wave, ground wave, space wave, skip distance, maximum usable frequency; Antenna fundamentals and Radiation; Communication systems;: Principles of telegraphy, telephony and television broadcasting, Basics of satellite and optical fibre communications: Fundamentals of telematics.

5.ELECTRICAL ENGINEERING

(70 marks).

Electrical Circuits: Phasors and phasor algebra, balanced and unbalanced poly-phase circuit, Test signals, Star-Delta transformation, Network theorems, Parameters of electromagnetic circuits, resonance in R-L-C Series and Parallel circuits, Network analysis by mesh and node methods.

Electrical Engineering Materials:

Conducting, Insulating materials and Magnetic materials, Properties and applications **Electrical Instruments and Measurements:**

Principles of measurements: Classification, accuracy and sensitivity, damping and control forces, shunt and multiplier, Measurement of resistance: Low, medium and high. Principle and uses of DC potentiometers, AC Bridges. Indicating instruments: Multimeter, PF meters, synchroscope.

Electrical Machines: Classification of D.C. machines: Constructional features, e.m.f., torque, excitations, motor performance, speed, power, size considerations, speed control, efficiency.

Transformers: Induced e.m.f., equivalent circuits, regulation, different efficiencies.

Three phase induction machines: Torque characteristics, Starting, equivalent Circuits.

Three Phase Synchronous Machines: Generation, voltage regulation, parallel operation, synchronous motor, starting and V-curves, Single phase motors: type, starting characteristics.

Generation, Transmission and Distribution:

Generation: Thermal, Hydel and Nuclear Power Stations, Prime movers and alternators.

Transmission: Voltage levels, line conductors, electrical line parameters of short and medium lines, voltage regulation, corona. **Distribution:** D.C. and A.C. systems, voltage level, types of distribution feeders and distributors, voltage drop and effects, power factor improvement plant.

Substation: Different types, site selection, equipments, electrical earthing. **Switchgear:** Switches, isolators, circuit breakers and their types. Protection: Fault current and protective devices, fuses, relay functions, alternator, Transformer protection, thermal relays, over voltage-causes, effect and protective devices.

Electrical Estimation and Costing: Estimation of materials for industrial and residential installations. UPS and small diesel generating-set and accessories. Cost estimation of materials and selection criteria, Design and calculation of the cost of 400V/230V three phase 4 wire, 100-500 KW overhead line, Tenders. **Electrical Power Utilizaion:** Design of lighting system. Electrical Heating: Resistance heating, Induction heating, Arc heating and Dielectric heating, types of electric welding Electrochemical process: Principles, equipment and procedure. Electrical Drives: Characteristics of various electric drives, speed control, starting and breaking, mechanical consideration, selection of motors.

Power Electronics: Power diodes and Darlington Pair.Thyristor: Principle, thyristor family, firing circuits, applications, Selenium rectifiers, uncontrolled and controlled rectification, Power MOSFETS.

Digital Electronics: Digital signals, gates, Boolean algebra, logic families, multiplexures / demultiplexure, Encoders/decoders, flip-flops, registers, counters and applications of logic gates, OPAMPS in timing circuits, A/D and D/A conversion.

Computer Programming: Concept of low level and high level languages, Block-diagram, concept of flow chart, and algorithm, Assemblers, Macros, sub-routines, co-routines, loaders, linkers, editors and compilers, programming and file handling in C and C++.

6. MECHANICAL ENGINEERING

(70 marks)

Engineering Mechanics & Strength Of Materials: Vector concepts, rest and motion, Introduction to force systems (Parallel, Concurrent & Coplanar); Free Body Diagram; Equilibrium principle; Static analysis of systems; Friction and impending motion; rolling and sliding of cylinders; Newton's law of motion and derived concepts. Centroid; Area & mass moment of inertia.Work-Energy principle; Impulse; Collision of two bodies; Plane motion of particles and applications; Static analysis of simple structures;

Method of joints and method of sections. Virtual work; combined motion of rotation and translation; Transmission of power by belt and gear drives.

Stress & strain; Shear stresses, Principal stress and strain, Mohr's circle for stress and strain analysis, Beams & columns; Shear force and bending moment diagram. Theories of Failures; Columns, Struts; Stress & strain analysis of shafts under torsion, analysis of springs.

Engineering Materials: Mechanical, thermal, chemical properties, structure of materials, alloys. Iron and its alloys, Iron carbon phase diagrams, steel and their important alloys of iron, heat treatment processes, Elastic & plastic behaviors; Plastic deformation. Effect of various alloying elements on mechanical properties of Iron: Bearing alloys; Powder metallurgy; Fick's law. Commonly used engineering materials for tools, engineering components and household objects.

Design of Machine Element: Concept of FOS, material selection, engineering materials, Design of Rivets, Screws, Bolts with detail analysis. Cotter and Knuckle joints, shafts, keys and couplings, Springs – helical and leaf types.

Hydraulics and Hydraulic Machines: Properties of liquid, hydraulic pressure and its measurement, Forces on immersed bodies; Center of pressure; Buoyancy stability of immersed and floating bodies;

Flow of liquids: 1-D, 2-D, & 3-D flows; steady, unsteady, laminar and turbulent flows; continuity equation, momentum equation, and energy equation and their applications, Euler equation and Bernoulli's equation; Orifice, mouth piece and nozzles, flow through pipes and piping systems, losses in piping systems; fundamentals of channel flow, hydraulic jump; flow measurements :

Dimensional analysis and associated theorems. Non dimensional numbers and their significances;

Stream function and velocity potential function; streamline, streakline and pathline; Rotational and irrotational flow, circulation and vorticity; Free and forced vortex; Basic flows like rectilinear, source, sink, doublet etc.

Different types of pump, reciprocating and rotary pumps, operation and maintenances of pumps, Cavitation and NPSH; Characteristic curves of pumps, losses and efficiencies of pumps. Compressors, blowers and fans. Different types of turbines, Francis, Kaplan and Pelton turbines, operation and maintenance of turbines; characteristic curves, work done and efficiency of turbine, specific speed and selection of pumps and turbines. Hydraulic machinery like hydraulic ram, hydraulic coupling and torque converter, hydraulic jack, screw pump, Gear pump, Vane pump etc.

Thermal Engineering: Basic thermodynamic concepts; System and surrounding; Thermodynamic Properties; Intensive and Extensive properties; Point and path functions; Zeroth law, first and second laws of thermodynamics and associated corollaries; Concepts of absolute temperature, internal energy, enthalpy & entropy; Clausius inequality, concept of availability, Maxwell's relations. Application of thermodynamic laws, reversibility & irreversibility, internal & external irreversibility; Pure substances and mixtures. Thermodynamic cycles: Carnot cycle, Rankine cycle, Joule-Braytoncycle; Air standard cycles; Otto cycle and Diesel cycles.

Ideal gas compression and compressors, jet propulsion, gas compressors, stream generators, Fuel and combustion, I.C. engine, calculation of efficiencies, testing of IC. Engines; Open and closed gas turbine cycles, introduction to heat and mass transfer; heat exchanger; LMTD and NTU methods. Principles of refrigeration, air refrigeration system, Vapor compression refrigeration system, refrigeration cycles, use of T-S & P-H charts for refrigeration, refrigerants and their properties, vapor absorption system, psychometric properties and charts.

Types of power plants; components of steam power plant; hydro-electric power plant, nuclear power plants, diesel power plant. Elementary solar and geothermal power systems.

Theory of Machines: Kinematics and kinetics; mechanisms and structure; inversions; kinematic chains; different types of mechanisms; degree of freedom & its determination; Grashof's criteria; velocity analysis; acceleration analysis; gear trains; balancing of rotating masses; brakes & dynamometer.

Production and Industrial Engineering: Fundamentals of metal cutting, tool geometry, Calculations of cutting forces and tool life; General purpose machine tool and their operations, various welding techniques like arc, gas, resistance etc. Metal forming methods like rolling, drawing, extrusion, press working; powder metallurgy; heat treatment of metals; Introduction to NC and CNC machines; basics of measuring instruments; study of transducers; static and dynamic characteristic of instruments; Introduction to metrology: Limits, fits and tolerance, Mechanical and optical comparators; Measuring instruments of

angles; measurements of surface roughness and thread profiles, calibration of various measuring instruments.

Production planning; Inventory control; material and wage calculation; elements of cost; network analysis; work study and estimating machining time; break even analysis; TQM & ISO 9000; Shop floor management; Machines & Industrial safety.
