PAPER CODE: 30/31/32/33/34/35

EXAMINATION-III

Duration: 3 Hours

Maximum Marks : 150

Read the following Instructions carefully:

1. CHECK THE PAPER CODE OF THE QUESTION PAPER WITH PAPER CODE PRINTED IN YOUR ADMIT CARD. IF IT DOES NOT MATCH, REPORT IT IMMEDIATELY TO THE INVIGILATOR.

2. This Question Paper contains 130 multiple-choice objective type questions as follows:

and the second second	to the second se	- 5	
Section-A	Physics	(Q. No. 1 - 25 of 1 mark each)	Section-A is Compulsory for all

Section-B	Chemistry	(O. No. 26 – 50 of 1 mark each)	Section-B is Compulsory for all
Section-C	Mathematics	(Q. No. $51 - 80$ of 1 mark each	Section-C is Compulsory for all
Section-D	Engineering bra	anch (Q. No. 81 – 110 of 1 mark each, a	nd O. No. $111 - 130$ of 2 mark each)
	This section con	ntains questions from six Engineering br	anches (Paper Code: 30 - 35)
	ONLY ONE L	Inginopring branch is to 1 U U I	(

ONLY ONE Engineering branch is to be attempted as per Paper Code printed on Admit Card 3. The page no. of question paper of six Engineering Branches are as follows:

AE (16 - 23), CE (24 - 31), CSE (32 - 40), ECE (41 - 48), EE (49 - 55), ME (56 - 63).

- 4. Do not attempt the questions paper before the scheduled start.
- Each Question has four options (A, B, C and D). Choose the correct / most appropriate option (only one) for your answer by darkening the bubble with Blue / Black ball point pen in the OMR Answer Sheet accordingly.

For example:

if your choice of answer is (A).

1S ● 1S ●

Use of **Pencil** on OMR Sheet is strictly Prohibited.

- 6. Darkening more than one option bubble in the OMR Answer Sheet against a Question Number shall be treated as incorrect. For every incorrect answer to a question, 25% (1/4th) of the marks carried by that question will be deducted. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet.
- 7. All rough works should be done in the space provided in this question paper. Any rough works / calculations done on the OMR Sheet will lead to **Cancellation of Candidature**.
- 8. No candidate is allowed to carry textual material, printed or written, bits of paper, pager, mobile phone, any other electronic gadgets, etc. except the Admit Card in the Examination Hall. However, calculator (non-programmable) / log table are allowed in the Examination Hall.
- 9. Candidates may leave the Examination Hall only after the expiry of one hour of the examination but they will not be allowed to take this Question Paper along with them.
- 10. This Question Paper contains 64 printed pages. In case of any discrepancy, please report immediately to the Invigilator on duty in the Hall/Room.
- 11. Adoption of any kind of unfair means/ malpractices in the examination hall will render the candidate liable for cancellation of his/her candidature /admission.
- 12. Write your Roll No. and Name in the Box provided below:

Roll Number				1
Name				
Iname	he general gale			and the fight of the line

Page 3 of 64

PAPER CODE: 30 to 35

SECTION – A (PHYSICS)

[Section – A is **Compulsory** for all al the candidates]

Question numbers 1 - 25 carry 1 mark each:

The coefficient of linear expansion of brass and steel are α_1 and α_2 respectively. If we take a 1. brass rod of length l_1 and steel rod of length l_2 at 0^0 C, the difference in their length will remain same at all temperatures, if

[A]	$\alpha_1 l_1 = \alpha_2 l_2$	 [B]	α , $b = \alpha$, b
[C]	$\alpha_{1}^{2} = \alpha_{2}^{2} = 1$	լոյ	u ₁ 12-u ₂ 11
	$u_1 1_1 - u_2 1_2$	[D]	$\alpha_1^2 b = \alpha_2^2 b$
			u 12 u)

The distances of two planets from the sun are 10^{13} and 10^{12} m, respectively. The ratio of the time period of these planets is

[A]	100		[B]	10 /10
[0]	<u> </u>		temperature	10/10
[C]	√ 10	hit is to prode	[D]	$1/\sqrt{10}$

3.

2.

If I, α and τ are the moment of inertia, angular acceleration and torque respectively of a body rotating about any axis with angular velocity ω , then

[A]	$\tau = I\alpha$		$[\mathbf{R}] = \mathbf{I}$
[C]	$I = \tau \omega$	A	$\begin{bmatrix} \mathbf{D} \end{bmatrix} i = I\omega$
[~]	1 - tw		$[D] \cdot u = I\omega$

A steel wire is 1 m long and 1 mm² in area of cross-section. If it takes 200 N to stretch this 4. wire by 1 mm, how much force will be required to stretch a wire of the same material and diameter from its normal length to length of 1002 cm?

ГАЛ	100 11		
[A]	100 N	[D]	200 M
[C]	400 N	[D]	200 N
	400 IN	[D]	2000 N
			2000 1

How much time will light take to traverse a glass slab of thickness 10 cm and refractive index 5.

	$0.5 \times 10^{-9} \text{ s}$		[B]	1.5 x 10 ⁻⁹ s
1 SI	2.0 x 10 s		[D]	3.0 x 10 ⁻⁸ s

6. Eddy currents are

[A]	Induced magnetic	currents flux	due	9	to	changing	[B]	Induced	currents (lue to	high
[C]	Induced material	currents	in a	a	hom	ogeneous	[D]	magnetic Unstable	flux currents in a c	conductor	

wire

8.

PAPER CODE: 30 to 35

7. Two capillary tube A and B are of equal radius and equal length. The rate of flow through either tube under a pressure P is 8 cm³/sec. If the two tubes are connected in series and same pressure is maintained across the combination the flow will be,

[A]	8 cm ³ /sec	[B]	2 cm ³ /sec
[C]	4 cm ³ /sec	[D]	6 cm ³ /sec
The	sensitivity of the potentiometer can be incr	eased	by entropenation by accounted the
[A]	Increasing the e.m.f. of primary cell	[B]	Increasing the potential gradient
[C]	Increasing the length of potentiometer	[D]	Decreasing the length of potentiometer

9. Fusion reactions take place at high temperature, because

[A] Atoms are ionized at high temperature
 [B] Molecules break up at high temperature
 [C] Nuclei break up at high temperature
 [D] Kinetic energy is high enough to overcome repulsion between nuclei

wire

10. If force (F), velocity (V) and Time (T) are chosen as fundamental units, the dimensions of ass in this system will be represented as

[A]	$ML^{0}T^{0}$	[B]	FV ⁻¹ T
[C]	MLT ⁻²	[D]	FV^2T^{-1}

11. The magnitude of resultant of two equal forces is equal to either of the force. The angle between two forces will be

A]	60^{0}		[B]	90°
C]	120^{0}		[D]	135

12. The relative permeability of a material is 0.99. It will essentially be,

[A]	Paramagnetic substance	[B]	Diamagnetic substance
	Ferromagnetic substance	[D]	None of these

13. A flywheel rolls down an inclined plane. At any instant of time, the ratio of rotational to it kinetic energy is

[A]	1:1		[B]	1:2
[C]	2:1		[D]	1:3

Page 5 of 64

PAPER CODE: 30 to 35

14.	In which of the following case mutual inductance is maximum					
	[A]	S www.	[B]	S & P MMM		
	[C]	S UUUUU	[D]	SUUMM P		
15.	The calle	thermodynamic process in which no exch d	ange	of heat from the system takes place is		
	[A] [C]	Isothermal Isobaric	[B] [D]	Adiabatic Isometric		
16.	N-ty	pe germanium is obtained on doping intrins	ic ger	manium by		
	[A] [C]	Phosphorus Boron	[B] [D]	Aluminium Gold		
17.	To g	et three images of a single object, one shou	ld hav	ve two plane mirror at an angle of		
٦	[A] [C]	30° 90°	[B] [D]	60° 120°		
18.	Abso	orptive power of the perfect blackbody is				
	[A] [C]		[B] [D]	-1 Infinity		
19.	Whie	ch of the following is incorrect regarding th	e first	law of thermodynamics		
	[A] [C]	It is the resultant of the principle of conservation of energy It introduces concept of entropy	[B] [D]	It is not applicable to any cyclic process Both [B] and [C]		
20.	The	electric potential at the surface of an atomic	nucle	eus (Z= 50) of radius 9.0×10^{-15} m is		
	[A] [C]	80 V 9 V	[B] [D]	$8 \times 10^{6} \mathrm{V}$ $9.0 \times 10^{5} \mathrm{V}$		

Page 6 of 64

PAPER CODE: 30 to 35

21. A curie is a standard unit of radio activity. Its value is [B] 10¹⁰ disintegrations/sec 10⁹ disintegrations/sec [A] 3.7×10^{10} disintegrations/sec [D] 37000 disintegrations/sec [C] The velocity of sound in air is 350 ms⁻¹. The frequency of the fundamental note emitted by a 22. tube of length 50 cm open at both ends is 50 Hz [A] [B] 175 Hz [C] 350 Hz 700 Hz [D] 23. When the light travels from one medium to another, which of the following does not change? Frequency [A] [B] Velocity Wavelength [C] [D] Refractive index 24. A cylinder of radius r is rigidly fixed at one end. It is twisted through a certain angle. The couple required is proportional to r^4 [A] $[B] r^2$ [C] [D] 1 r.4 25. With high frequencies, capacitive reactance [A] Remains unchanged [B] Increases [C] Decreases [D] None of these -xxx----Physics Paper Ends-----xxx-

Page 7 of 64

PAPER CODE: 30 to 35

SECTION – B (CHEMISTRY) [Section B is <u>Compulsory</u> for all al the candidates]

Question numbers 26-50 carry 1 mark each:

26.	The	e Van't Hoff factor for 0.1M Ba(NO ₃) ₂ solu	tion is	s 2.74. the degree of dissociation is
	[A] [C]	91.3% 100%	[B] [D]	87% 74%
27.	Col	ligative properties of solutions are those wh	nich de	epend upon
	[A] [C]	The nature of the solvent The number of solvent molecules	[B] [D]	The nature of the solute The number of solute particles
28.	The	Blue colour of the sky is due to		an a
	[A] [C]	Brownian movement Tyndall effect	[B] [D]	The presence of macromolecules Electrophoresis
29.	The	solubility of AgI in an aqueous solution of	NaI is	s less than that in pure water because
	[A] [C]	AgI forms complex with NaI Solubility product of AgI is less than of NaI	[B] [D]	Of common ion effect The temperature of the solution decreases
30.	Whi	ch of the following has the least Lewis acid	chara	acter?
	[A] [C]	BF ₃ BBr ₃	[B] [D]	BCl ₃ BI ₃
31.	Azin	nuthal quantum number determine the		
	[A] [C]	Size of an atomic orbital Orientation of an atomic orbital	[B] [D]	Spin of electrons Angular momentum of an atomic orbital
32.	Amo	ng BeF ₂ , BF ₃ , NH ₃ and CCl ₄ , the molecule	with n	et dipole moment is
	[A] [C]	BeF ₂ NH ₃	[B] [D]	BF ₃ CCl ₄

1A 1A Page 8 of 64

	ГАЛ	Conner	[B]	Iron
	[A] [C]	Aluminium		Zinc
34.	Carbo	oxylic acids are more acidic than pher	nol and alco	shol because of
	[A] [C]	Intermolecular hydrogen bonding Highly acidic hydrogen	[B] [D]	Formation of dimmers Greater resonance stabilization of their conjugate base
35.	For a	n isothermal process, ΔS is equal to		adula (colice e colicio aple
	[A] [C]	q q _{rev}	[B] [D]	q _{rev} /T Tq _{rev}
36.	Rate this r	constant of a reaction has the same reaction?	unit as the r	rate of the reaction. What is the order of
	[A]	First order	[B]	Second order
	[C]	Pseudo first order	[D]	Zero order
37.	[C] In w	Pseudo first order hich direction will the following equi CH ₃ COOH(aq) ${\longleftarrow}$ CH ₃ C	[D] librium shi O ₂ (aq) + H	Tero order ft if a solution of CH ₃ CO ₂ Na is added? ⁺ (aq)
37.	[C] In w [A] [C]	Pseudo first order hich direction will the following equi CH ₃ COOH(aq) → CH ₃ C Shift to the right No change	[D] librium shi O ₂ (aq) + H [B] [D]	Zero order ft if a solution of CH ₃ CO ₂ Na is added? ⁺ (aq) Shift to the left None of these
37.	[C] In w [A] [C] The	Pseudo first order hich direction will the following equi CH ₃ COOH(aq) → CH ₃ C Shift to the right No change ionic radii of K ⁺ , Ca ²⁺ , Cl ⁻ and S ²⁻ ion	[D] Ilibrium shi O ₂ (aq) + H [B] [D] ns decrease	Zero order ft if a solution of CH ₃ CO ₂ Na is added? ⁺ (aq) Shift to the left None of these in the order
37.	[C] In w [A] [C] The [A] [C]	Pseudo first order hich direction will the following equi- CH ₃ COOH(aq) \longrightarrow CH ₃ C Shift to the right No change ionic radii of K ⁺ , Ca ²⁺ , Cl ⁻ and S ²⁻ ion Cl ⁻ > S ²⁻ > K ⁺ > Ca ²⁺ S ²⁻ > Cl ⁻ > K ⁺ > Ca ²⁺	[D] Ilibrium shi O ₂ (aq) + H [B] [D] ns decrease [B] [D]	2ero order ft if a solution of CH_3CO_2Na is added? (aq) Shift to the left None of these in the order $K^+>Ca^{2+}>CI^->S^{2-}$ $Ca^{2+}>K^+>CI^->S^{2-}$
37.38.39.	[C] In w [A] [C] The [A] [C] Sulf	Pseudo first order hich direction will the following equil CH ₃ COOH(aq) → CH ₃ C Shift to the right No change ionic radii of K ⁺ , Ca ²⁺ , Cl ⁻ and S ²⁻ ion Cl ⁻ > S ² > K ⁺ > Ca ²⁺ S ² > Cl ⁻ > K ⁺ > Ca ²⁺ S ² > Cl ⁻ > K ⁺ > Ca ²⁺ Suric acid is manufactured by	[D] Ilibrium shi O ₂ (aq) + H [B] [D] ns decrease [B] [D]	Lero order ft if a solution of CH_3CO_2Na is added? (aq) Shift to the left None of these in the order $K^+ > Ca^{2+} > CI^- > S^{2-}$ $Ca^{2+} > K^+ > CI^- > S^{2-}$
37.38.39.	[C] In w [A] [C] The [A] [C] Sulf [A] [C]	Pseudo first order hich direction will the following equil CH ₃ COOH(aq) → CH ₃ C Shift to the right No change ionic radii of K ⁺ , Ca ²⁺ , Cl ⁻ and S ²⁻ ion Cl ⁻ > S ² > K ⁺ > Ca ²⁺ S ² > Cl ⁻ > K ⁺ > Ca ²⁺ S ² > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ Cl ⁻ = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > Cl ⁻ > Cl ⁻ > K ⁺ > Ca ²⁺ S ² = Cl ⁻ > C	[D] Ilibrium shi O ₂ (aq) + H [B] [D] ns decrease [B] [D] [D]	2ero order ft if a solution of CH_3CO_2Na is added? '(aq) Shift to the left None of these in the order $K^+>Ca^{2+}>CI^->S^{2-}$ $Ca^{2+}>K^+>CI^->S^{2-}$ Contact Process Complex Process
37.38.39.40.	[C] In w [A] [C] The [A] [C] Sulf [A] [C] Wh	Pseudo first order hich direction will the following equi CH ₃ COOH(aq) → CH ₃ C Shift to the right No change ionic radii of K ⁺ , Ca ²⁺ , Cl ⁻ and S ²⁻ ion Cl ⁻ > S ² > K ⁺ > Ca ²⁺ S ² > Cl ⁻ > K ⁺ > Ca ²⁺ S ² > Cl ⁻ > K ⁺ > Ca ²⁺ furic acid is manufactured by Habers process Redox Process ich of the following is an aromatic he	[D] Ilibrium shi O ₂ (aq) + H [B] [D] ns decrease [B] [D] [D]	Lero order ft if a solution of CH_3CO_2Na is added? (aq) Shift to the left None of these in the order $K^+>Ca^{2+}>CI^->S^{2-}$ $Ca^{2+}>K^+>CI^->S^{2-}$ Contact Process Complex Process compound?

Page 9 of 64

PAPER CODE: 30 to 35

41.	Which of the following is not a mixture of hydrocarbons?					
	[A] [C]	Candle wax Paraffin oil	[B] [D]	Kerosene Vegetable oil		
42.	Whi	ch of the following compounds reacts with	sodiu	m to liberate hydrogen gas?		
	[A] [C]	Ethane Acetylene	[B] [D]	Propylene Benzene		
43.	Con	rosion is an example of				
	[A] [C]	Electrodeposition Reduction	[B] [D]	Oxidation Electrolysis		
44.	A tr	ue statement about "Green House Effect" is	that	it is		
	[A] [C]	Caused by combination of many gases Caused only by CO_2 , CFC, CH_4 & NO_2	[B] [D]	Caused by CO ₂ None of these		
45.	Ami	nes are basic in character because they have	e			
	[A]	A lone pair of electrons on the nitrogen atom	[B]	A hydroxyl group in the molecule		
	[C]	Replaceable hydrogen atom	[D]	Tetrahedral structure		
46.	Neo	prene is a				
	[A] [C]	Monomer Polyester	[B] [D]	Synthetic Rubber Polyamide		
47.	Whic	ch of the following compounds is most basi	c?			
	[A] [C]	Cyclohexylamine <i>p</i> -methoxyaniline	[B] [D]	Aniline <i>p</i> -nitroaniline		
48.	Chlo: Whic	robenzene is formed by reaction of chloring th of the following species attacks the benze	e with ene ri	benzene in the presence of $AlCl_3$. ng in this reaction?		
	[A] [C]	CI ⁻ AICl ₃	[B] [D]	CI ⁺ [AlCl₄] [−]		

Page 10 of 64

PAPER CODE: 30 to 35

49. The primary alkyl halide would prefer to undergo

[A]	S_N1 reaction		۲D1	- D1: 1
[C]	Su2 reaction		[D]	a-Elimination
[~]	SN2 TCaction	- 1993) - 1994	[D]	Racemization

50. The compound that is most reactive towards electrophilic nitration is

[A]	Nitrobenzene	. 1/21	Dongous
[C]	Renzoia noid	[dV]	Denzene
	Belizoic aciu	[D]	Toluene

-----xxx----Chemistry Paper End------xxx-----

(Space for rough works)

10

Page 11 of 64

PAPER CODE: 30 to 35

SECTION – C (MATHEMATICS) [Section C is <u>Compulsory</u> for all al the candidates]

Question numbers 51–80 carry 1 mark each:

51.	The number of solution $tan^{-1}(x-1) + tan^{-1}x + tan^{-1}(x+1) = tan^{-1}$	on of $n^{-1}3x$ is	the equation
	[A] 3 [C] 1	[B] 2 [D] 4)adiegen ¹ .ex
52.	The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hy value of b^2 is	$yperbola \frac{x^2}{144} - \frac{y^2}{81} =$	$\frac{1}{25}$ coincide, then the
	[A] 1 [C] 9	[B] 5 [D] 7	
53.	If $F = xy^2i + 2x^2yzj - 3yz^2k$, then curl F at	(1,-1,1) is	
	$\begin{bmatrix} A \end{bmatrix} \begin{array}{l} i + 2k \\ \begin{bmatrix} C \end{bmatrix} -i - 2k \end{array}$	$\begin{bmatrix} B \end{bmatrix} -i + 2k \\ \begin{bmatrix} D \end{bmatrix} -i - 2j$	
54.	Equations of the straight line through the point	(a, b, c) which is para	llel to z-axis is
	[A] $\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$	$\begin{bmatrix} B \end{bmatrix} \frac{x-a}{0} = \frac{y-b}{0}$	$\frac{z-c}{1}$
	[C] $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{0}$	[D] None of these	
55.	A purse contains 4 copper, 3 silver coins and t coins. A coin is taken from any purse, the proba	the second purse cont ability that it is a copp	ains 6 copper, 2 silver er coin be
	[A] 4/7	[B] ³ / ₄	
	[C] 3/7	[D] 37/56	
56.	The events A and B are such that $P(A) = 1/4$, $P(B)$ is	P(A B) = 1/2 and	P(B A) = 2/3. Then
	[A] 1/2 [C] 1/6	[B] 1/3 [D] 2/3	
	(Space for rough	works)	
	4 cl + . c cl (prove jerrenger 7 cl 32 k 22 k 2 k 2 k	(A) (A) a	

NEE-III/17/30-35/A Page 13 of 64 PAPER CODE: 30 to 35 If x > 1, y > 1, z > 1 are in G.P. then $\frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z}$ are in 63. [A] A.P. [B] H.P. [C] G.P. [D] None of these 64. The greatest rate of increase of $u = xyz^2$ at the point (1, 0, 3) [A] 9 · [B] 3 [C] -9 [D] 0 The linear system of equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \alpha z = \beta$ has 65. unique solution if [A] $\beta \neq 10$, α may have any value [B] $\alpha = 3, \beta \neq 10$ [C] $\alpha = 3, \beta = 10$ [D] $\alpha \neq 3$, β may have any value 66. The value of an integral is $\int \frac{x^2+1}{x^4+1} dx$ is $\frac{(2)}{1} = \frac{1}{2} = \frac{1}{1}$ $\begin{array}{c} [A] \quad (1/\sqrt{2}) \tan^{-1}[(x^2 - 1)/x\sqrt{2})] \\ [C] \quad (1/\sqrt{2}) \sin^{-1}[(x^2 - 1)/x\sqrt{2})] \\ \end{array} \begin{array}{c} [B] \quad (1/\sqrt{2}) \log[(x^2 - 1)/x\sqrt{2})] \\ [D] \quad (1/\sqrt{2}) \log[(x^2 + 1)/x\sqrt{2})] \\ \end{array}$ 67. If S is any closed surface, then $\iint curl \overline{F} \cdot \hat{n} dS$ 5 C (() x b n - x 1 x 1 + 1 × B-[A] -2 [B] 2 [C] 1 [D] 0 The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-\alpha}$ and $\frac{x-1}{\alpha} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if 68. $[A] \quad \alpha = 1 \text{ or } -1$ $\begin{bmatrix} B \\ \alpha = 0 \text{ or } -3 \\ \end{bmatrix} \alpha = 0 \text{ or } -1$ $[C] \alpha = 3 \text{ or } -3$ For a binomial variable X if n = 5 and P(X = 1) = 8P(X = 3). Then p is given by 69. [A] 4/5 [B] 1/3 [C] 1/5 [D] 2/3 P(n = 1) = 8 P(n = 3) (Space for rough works) 5×9× 3×2

3) 5c, a' (b) = 8 3c3 a b -3 5- 216 × 802 3 5 a 64 = 8 (10 62) a3). 2 \$ q 6 42 = 180 62 8 a 22

18

PAPER CODE: 30 to 35

The area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$ is 70. [B] 16/3 [D] 0 32/3 [A] [C] 8/3 Two linearly independent solutions of the differential equation 4 $\left(\frac{d^2 y}{dx^2}\right) + 4 \left(\frac{dy}{dx}\right) + 5y = 0$ 71. are [B] $e^{x/2} \cos x$, $e^{x/2} \sin x$ [D] $e^{-x/2} \cos x$, $e^{x/2} \sin x$ $e^{-x/2}$ sinx $e^{-x/2}$ sinx $e^{x/2}\cos x$, [A] $e^{-x/2}\cos x$, [C] If a is a real number and if the middle term of $\left(\frac{a}{3}+3\right)^8$ is 1120, then value of a is 72. [B] ± 1 [D] $\pm \sqrt{2}$ $\begin{bmatrix} A \end{bmatrix} \pm 2 \\ \begin{bmatrix} C \end{bmatrix} \pm \sqrt{3}$ The point on the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$, the normal at which is parallel to the X-axis is 73. [B] (0, a) $\sqrt{[A]}$ (0, 0) SC2 UB+ 7 [C] [D] (a, a) (a, 0)The number of diagonals in a octagon is 74. [B] 28 [D] 16 20 [A] [C] 10 If the lines 3x + y + 2 = 0, 2x - y + 3 = 0 and x + my - 3 = 0 are concurrent, then 75. 4 m + 4 m + 5 = the value of m is [B] 2 [D] 4 [A] 1 3 [C] If A be an 4×4 matrix such that determinant of A is 2. Then the determinant of adj A 76. is dy = 0 16 [A] B 8 $\frac{\gamma}{2} \frac{2\sqrt{x}}{\sqrt{2}}$ $\frac{\gamma}{\sqrt{2}} \frac{2\sqrt{x}}{\sqrt{2}}$ $\frac{\gamma}{\sqrt{2}} \frac{2\sqrt{x}}{\sqrt{2}}$ $\frac{\gamma}{\sqrt{2}} \frac{2\sqrt{x}}{\sqrt{2}}$ $\frac{\gamma}{\sqrt{2}} \frac{2\sqrt{3}}{\sqrt{2}}$ $\frac{\gamma$

Page 15 of 64

PAPER CODE: 30 to 35

Page 24 of 64

PAPER CODE : 31

SECTION – D (Civil Engineering) [Candidate who has opted for CE (Code-31) in NEE - 2017]

Question numbers 81–110 carry 1 mark each:

81	l.	An el plane	lement is subjected to two equal and like s. The shape of the Mohr's circle will be	e stress	ses σ , on two mutually perpendicular
		[A] [C]	A circle of radius 2σ A circle of radius $\sigma/2$	[B] [D]	A circle of radius σ A point
82	2.	The c	lifference between bending moment value	s at an	y two sections will be equal to
		[A] [C]	The area of shear force diagram between those two sections The area of loading diagram between the two sections	[B] [D]	The difference in slopes of shear force diagram at the same sections The moment of area of diagram between the two sections taken about mid-point between the two sections
8	3.	The	neutral axis of the cross-section a beam is	that ax	is at which the bending stress is
		[A] [C]	Maximum Minimum	[B]	Average zero
8	4.	The	maximum deflection of a fixed beam carry	ying a	central point load lies at
		[A] [C]	Fixed ends Centre of beam	(D]	1/3 from fixed ends None of these
8	35.	The	ratio of compressive strength to tensile str	ength	of concrete
		[A] [C]	Increases with age Remains constant	[B] [D]	Decreases with age None of these
8	36.	The give	relation between modulus of rupture f_{cr} en by (where f_{cr} and f_{ck} are in N/mm ²)	and ch	haracteristics strength of concrete f_{ck} is
		[A] [C]	$\begin{split} f_{cr} &= 0.35 \sqrt{f_{ck}} \\ f_{cr} &= 0.7 \sqrt{f_{ck}} \end{split}$	[B] [D]	$ \begin{aligned} f_{cr} &= 0.5 \; \sqrt{\; f_{ck}} \\ f_{cr} &= 1.2 \sqrt{\; f_{ck}} \end{aligned} $

NEE-II	II/17/30-35/A	Page 25 of 64	
			PAPER CODE : 31
87.	Irrigation canal is gene	rally aligned along	
	[A] Ridge line[C] Valley line		[B] Contour line[D] Straight line
88.	Reynolds number is th	e ratio of inertial force and	
	[A] Elasticity[C] Surface tension	() 1949 - Harriston Karley, and	[B] Gravitational force[D] Viscous force
89.	Hydrostatic pressure of	n dam depends upon, its	
	[A] Length[C] Material		[B] Depth[D] All of these
90.	If the dynamic viscosit viscosity of that fluid it	y of a fluid is 0.5 poise and n stokes is	d specific gravity is 0.5, then the kinematic
	[A] 0.25 [C] 1.0	, []	[B] 0.50[D] None of these
91.	The ratio of the volume as	e of voids to the volume of s	soil solids in a given soil mass, is known
	[A] Porosity[C] Specific gravity	ہے۔ []	[B] Void ratio [D] None of these
92.	A vertical triangular a free surface of a liquid.	rea with vertex downward The centre of pressure belo	and altitude 'h' has its base lying on the low the free surface is at a distance of
, 1 1	[A] h/4 [C] h/2	I] [] []	[B] h/3 [D] 2h/3
93.	Under-reamed piles are	e generally	
	[A] Driven pile[C] Precast pile	I] I]	[B] Bored pile[D] All of these
94.	The unit weight of a so	il at zero air voids depends	son
	[A] Specific gravity [C] Unit weight of wa	[I ater [I	[B] Water content[D] All of these

[C]

1.50

PAPER CODE : 31

95. For a given soil sample, C_c = coefficient of gradation, C_u = coefficient of uniformity, D₁₀ = effective size, D₃₀ = diameter through which 30 per cent of the total soil mass is passing. If C_c = 1.0 and C_u = 4.0, then the value of D₃₀/D₁₀ would be
[A] 2.00 [B] 1.75

[D] 1.25

96. Shearing strength of a cohesionless soil depends upon

[A]	Dry density	-{B]	Loading rate
[C]	Confining pressure	[D]	Nature of loading

97. In water bound macadam (WBM) roads, binding materials to hold the stones is

[A]	Stone dust	[B]	Sand
[C]	Brick dust	[D]	Cement

98. The convexity provided to the carriageway between the crown and edge of the pavement is known as

[A]	Super-elevation	[B]	Camber
[C]	Height of the pavement	[D]	None of these

99. If the stopping distance and average length of a vehicle are 18 m and 6 m, respectively, then the theoretical maximum capacity of a traffic lane at a speed of 10 m/sec is

[A]	3000 vehicles per hour	[B]	2000 vehicles per hour
[C]	2500 vehicles per hour	[D]	1500 vehicles per hour

100. The boundary of water of a still lake, represents

[A]	Contour line	[B]	Level line
[C]	Contour gradient	[D]	Contour surface

101. The compensation for curvature on gradient for Meter Gauge is given by

	[A] [C]	70/R 35/R		_[B] [D]	52.5/R 105/R		
102.	In a metric leveling staff, value of subdivision is						
	[A] [9]	3 mm 5 mm		[B] [D]	4 mm 10 mm		

Page 27 of 64

PAPER CODE : 31

8

8/2

ri

10	3. If t ma	he lower clamp screw i y be rotated	s tightened and	upper	clamp screw is loosened, the theodolite
	[A]	On its outer spindle- motion between t graduated scale of low On its inner spindle motion between th graduated scale of low	without a relati he vernier an ver plate with a relative he vernier an ver plate	ve [B nd ve [D nd	 B] On its outer spindle with a relative motion between the vernier and graduated scale of lower plate D] On its inner spindle without a relative motion between the vernier and graduated scale of lower plate
104	. For	steel structure, the most	economical secti	on for	column is
	[A] [C]	Rectangular Tubular section		[B] [D]] Solid circular] Hexagonal
105.	The	detention period in coag	ulation tanks is u	sually	kept as
	[A] [C]	1.0 to 1.5 hours 7 to 9 hours		_[B] [D]	2.0 to 6.0 hours 8 to 12 hours
106.	If the trunn	e focal length of the obj ion axis is 15 cm, the ad	iect glass is 25 d ditive constant is	em and	d the distance from object glass to the
ж * ⁵⁻² г	[A] [C]	0.1 0.4		[B] [D]	0.6 1.33
107.	The p The p metho	opulation of a town in t opulation of the town in od is	hree consecutive the fourth consec	years cutive	is 5000, 7000 and 8400, respectively. year according to geometrical increase
	[A] [C]	9500 10100		[B] [D]	9800 10920
108.	The ty	pe of valve which is prov	vided on the suct	ion pip	pe in a tube-well is
	[A] H [C] P	Reflux valve Pressure relief valve		[B] [D]	Air-relief valve Sluice valve
109.	For cor	ntrolling the growth of al	gae, the chemica	l gener	rally used is
a Tarihanan	[A] A [C] B	lum leaching powder		[B]] [D] (Lime Copper sulphate
		(SI	pace for rough w	orka)	

Page 28 of 64

PAPER CODE : 31

- 110. Self-cleansing velocity is
 - [A] The minimum velocity of flow required to maintain a certain amount of solids in the flow
 - [C] Such flow velocity as would be sufficient to flush out any deposited solids in the sewer
- [B] The maximum velocity of flow required to maintain a certain amount of solids in the flow
- [D] Such flow velocity as would be sufficient to ensure that sewage does not remain in the sewer

Question numbers 111-130 carry 2 marks each:

111. One simply supported beam 'A' carries a point load at its mid span. Another identical beam 'B' carries same load uniformly distributed over the entire span. The ratio of maximum deflection of the beams A and B will be

[A]	5/8		A [B]	8/5
[C]	3/5		[D]	None of the these

112. The slope of the elastic curve at the free end of a cantilever beam of span L and flexural rigidity EI, subjected to uniformly distributed load of intensity W is

[A]	WL ³ /6EI	[B]	WL ³ /3EI	
[C]	WL ⁴ /8EI	[D]	WL ³ /2EI	

113. A drainage basin has axial length and area 100 km and 225 km², respectively. The form factor of the same basin is

[A]	0.15	[B]	0.20
[C]	0.25	[D]	0.30

114. The reduction coefficient of a reinforced concrete column with an effective length of 4.8 m and size 250x300 mm is

[A]	0.80	A Development of the set of the state of the	[B]	0.95
[C]	0.90		[D]	0.85

115. If the velocities of flow of a stream of 10 m depth recorded by a current meter at depths of 2 m and 8 m are 0.7 m and 0.3 m, respectively, the discharge per unit width of the stream in cubic metres, is

[A]	2.5	a (1995), 2011		[B]	5.0	
[C]	10.0			[D]	None of these	

- 78%

Page 29 of 64

PAPER CODE : 31

116. A coarse grained soil sample has void ratio 0.75 and specific gravity 2.75. The critical gradient at which quick sand condition occurs, is

[A]	1 00			
[1]	1.00		[R]	0 50
[C]	0.75		[D]	0.50
	0.75		[D]	0.25
				0.25

117. If one wants to be 90% sure that the design flood in a dam project will not occur during the design life period of 100 years, the recurrence interval for such a flood would be

A	About 90 years	[B	Equal to 100 years
C]	About 110 years		Poughty 1000
			j Koughly 1000 years

118. The intensity of active earth pressure at a depth of 10 m in a dry cohesionless sand with an angle internal friction 30° and weight 18 kN/m^3 , is

A	40 kN/m^2	[D]	50121/ 2
[C]	60 kN/m^2	[D]	50 km/m^2
		[D]	80 kN/m^2

119. A fluid jet discharging from a 4 cm diameter orifice has a diameter 3 cm at its vena contracta. If the coefficient of velocity is 0.98, the coefficient of discharge for the orifice will be

[A]	$0.98 \ge (0.75)^2$	[D]	(0 ==)2 + = =
ICI	$0.98 \times (1.33)^2$	[B]	$(0.75)^2 / 0.98$
[0]	$0.70 \times (1.55)$	[D]	$0.98 / (1.33)^2$

120. A clay strata of 2 m thickness consolidates 80% in 10 years. For 80% consolidation of 8 m thick of same clay layer, required time is

[A] [C]	100 years 140 years	[B]	160 years
[0]	r to years	[D]	120 years

- 121. A vehicle is travelling at a speed of 80 km/hour on concrete pavement. For the coefficient of friction between tyre and pavement surface being 0.35, stopping distance for the vehicle is
 - [A] 44.44 m
 - [C] 116.43 m

[B] 76.99 m [D] 232.86 m

Page 30 of 64

PAPER CODE : 31

122. Given that Plasticity Index (PI) of local soil = 15 and PI of sand = zero, then for a desired PI of 6, the percentage of sand in the mix should be

[]]	70	[B]	60
	10	[D]	30
[C]	40	a sub- univer make and boott gained of the	

123. A soil has a discharge velocity of 6×10^{-7} m/s and a void ratio of 0.5. Find its seepage velocity

FAI	$18 \times 10^{-7} \text{ m/s}$	[B]	$12 \times 10^{-7} \text{ m/s}$
[C]	$6 \times 10^{-7} \text{ m/s}$	[D]	3x10 ⁻⁷ m/s

124. A summit curve is formed at the intersection of a 3% up gradient and 5% down gradient. To provide a stopping distance of 128 m, the length of summit curve needed will be

Δ1	271 m	[B]	340 m
[C]	322 m	[D]	298 m

125. An old short column 20 cm x 20 cm in section is reinforced with 4 bars whose area of cross sectional area is 20 sq. cm. If permissible compressive stresses in concrete and steel are 4.0 MPa and 130 MPa, the safe load on the column, should not exceed

IA1	41.2 kN		[B]	412 kN
[C]	412 0 kN		[D]	None of these

126. For a sleeper density of (n+5), the number of sleepers required for constructing a broad gauge railway track of length 650 m is

LA1	900		[B]	918
[C]	975		[D]	880

127. The following consecutive readings were taken with a dumpy level and a 3 m staff on continuously sloping ground.

0.425, 1.035, 1.950, 2.360, 2.950, 0.750, 1.565, 2.450, 0.320, 1.025, 2.165, 2.955. Which of the following reading are backsights?

[A]	0.425, 2.950, 0.750, 0.320	[B]	0.425, 0.750, 0.320, 2.955
[6]	0.425, 0.750, 0.320	[D]	0.425, 2.360, 0.730, 0.320

Page 31 of 64

PAPER CODE : 31

128. The back staff reading on a bench mark (B. M.) of R. L. 300 m is 2.685 m and fore sight reading on a point is 1.345 m. The reduced level of that point is

[A]	302.685 m	-	dos [B]a	301.345 m	
[C]	304.030 m			301.340 m	

129. A city supply of 15000 cubic metres of water per day is treated with a chlorine dosage of 0.5 ppm. For this purpose, the requirement of 25% bleaching powder per day would be

[A]	300 kg	and a that is a second a secon	[B]	75 kg
[C]⁄	30 kg		[D]	7.5 kg
			1.0000	

130. In a BOD test, 1.0 ml of raw sewage was diluted to 100 ml and the dissolved oxygen concentration of diluted sample was 6.0 ppm. On incubating the diluted sample for 5 day at 20°C, its BOD was 4.0 ppm. The BOD of raw sewage was

A	100 ppm	[B]	200 ppm
[C]	300 ppm	[D]	None of these

--xxxx..... Civil Engineering (Code – 31) Paper Ends------xxxx------

 $\int x + \int y = \int a \qquad |1$ $\int x + \int y = \int a \qquad |1$ $\int x + \int y = 0$ $\int x + 2 \int y = 0$ $\int x + 2 \int y = 1$ $\int x + 2 \int y = 1$ $\int \frac{1}{n} = 0$

87.

Page 32 of 64

PAPER CODE: 3

SECTION – D (Computer Science and Engineering) [Candidate who has opted for CSE (Code-32) in NEE - 2017]

Question numbers 81-110 carry 1 mark each:

81. What is the octal equivalent of $(A98)_{16}$

[A]	(5124)8.	[B]	(5230)8
[C]	(5424)8	[D]	$(4424)_8$

The number of columns in a state table for a sequential circuit with 'm' flip-flops and 'n 82. input is

[A]	m + n	사용이 위에서 정면 URL 이 가지 있는 그 그 모델링 한 것 	[B]	m + 2 n
[C]	2 m + n		[D]	2 m + 2 n

83. The total number of possible Boolean functions involving 'n' Boolean variables is

[A]	n ²ⁿ			[B]	n^2
[C]	n^n	1		[D]	None of these

84. The number of processes completed per unit time is known as

[A]	-Output ab n 2 require 1 8	[B]	Throughput	
[C]	Efficiency	[D]	Capacity	

- 85. The operation of J-K flip-flop is similar to that of the S-R flip-flop except that the J-K flipflop
 - Doesn't have an invalid state [A] [A] Sets to clear when both J = 0 and K = 1Does not show transition on change in [C] Does not accept asynchronous inputs [C]pulse

86. Which of the following is a non-preemptive CPU scheduling?

[A]	Round Robin	[B]	First Come First Serve
[C]	Multilevel Queue Scheduling	[D]	None of these
A po	ositive edge-triggered flip-flop changes its	state w	rhen
[A]	Enable input (EN) is set	[B]	High-to-low transition of clock
[C]	Low-to-high transition of clock	[D]	Preset input (PRE) is set

Low-to-high transition of clock [D] Preset input (PRE) is set

Page 33 of 64

PAPER CODE : 32

88.	Syst	em calls are invoked by using			
	[A] [C]	A software interrupt In-direct jump	[B] [D]	Polling None of these	
89.	The	3 variable Karnaugh Map (K-Map) has		cells for min or max terms	
	[A] [C]	4 51 (1997) a che 12	[B] [D]	8 16	
90.	A sy then	stem has 3 processes sharing 4 resources. I , deadlock	f each	process needs a maximum of 2 units	
	[A] [C]	Can never occur Has to occur	[B] [D]	May occur None of these	
91.	Spar	se matrices have	•		
	[A] [C]	Many non-zero entries Higher dimension	[B] [D]	Many zero entries None of these	
92.	The each	maximum number of comparisons needed item is a 4 digit decimal number)	l to s	ort 7 items using radix sort is (assume	
	[A] [C]	28 120 UCD order of Area ([B] [D]	to be intra 38 1280 Quanta a garviece o Quanta 1980	
93.	Two	main measures for the efficiency of an algo	orithm	are produce of stall (At	
	[A] [C]	Processor and memory Time and space	[B] [D]	Complexity and capacity Data and space	
94.	Give the w	n two sorted list of size 'm' and 'n' respect vorst case by the merge sort algorithm will	ively, be	the number of comparisons needed in	
	[A] [C]	m × n Minimum of m, n	[B] [D]	Maximum of m, n m + n - 1	
95.	Whic effici	ch of the following is essential for convertiniently?	ng an i	infix expression to the postfix form	
	[A] [C]	An operator stack An operator stack and an operand stack	[B] [D]	An operand stack A parse tree	

Page 34 of 64

PAPER CODE: 3. 96. Match the following (a) Completeness i) How long does it take to find a solution (b) Time Complexity ii) How much memory needs to perform the search (c) Space Complexity iii) Is the strategy guaranteed to find the solution when there is one [A] a - iii, b - ii, c - i [B] a-i, b-ii, c-iii[C] a – iii, b - i, c – ii [D] a-i, b-iii, c-ii97. The sequence of events that happen during a typical fetch operation is $PC \rightarrow MAR \rightarrow Memory \rightarrow MDR \rightarrow IR$ [A] [B] $PC \rightarrow Memory \rightarrow MDR \rightarrow IR$ [C]PC→Memory→IR [D] $PC \rightarrow MAR \rightarrow Memory \rightarrow IR$ 98. A micro-programmed control unit [A] Is faster than a hard-wired control unit Facilitates easy implementation of new [B] instructions [C] Is useful when very small programs are [D] Usually refers to the control unit of to be run microprocessor 99. On receiving an interrupt from an I/O device, the CPU [A] Halts for a predetermined time [B] Hands over control of address bus and data bus to the interrupting device Branches off to the interrupt service [D] Branches off to the interrupt service [C]routine immediately routine after completion of the curren instruction 100. To achieve parallelism, one needs a minimum of [A] 2 processors [B] 3 processors [C] 4 processors [D] 1 processor The default values of auto, register and static storage class are 101. [A] 0, garbage, garbage [B] garbage, garbage, 0 [C] garbage, 0, 0 [D] 0, 0, garbage

Page 35 of 64

PAPER CODE: 32

Choose the correct output for the following code segment 102. while (1) { printf ("abc"); } [A] Compile time error [B] Run time error [C] Print abc [D] Print abc for infinite times 103. Which one of the following interrupt is non-maskable? [A] TRAP [B] RST 7.5 [C] INTR [D] RST 6.5 104. What is the output of the following program? secondary memory if equal to 100 ns. The time required to a # include < iostream.h > void main () { int a [] = { 10, 20, 30 }; cout << * a + 1;} [A] 20 [B] 10 [C] 11 [D] 21 Choose the correct for the following code segment 105. void main () { int i = 3; printf ("%d %d %d ", ++i, i, i++); } [A] 3,4,5 [B] 4,4,5 [C] 3,5,5 [D] 5,4,3

Page 36 of 64

PAPER CODE : 32

106. The purpose of the following code segment

a = a + b; b = a - b;a = a - b;

where 'a' and 'b' are two integers is to

- [A] Transfer the content of 'a' to 'b'
- [C] Exchange the content of 'a' and 'b'

[B] Transfer the content of 'b' to 'a'

[D] Negate the content of 'a' and 'b'

107. A byte addressable computer has a memory capacity of 2^m Kbytes and can perform 2ⁿ operations. An instruction involving 3 operands and one operator needs a maximum of

[A]	3m bits	[B]	3m+n+30 bits
[C]	m+n bits	[D]	3m+n bits

108. In a paged memory, the page hit ratio is 0.35. The time required to access a page in secondary memory is equal to 100 ns. The time required to access a page in primary memory is 10 ns. The average time required to access a page is

[A]	30.0 ns	[B]	68.0 ns
[C]	68.5 ns	[D]	78.5 ns

109. The values of X and Y, if $(X567)_8 + (2YX5)_8 = (71YX)_8$ is

A]	4, 3			[B]	3, 3
[C]	4, 4			[D]	4, 5

110. When a subroutine is called, the address of the instruction following the CALL instructions stored in/on the

[A]	Stack pointer	[B]	Accumulator
[C]	Program counter	[D]	Stack

Question numbers 111-130 carry 2 marks each:

- 111. A hash function f defined as f (key) = key mod 7, with linear probing, is used to insert the keys 37, 38, 72, 48, 98, 11, 56 into a table indexed from 0 to 6. What will be the location of key 11?
 - [A] 3 [B] 5 [C] 4 [D] 6

Page 37 of 64

PAPER CODE : 32

112. The average successful search time for sequential search on 'n' items is [A] n/2 [B] (n-1)/2[C] (n+1)/2 $[D] \log(n) + 1$ The Boolean expression A B + A \overline{B} + \overline{A} C + A C is unaffected by the value of Boolean 113. variable [A] A [B] B [C] C [D] None of these The minimum number of gates required to implement the Boolean expression 114. $AB + A\overline{B} + \overline{A}C$ is [A] 1 AND gate and 1 OR gate [B] 2 NAND gates 3 AND gates and 2 OR gates [C] [D] 1 OR gate 115. Consider the following page reference string 12342156212376321236 for LRU page replacement algorithm with 4 frames, the number of page faults is [A] 10 [B] 14 [C] 8 [D] 11

116. A system has 12 instances of same resource and 3 processes. Consider the following resource allocation table

Process no.	Maximum need	Current allocation
P1	10	5
P2	4	2
P3	9	2

Which of the following sequence is a safe sequence?

[A]	P1, P2, P3	[B]	P2, P3.	, P1
[C]	P2, P1, P3	[D]	P3, P1	P2

117. Disk requests come to disk driver for cylinder in the order 10, 22, 20, 2, 40, 6, 38 at a time when the disk drive is reading from cylinder 20. The seek time is 8 ms per cylinder. The total seek time, if the disk arm scheduling algorithm is first come first serve is

[A]	1576	[B]	1168
[C]	960	נחו	1050
		[]	1050

Page 38 of 64

PAPER CODE : 32

118.	3. At a particular time of computation the value of a counting semaphore is 13. It will become 7 after						
	[A] 6 V operations	[B] 5 P operations					
	[C] 10 V operations and 2 P operations	[D] 10 P operations and 4 V operations					
119.	The seek time of a disk is 40 ms. It rotates at has capacity of 300 words. The average access [A] 65 ms [C] 45 ms	the rate of 20 rotations per second. Each track time is approximately [B] 60 ms [D] 50 ms					
120.	A machine needs a minimum of 100 sec to so minimum time needed to sort 100 names will b [A] 3.4 sec [C] 12.3 sec	rt 1000 names using quick sort algorithm. The be approximately [B] 6.7 sec [D] 72.6 sec					
121.	A 3-ary tree is a tree in which every internal modes in such a tree with 6 internal nodes will [A] 15	ode has exactly 3 children. The number of least be [B] 14					
	$\begin{bmatrix} C \end{bmatrix}$ 13	[D] 16					
122.	The seek time of a disk is 30 ms. It rotates at has capacity of 300 words. The average access [A] 47 ms [C] 60 ms	the rate of 30 rotations per second. Each track time is approximately [B] 50 ms [D] 62 ms					
123.	The average successful search time taken by b	inary search on a sorted array of 10 items is					
	[A] 2.6 [C] 2.8	[B] 2.7 [D] 2.9					
124.	The postfix expression for the infix expression [A] $AB + CD + *F/D + E *$ [C] $A * B + Cd/F * DE ++$	A + B * $(C + D) / F + D * E$ is [B] ABCD + * F / + DE *+ [D] A + * BCD / F * DE ++					
125.	How many 32K × 1 RAM chips are needed to [A] 32 [C] 128	provide memory capacity of 256 K-Bytes? [B] 256 [D] 64					
126.	If the cache needs an access time of 20 ns an access time of the CPU is (assuming the hit rat [A] 30 ns [C] 45 ns	nd the main memory 120 ns, then the average io is 80%) [B] 40 ns [D] 50 ns					

128.

Page 39 of 64

PAPER CODE : 32

```
127. Choose the correct output for the following code segment
```

```
# include < iostream.h >
     using namespace std;
     class Base
        {
          public:
          void f()
          {
           cout << "Base\n";
           }
        };
        class Derived: public Base
                {
                 public:
                 void f()
                   {
                    cout << "Derived\n";</pre>
                   }
                };
void main ()
        Base *p = new Derived ();
        P -> f();
        }
[A]
      Base
                                                  [B] Derived
[C]
      Compilation error
                                                 [D] None of these
Choose the correct output for the following code segment
        void main ()
        {
           int i = 5;
       i = (++i) / (i++);
       printf( "%d ", i );
        }
[A]
      1
                                                  [B]
                                                       2
[C]
      3
                                                 [D]
                                                       4
```

Page 40 of 64

PAPER CODE : 32

129. Choose the correct output for the following code segment

[A] Error [C] 0.

[D] None of these

130. Choose the correct statement for the following code segment

class abc ;

class def; '

{ int x ;
 protected : int y ;

// statement 2
// statement 3

// statement 1

friend abc;

public : int z;

};

Class abc

{ public :

void main (def A)

```
{ cout << (A.x = 3); cout << (A.y = 4); cout << (A.z = 5);
```

```
};
```

void main ()

{

}

defx1;

abc x2;

x2.main(x1);

```
[A] Will compile successfully if statement 1 [B] Will compile successfully if statement 2 is removed
```

[C] Will compile successfully if statement 3 [D] Will run successfully and print 3 4 5 is removed

-----xxx-----Computer Science and Engineering (Code - 32) Paper Ends------xxx------

Page 41 of 64

PAPER CODE: 33

SECTION – D (Electronics and Communication Engineering) [Candidate who has opted for ECE (Code-33) in NEE - 2017]

Question numbers 81-110 carry 1 mark each:

- Excess carriers are generated in a sample of N-type semiconductor by shining light at one 81. end. The current flow in the sample will be made up of
 - Diffusion flow of carriers [A]
 - [C] Both diffusion and drift flow of carriers
- [B] Drift flow of carriers
- [D] Neither diffusion nor drift flow of carriers

82. The voltage where avalanche occurs is called the

- [A] Barrier potential [B] Depletion layer [C] Knee voltage
- [D] Breakdown voltage
- An N-type semiconductor is illuminated by a steady flux of photons with energy greater than 83. the band gap energy. The change in conductivity $\Delta \sigma$ obeys which relation?
 - [A] $\Delta \sigma = 0$ [B] $\Delta \sigma = e(\mu_n + \mu_p) \Delta n$ [C] $\Delta \sigma = e (\mu_n \Delta n - \mu_n \Delta p)$ [D] $\Delta \sigma = e \mu_n \Delta n$

84. Which of the following has a negative-resistance region?

[A]	Tunnel diode	[B]	Step-recovery diode
[C]	Schottky diode	[D]	Optocoupler

The current gain of a transistor is defined as the ratio of the collector current to the 85.

Supply current [A] [B] Emitter current Base current [C] [D] Collector current

To avoid thermal runway in the design of an analog circuit, the operating point of the BJT 86. should be such that it satisfies the condition

[A] $V_{CE} = V_{CC}/3$ $V_{CE} > V_{CC}/3$ [C]

87.

- At high frequencies, ordinary diodes don't work properly because of
 - [A] Forward bias [B] Reverse bias [C] Breakdown [D] Charge storage

Page 42 of 64

PAPER CODE :

88. Consider the following statements:

The lower cut-off frequencies for an RC coupled CE amplifier depend on

- 1. input and output coupling capacitors
- 2. emitter bypass capacitor
- 3. junction capacitor

Which of these statements is/are correct?

[A]	l alone		[B]	2 alone
[C]	1 and 2		[D]	2 and 3
			[2]	2 unu J

89. In an ac amplifier using an op amp with coupling and bypass capacitors, the output offse voltage is

[A]	Zero	[B]	Minimum
[C]	Manimum		1vi ii i
	Maximum	[D]	Unchanged

90. The kind of oscillator found in an electronic wristwatch is the

[A]	Armstrong	[B]	Clann
[C]	Colpitts	[D]	Ouartz crystal

91. A T flip-flop function is obtained from a JK flip-flop. If the flip-flop belongs to a TTL family, the connection needed at the input must be

[A]	J=1 and K=0		[B]	I=K=0
C1	J=K=1	지 않는 것 같아. 아무는 것 같아. 가지 않는 것 같아. 가지 않는 것 같아. 가지 않는 것 같아. ? ?????????????????????????????????		JAU
]			D	J=0 and $K=1$

92. A 4 bit modulo-6 ripple counter uses JK flip-flop. If the propagation delay of each FF is 50 ns, the maximum clock frequency that can be used is equal to

[A]	5 MHz	ΓI	31	10 MHz
[C]	$4 MH_{7}$	L1	2]	
	I IVII IZ	. 1		20 MHz

93. Consider the following statements:

A multiplexer

- 1. selects one of the several inputs and transmits it to a single output.
- 2. routes the data from a single input to one of many outputs.
- 3. converts parallel data into serial data.
- 4. is a combinational circuit.

Which of these statements are correct?

[A]	1, 2 and 4		[B]	2 3 and 4
[C]	1, 3 and 4		[D]	1, 2, 3 and 4 1, 2 and 3

Page 43 of 64

PAPER CODE: 33

94. Consider the following registers: 1. Accumulator and B register

- 2. B and C registers
- 3. D and E registers
- 4. H and L registers

Which of these 8-bit registers of 8085 microprocessor can be paired together to make a 16-bit register?

[A]	1, 3 and 4		[B]	1 2 and 3
[C]	1 and 2	2	[D]	1, 2 and 5
L]		•		2, 3 and 4

95.

- Consider the following statements:
 - 1. Cache memory is low cost and fast memory.
 - 2. Cache memory is fast but costly memory.

3. Performance of cache during program execution is measured by hit ratio. Which of the following statements given above are correct?

[A]	1 and 2		[B]	2 and 3
[C]	1 and 3		[D]	None of these
				rone or these

If the instrument is to have a wide range, the instrument should have 96.

- [A] Linear scale [B] Square-law scale Exponential scale [C][D] Logarithmic scale
- If the output of a voltage regulator varies from 15 to 14.7 V between the minimum and 97. maximum load current, the load regulation is

[A]	0	[B] 2%
[C]	10/	
	1 70	[D] 5%

An ammeter of range 0-25A has a guaranteed accuracy of 1% of full scale reading. The 98. current measured by the ammeter is 5A. the limiting error in the reading is

[A]	2%		[B]	2 5%
[C]	4%		[D]	5%
			L 1	- / 0

A two-port network is reciprocal, if and only if 99.

AJ	$Z_{11} = Z_{22}$		[B]	BC-AD = -1	
C]	$Y_{12} = Y_{21}$		[D]	$h_{12}=h_{21}$	

In a uniform plane wave, the value of IEI/IHI is 100.

Г АЛ	(/ 1/2)			
[A]	$(\mu/\epsilon)^{-1}$		[B]	$(a/u)^{1/2}$
[C]	1		[D]	(ϵ/μ)
	1		[[]]	$(u_{c})^{1/2}$
				(µ2)

Page 44 of 64

PAPER CODE : 33 If the height of the waveguide is halved, its cut-off wavelength will 101. Be doubled [B] [A]Be halved [D] Be one-fourth of the previous value Remain unchanged [C] An antenna is desired to operate on a frequency of 40 MHz whose quality factor is 50. The 102. bandwidth of antenna is [B] 5.03 MHz 800 kHz [A][D] None of these 127 kHz [C] In a DSB-SC system with 100% modulation, the power saving is 103. [B] 66% [A] 50% [D] 100% 75% [C] A 10 kW carrier is sinusoidally modulated by two carriers corresponding to a modulation 104. index of 30% and 40%, respectively. The total radiated power is [B] 12.5 kW 11.25 kW [A] [D] 17 kW [C] 15 kW The bandwidth of a 'N' bit binary coded PCM signal for modulating a signal having 105. bandwidth of 'f' Hz is [B] f/N² Hz [A]f/N Hz [D] N²f Hz **NfHz** [C]Which of the following are the advantages of FM over AM? 106. 1. Better noise immunity is provided. 2. Lower bandwidth is required. 3. The transmitted power is more useful. 4. Less modulating power is required. Select the correct answer using the codes given below: [B] 2, 3 and 4 1, 2 and 3 [A] [D] 1, 3 and 4 2 and 4 [C]In phase modulation, the frequency deviation is 107. proportional [B] inversely to the directly proportional to the modulating [A] modulating signal frequency signal frequency independent of the modulating signal [D] inversely proportional to the square [C]root of the modulating frequency frequency

Page 45 of 64

PAPER CODE : 33

111. The free electron density in a conductor is $(1/1.6) \times 10^{22}$ cm⁻³. The electron mobility is 10 cm²/Vs. What is the value of its resistivity ?

[A]	$10^{-4} \Omega m$	[B]	$1.6 \times 10^{-2} \Omega m$
[C]	$10^{-4} \Omega cm$	[D]	10^4 mho cm ⁻¹

112. The diodes in a bridge rectifier each have a maximum dc current rating of 2 A. This means the dc load current can have a maximum value of

[A]	1 A			[B]	2 A
[C]	8 A			[D]	4 A

113. Assuming an operating temperature T=300K and corresponding V_T =26mV, what is the change in semiconductor silicon diode forward voltage V_D to produce a 10:1 change in the diode current I_D, while operating in the forward bias region (<25mV)?

[A]	60mV	[B]	120mV
[C]	180mV	[D]	240mV

Page 46 of 64

PAPER CODE : :

114. Consider the following rectifier circuits:

- 1. Half-wave rectifier without filter.
- 2. Full-wave rectifier without filter.
- 3. Full-wave rectifier with series inductance filter.
- 4. Full-wave rectifier with capacitance filter.

The sequence of these rectifier circuits in decreasing order of their ripple factor is

[A]	1, 2, 3, 4		[B]	3, 4, 1, 2
[C]	1, 4, 3, 2		[D]	3, 2, 1, 4

115. Assuming ideal elements in the circuit shown below, the voltage Vab will be

Page 47 of 64

PAPER CODE : 33

119. If the input to the digital circuit shown in figure consisting of a cascade of 20 XOR gates is X, then the output Y is equal to

			x			
	[A] [C]	1 0	•		[B] [D]	$\frac{X}{X}$
120.	Two coef	coils have self-in ficient of coupling	ductances of g between the	0.09H and 0 coils is	0.01H	and a mutual inductance of 0.015H. The
	[A] [C]	0.06 1.0			[B] [D]	0.5 0.05
121.	In ar 400V	n amplitude modu W, then the modul	ulated systen lation index i	n, if the tota s	l pow	er is 600W and the power in carrier is
	[A] [C]	0.5 0.9			[B] [D]	0.75 1
122.	A suj MHz 500 l	per heterodyne re z. High-side tunin kHz would be	ceiver is desi g is to be use	gned to rece d. The tuning	ive tra g rang	insmitted signals between 5 and 10 e of the local oscillator for IF frequency
	[A] [C]	4.5 MHz - 9.5 M 5.5 MHz - 10.5 J	ÍHz MHz		[B] [D]	4.5 MHz - 10.5 MHz None of these
123.	An a overa	mplifier has two all bandwidth sha	identical cas ll approximat	caded stages ely be equal	. Eacl to	n stage has a bandwidth of 20KHz. The
¢.	[A] [C]	10.3 KHz 20.9 KHz			[B] [D]	12.9 KHz 28.3 KHz
124.	An 8 1101	-bit D/A converte 1011, is	er has a full	scale output	voltag	ge of 20V. the output when the input is
	[A] [C]	160mV 20V			[B] [D]	78mV 17V
125.	Whic [A] [C]	h RAM is created Dynamic RAM Permanent RAM	l using MOS	transistors	[B] [D]	Static RAM SD RAM

Page 48 of 64

PAPER CODE : 33

[B] Gain-bandwidth product

Supply voltages

[D]

126. In a differential amplifier, the CMRR is limited mostly by

- [A] CMRR of the op amp
- [C] Tolerance of resistors
- 127. A pole zero pattern of a certain filter is shown in figure. This filter must be

128. When VSWR is 3, the magnitude of the reflection coefficient is

	. /		[D]	1/2
A	1/4		[D]	1/5
[C]	1/2		[D]	ി ാ
. S. 194				

129. A band-pass signal has significant frequency components in the range of 1.5MHz to 2MHz if the signal is to be reconstructed from its sample, the minimum sampling frequency will be

[A]	1MHz	[B]	2MHz
[C]	3MHz	[D]	4MHz

130. On which bands, do the optical fibers operate?

1. Ultra violet band

2. Ultra high frequency band

3. Visible light band

4. Infrared band

[A]	1 only	[B] 1 [D] 1	and 2 only 3 and 4
C	1, 2 and only		5 anu 4

-----xxx-----Electronics and Communication Engineering (Code – 33) Paper Ends.....xxx-----

Page 49 of 64

PAPER CODE: 34

SECTION – D (Electrical Engineering) [Candidate who has opted for EE (Code: 34) in NEE – 2017]

Question numbers 81-110 carry 1 mark each:

81.	A n	etwork is said to be linear if it satisfies		
	[A] [C]	Superposition condition Both superposition and homogeneity conditions	[B] / [D]	Homogeneity condition Associative condition
82.	A ca	apacitor		i en su su versti
	[A] [C]	Offers easy path to AC but block DC Offers easy path to both AC and DC	[B] [D]	Offers easy path to DC but block AC Blocks AC
83.	A st be	ar circuit has each element of resistance R	€/2. T	he equivalent elements of delta circuit will
	[A] [C]	R 3R/2	[B] [D]	3R R/6
84.	Whe [A] [C]	n the relative permeability of material is m Ferromagnetic material Diamagnetic material	uch g [B] [D]	Paramagnetic material None of these
85.	If a t will l	ransformer primary is energized from a tr be a	iangu	lar wave voltage source, its output voltage
	[A] [C]	Sine wave Triangular wave	[B] [D]	Square wave Pulse wave
86.	In a t air ga	three-phase induction motor running at slip ap power P_g is	os, th	e mechanical power developed in terms of
	[A]	$P_g(s-1)$	[B]	$\frac{P_g}{1}$
	[C]	$P_g(1-s)$	[D]	1-s sP_g
87.	The s motor	eries DC motors have the highest starting the starting th	torque	e as compared to shunt and compound DC
	[A] [C]	Lower armature resistance Fewer series turns	[B] [D]	Stronger series field Larger armature current
		(Space for rough	norte	

Page 50 of 64

PAPER CODE : 34

88.	If the input to the prime mover of an alternator is kept constant but the field excitation changed, then the							
	[A]	Reactive component of the output is changed	[B]	Active component of the output changed	i			
	[C]	Power factor the load remains constant	[D]	Power factor of the load reduces				
89.	Skin	effect is	- 219- - -					
	[A] [C]	Proportional to the square of frequency Inversely proportional to the frequency	[B] [D]	Proportional to the frequency Independent of the frequency				
90.	Ratio	o of the maximum demand to the connected	l load	in a power system is known as				
	[A]	Load factor	[B]	Diversity factor				
	[C]	Demand factor	[D]	Power factor				
91.	The	most severe fault on the power system is						
	[A] [C]	Line to line fault Double line to ground fault	[B] [D]	3-phase short circuit fault Line to ground fault				
92.	For	a 8 pole wave wound armature, the number	ofbr	ushes required will be				
	[A]	2	[B]	4				
	[C]	6	[D]	12				
93.	Bucl	hholz relay is used for the protection of						
	[A]	Generator	[B]	Transmission line				
	[C]	Transformer	[D]	Bus-bar				
94.	Whi	ch of the circuit breakers has high reliability	and	negligible maintenance?				
	[A]	Air-blast	[B]	Vacuum				
	[C]	Oil	[D]	SF ₆				
95.	In ar	electric arc welding, the voltage required t	o stril	ke AC arc is about				
	[A]	50-60 V	[B]	80-90 V				
	[C]	100-200 V	[D]	220 V				
u cilika katalah katala			AND DESCRIPTION OF A DESCRIPTION		1.90			

96.

Page 51 of 64

PAPER CODE : 34

96.	Lui	nens per watt is the unit of		
1	[A] [C]	Luminous efficiency Luminous intensity	[B] [D]	Brightness Illumination
97.	Inte	grating type measuring instruments are use	d for	the measurement of
	[A] [C]	Voltage Phase	[B] [D]	Current Energy
98.	Wh	ich of the following instruments is the most	t accu	rate?
	[A] [C]	PMMC Thermo couple	[B] [D]	Moving iron Induction type
99.	The	number of flip flops required in a decade c	ounte	r is
	[A] [C]	2 4	[B] [D]	3 10
100.	A fu	ise is normally a		
a a	[A] [C]	Current limiting device Power limiting device	[B] [D]	Voltage limiting device Power factor correcting device
101.	The	number of comparators needed in a paralle	l conv	version type 8-bit A to D converter is
	[A] [C]	256 16	[B] [D]	8 255
102.	The	$\frac{dv}{dt}$ effect in SCR can result in		
	[A] [C]	Low capacitive charging current Increased junction capacitance	[B] [D]	False triggering High rate of rise of anode voltage
103.	The	input impedance of an operational amplifier	r is	
	[A] [C]	Infinite Very high but not infinite	[B] [D]	Zero Very small
104.	Whic	ch of the following is not a jump statement	in C+-	+?
	[A] [C]	Break Exit	[B] [D]	Goto Switch

PAPER CODE : 34

If ther

105.	Step l	by step instructions	written to s	olve any pro	blem	is called	
	[A] [C]	Pseudo code Assembler			[B] [D]	Algorithm Class	
106.	The f	requency can be me	easured by				
	[A] [C]	Anderson bridge Wien bridge			[B] [D]	Hays's bridge Owen bridge	
107.	The	magnetizing current	in a transfe	ormer is rich	in		
	[A] [C]	3 rd harmonic 7 th harmonic			[B] [D]	5 th harmonic 13 th harmonic	
108.	The	surge impedance of	f cables is a	round			
	[A] [C]	20 Ω 200 Ω			[B] [D]	100 Ω 50 Ω	
109.	Bre	aking capacity of a	circuit brea	ker is usually	y expi	ressed in	
	[A] [C]	MVA KA			[B] [D]	MW KV	
110.	Nuc	clear power plant is	invariably u	ised as a/an			
	[A] [C]	Peak load plant Standby plant			[B] [D]	Base load plant Emergency plant	
Que	stion	numbers 111–130 (carry 2 ma	rks each:			
111.	The	e electric bulbs rat istances are R_1 and	ed for the R_2 respective	same voltag rely, then	ge hav	ve powers of 200 W a	and 100 W.
	[A]	$R_1 = 2R_2$			[B] $R_2 = 4R_1$	
	[C]	$R_{2} = 2R_{1}$			[D	$R_1 = 4R_2$	
112	. Th	e mutual inductance	e between t	he two unity	coup	led-coupled coils of 9 H	I and 4 H is
	ΓA	1 36 H			[B	8] 13 H	
	[/] [C	2.2 H			[[)] 6 H	
			1. 1. s. 164 A.1 y f	8			

Page 53 of 64

PAPER CODE : 34

	(Space for rough	works	s)
	[A] 0.25 [C] 1.0	[B] [D]	0.5 2.0
120.	At a certain current, the energy stored in an iron W. The time constant (in seconds) of the coil is	n-core S	ed coil is 1000 J and its copper loss is 2000
	[A] 110 [C] 11	[B] [D]	1100 101
119.	The binary division $11000_2 \div 100_2$ gives		al garadoli sacamu di 🖕
	[A] 10 kW [C] 99 kW	[B] [D]	90 kW 80 kW
118.	Rotor input to an induction motor is 100 kV developed by its rotor is	V. Tł	ne slip is 10%. Gross mechanical power
	[A] 0.917 lead [C] 0.6 lead	[B] [D]	0.6 lag 0.917 lag
117.	The ratio of the readings of the two wattmet balanced load is 5:3 and the load is inductive. T	ers co he po	onnected to measure power of a 3-phase ower factor of the load is
	$\begin{bmatrix} A \end{bmatrix} A + B \\ \begin{bmatrix} C \end{bmatrix} A + \overline{B} \end{bmatrix}$	[B] [D]	$\frac{\overline{A} + B}{\overline{A} + B}$
116.	In Boolean algebra, $A + \overline{AB}$ is equal to		
	[A] 2 % [C] 4 %	[B] [D]	2.5 % 5 %
115.	A voltmeter gives 120 oscillations per minute motor. The stator frequency is 50 Hz. The slip o	e whe of the	n connected to the rotor of an induction motor is
	[A] 800 W [C] 400 W	[B] [D]	200 W 1600 W
114.	The copper loss of a certain transformer at hall loss at full load will be	lf-full	load is measured as 400 W. The copper
	[A] 254 V [C] 270 V	[B] [D]	246 V 282 V
113.	A DC shunt generator delivers 195 A at a term shunt field resistance are 0.02 Ω and 50 Ω , respectively.	minal ective	voltage of 250 V. The armature and the ly. What is the value of generated e.m.f.?

PAPER CODE : 34

121.	An 8-bit DA converter has a maximum output voltage of 2 V. If V_{in} =1.5 V, the digital out at the end of conversion will be					
	[A] [C]	00011100 01100000	[B] [D]	00100011 11000000		
122.	In a I equal	DC series motor, if the armature current	is reduce	d by 50%, the torque of the motor will be		
	[A] [C]	100% of the previous value 25% of the previous value	[B] [D]	50% of the previous value 10% of the previous value		
123.	A 1m shun	nA ammeter has a resistance of 100 Ω . It tresistance is	t is to be	converted to a 1 A ammeter. The value of		
	[A] [C]	0.001 Ω 100000 Ω	[B] [D]	0.1001 Ω 100 Ω		
124.	A sir load.	ngle-phase half-wave controlled rectifier For a firing angle of 60° for the SCR, th	has 400 he averag	Usin 314 t as the input voltage and R as the ge output voltage is		
	[A] [C]	400 / π 240 / π	[B] [D]	200 / π 300 / π		
125.	Thre in de	e identical resistances connected in star elta across the same supply, the power co	consumed	e 4000 W. If the resistances are connected will be		
	[A] [C]	12000 W 6000 W	[B] [D]	8000 W 4000 W		
126.	A 2: Its h	50 V lamp has a total flux of 3000 lume uminous efficiency is	ens and ta	akes a current of 0.8 A from 250 V mains.		
	[A] [C]	12 lumens/watt 15 lumens/watt	[B] [D]	9.6 lumens/watt 240 lumens/watt		
127.	The pow	active and reactive powers of an inductive factor of the circuit is	ive circu	it are 60 W and 80 VAR, respectively. The		
	[A] [C]	0.6 lagging 0.8 lagging	[B] [D]	0.5 lagging 0.75 lagging		
		(Space for rou	igh work	s		

PAPER CODE : 34

128. When the supply voltage to an induction motor is reduced by 10%, the maximum torque will be reduced by approximately

[A]	5%		ch tub		[B]	10%
[C]	20%				[D]	40%

129. A 3-phase induction motor takes a line current of 45 A when started by direct switching. If the star-delta starter is used, the line current will be

[A]	45 A	[B]	30 A
[C]	26 A	[D]	15 A

130. A meter has a full scale deflection of 90° at a current of 1 A. The response of the meter is square-law. Assuming spring control, the current for a deflection of 45° will be

[A]	0.25 A		[B]	0.707 A
[C]	0.67 A		[D]	0.5 A

----xxxx------ Electrical Engineering (Code – 34) Paper Ends------xxxx-----

Page 56 of 64

PAPER CODE : 35

SECTION – D (Mechanical Engineering) [Candidate who has opted for ME (Code: 35) in NEE - 2017] Question numbers 81–110 carry 1 mark each: Which one among the following welding processes uses non-consumable electrode? 81. Submerged arc welding [B] Gas metal arc welding [A] [D] Flux coated arc welding Gas tungsten arc welding [C] Moment of inertia of a circular section about its diameter (d) is 82. [B] *пd*³/32 [D] *пd*⁴/64 пd³/16 [A] [C] пd⁴/32 The process of reheating the martensitic steel to reduce its brittleness without any significant 83. loss in its hardness is [B] Annealing Normalising [A] [D] Tempering Quenching [C] The maximum velocity of a vehicle in order to avoid skidding away on a level circular path, is 84. $\frac{1}{2}\mu gr$ [A] μgr [D] $\frac{1}{2}\sqrt{\mu gr}$ [C] Jugr A measure of Rockwell hardness is the 85. Surface area of indentation Depth of penetration of indenter [B] [A] [D] Height of rebound Projected area of indentation [C] Ductility of material with work hardening 86. Decreases [B] [A] Increases [D] Unpredictable Remains same [C]In CNC programming the code GO1 is used for 87. Circular interpolation counter clockwise Circular interpolation clockwise [B] [A][D] Dwell Linear interpolation [C]

Page 57 of 64

PAPER CODE : 35

88.	8. According to Gibb's phase rule, the number of degree of freedom of an eutectic point in a system is						
13 T	[A] [C]	1 0	[B] [D]	2 de la quita de la companya de la compa			
89.	Pern	neability is poor for					
	[A] [C]	Coarse grains Fine grains	[B] [D]	Medium grains Rounded grains			
90.	The	crystal structure of austenite is					
	[A] [C]	Body centered cubic Hexagonal closed packed	[B] [D]	Face centered cubic Body centered tetragonal			
91.	Corr	osion resistance of steel can be increased b	y add	ition of which of the following material			
	[A] [C]	Chromium Nickel	[B] [D]	Tungsten Cobalt			
92.	In th	e assembly design of shaft, pulley and key,	the w	veekest member is			
	[A] [C]	Pulley Shaft	[B] [D]	Key None of these			
93.	Tool	life in the case of grinding wheel is the tim	ne tako	en			
	[A] [C]	Between two successive wheel loading Between two successive wheel dressing	[B] [D]	For the wheel to be balanced For wear of 1 mm on its diameter			
94.	Head	l of the Pelton turbine in meter is of the ord	ler of				
	[A] [C]	Below 60 150-250	[B] [D]	60-150 Above 250			
95.	SI ur	nit of dynamic viscosity is					
	[A] [C]	N-sec/m ² Nm ² /Sec	[B] [D]	Kg-m/sec ² Kg sec ² /m			
96.	Exist	ence of velocity potential implies that					
	[A] [C]	Fluid is continuum Fluid is ideal	[B] [D]	Fluid is irrotational Fluid is compressible			
			2				

Page 58 of 64

PAPER CODE : 35

97.	Whic	h one of the following sets of conditions	clearly	applies to an ideal fluid?
	[A]	Viscous and compressible	[B]	Viscous and incompressible
	[C]	Non viscous and compressible	[D]	Non viscous and incompressible
98.	The r point	atio of area under the bending moment s along a beam gives the change in	t diagrar	n to the flexural rigidity between any two
	[A]	Shear force	[B]	Bending moment
	[C]	Slope	[D]	Deflection
99.	The r joints	number of degrees of freedom in a plan s is	e mecha	mism having 'n' links and 'j' simple hinge
	[A]	3(n-3) - 2j	[B]	3(n-1) - 2j
	[C]	3n - 2j	[D]	2j - 3n + 4
100.	The l	Bernoulli's equation refers to conservation	on of	
	[A]	Energy	[B]	Linear momentum
	[C]	Angular momentum	[D]	Mass
101.	The	value of poission's ratio of a material is	zero. Th	en material behave as a
	[A]	Perfectly elastic body	[B]	Perfectly plastic body
	[C]	Ductile material	[D]	Rigid body
102.	Wor	k done in a free expansion process is	* *	
	[A]	Minimum	[B]	Zero
	[C]	+ ve	[D]	-ve
103.	Aqu	a ammonia is used as refrigerant in the f	ollowing	g type of refrigeration system:
	[A]	Brayton cycle	[B]	Gas cycle
	[C]	Vapour compression	[D]	Vapour absorption
104.	The	compression ratio for petrol engines is		
	[A]	3 to 6	[B]	5 to 8
	[C]	15 to 20	[D]	20 to 30
105.	If a effic	heat engine gives an output of 3 kW ciency of the engine will be	V when	the input is 10,000 J/s, then the therma
	[A]	20%	[B]	70%
	[C]	30%	[D]	76.7%

Page 59 of 64

PAPER CODE : 35

106. Newton's law of viscosity is a relationship between

- Shear stress and rate of angular [B] [A] deformation
 - Shear stress and rate of normal linear rate of deformation
- [C] Pressure, velocity and viscosity
- Shear stress, pressure and rate of angular [D] distortion
- The accumulation of soot in a cylinder results in an increase of 107
 - [A] Clearance volume

- [B] Ignition time
- Effective compression ratio [C] [D] Valve travel time
- Side rake angle of a single point cutting tool is the angle 108.
 - by which the face of the tool is inclined [B] by which the face of the tool is inclined [A] towards back
 - between the surface of the flank [C] immediately below the point and a plane at right angles to the centre line of the point of the tool
- sideways
- between the surface of the flank [D] immediately below the point and a line drawn from the point perpendicular to the base

109. Tool life is measured by the

- Number of pieces machined between [B] Time the tool is in contact with the job [A] tool sharpenings
- Volume of material removed between [D] All of these [C] tool sharpenings

110. Hot rolling of mild steel is carried out

- [A] At recrystallisation temperature
- Above recrystallisation temperature [C]

Question numbers 111-130 carry 2 marks each:

- If the maximum and minimum resultant forces of two forces acting on a particle are 40kN and 111. 10 kN respectively, then the two forces in question would be
 - [A] 25kN and 15 kN 20kN and 20 kN [B] 20kN and 10 kN [C][D] 20kN and 5 kN

- [B] Between 100 °C to 150 °C
- [D] Below recrystallisation temperature

PAPER CODE :

112. Two mating spur gears have 40 and 120 teeth, respectively. The pinion rotates at 1200 rpm a transmits a torque of 20 Nm. The torque transmitted by the gear is

[A]	6.6 Nm	[B]	20 Nm
[C]	40 Nm	[D]	60 Nm

113. A venturimeter of 20 mm throat diameter is used to measure the velocity of water in horizontal pipe of 40 mm diameter. If the pressure difference between the pipe and the thros sections is found to 30 kPa then, neglecting frictional losses, the flow velocity is

[A]	0.2 m/s		[B]	1.0 m/s
[C]	2.0 m/s		[D]	1.4 m/s

114. A box rests in the rear of a truck moving with a declaration of $2m/s^2$. To prevent the box from sliding, the approximate value of static coefficient of friction between the box and the bed of t truck should be

[A]	0.1	more that the	[B]	0.2
[C]	0.3		[D]	0.4

115. The values of enthalpy at the beginning of compression, at the end of compression and at t end of condensation are 185 kJ/kg, 210 kJ/kg and 85 kJ/kg, respectively. What is the value the COP of the vapour compression refrigeration system?

[A]	4			[B]	5.4
[C]	0.25			[D]	1.35

116. In a strained material, one of the principle stresses is twice the other. The maximum shear stree in the same case is τ_{max} . Then, what is the value of the maximum principal stress?

[A]	τ_{max}	[B]	$2\tau_{max}$
[C]	$4\tau_{max}$ for γ to γ	[D]	$8 \tau_{max}$

117. Dry bulb temperature, Wet bulb temperature and dew point temperature are same for

[A]	Dry air	[B]	Saturated air
[C]	Unsaturated air	[D]	None of these

118. In a cotter joint, the width of the cotter at the centre is 50mm and its thickness is 12mm. The load acting on the cotter is 60kN. What is the shearing stress developed in the cotter?

[A]	120 N/mm^2	[B]	100 N/mm^2
[C]	75 N/mm ²	[D]	50 N/mm ²

Page 61 of 64

PAPER CODE : 35

119. A hole of 20 mm diameter is to be drilled in a steel block of 40 mm thickness. The drilling is performed at rotational speed of 400 rpm and feed rate of 0.1 mm/rev. The required approach and over run of the drill together is equal to the radius of drill. The drilling time (in minute) is

A]	1.00	na takisyi site	[B]	1.25
[C]	1.50		[D]	1.75

120. Car moving with speed 'U' can be stopped in minimum distance 'X' when brakes are applied. If the speed becomes 'N' times, the minimum distance over which the car can be stopped would take the value

[A]	N^2X	[B]	NX
[C]	X/N	[D]	X/N^2

121. The reading of the pressure gauge fitted on a vessel is 25 bar. The atmospheric pressure is 1.03 bar and the value of g is 9.81 m/s^2 . The absolute pressure in the vessel is

[A]	23.97 bar		[B]	25.00 bar
[C]	26.03 bar		[D]	34.84 bar

122. A pipe flow system with flow direction is shown in the below Fig.1. The following table gives the velocities and the corresponding areas

5567	Fig. 1	
Pipe no.	Area (cm ²)	Velocity (cm/s)
1	50	10
2	50	V ₂
3	80	5
4	70	5

The value of V_2 is

[A]	2.5 cm/s	[B]	5.0 cm/s
[C]	7.5 cm/s	[D]	10.0 cm/s

123. A closed system undergoes a process 1-2 for which the values of Q₁₋₂ and W₁₋₂ are +20 kJ and +50 kJ, respectively. If the system is returned to state, 1, and Q₂₋₁ is -10 kJ. What is the value of the work W₂₋₁?

[A]	+ 20 kJ	[B]	-80 kJ
CI	-40 kJ	[D]	+40 kJ

400 mm

600 mm

[A]

[C]

Page 62 of 64

PAPER CODE : 35

- 124. A closed system receives 60 kJ heat but its internal energy decreases by 30 kJ. Then the work done by the system is
 - [A] 90 kJ [B] 30 kJ [D] - 90 kJ[C] -30 kJ
- Two points, A and B located along the radius of a wheel, as shown in Fig. 2 below, have 125. velocities of 80 and 140 m/s, respectively. The distance between points A and B is 300 mm. The radius of wheel is.....

[B]	500	mm
[D]	700	mm

126. A micrometer screw has pitch of 2 cm and the thimble has scale of 64 divisions. Calculate the least count of the micrometer

[A]	0.313 mm	[B]	0.01 mm
[C]	0.001 mm	[D]	0.031 mm

A brass billet is to be extruded from its initial diameter of 100 mm to a final diameter of 50 mm. 127. The working temperature of 700 °C and the extrusion constant id 250 MPa. The force required for extrusion is

[A]	5.44 MN	[B]	2.72 MN
[C]	1.36 MN	[D]	0.36 MN

128. In a blanking operation to produce steel washer, the maximum punch load used in 2×10^5 N. The plate thickness is 4 mm and percentage penetration is 25. The work done during this shearing operation is

[A]	200 J	[B]	400 J
[C]	600 J	[D]	800 J

Page 63 of 64

PAPER CODE : 35

129. For S.I engine, fuel in order of increasing knocking tendency are

- [A] Paraffins, Napthenes, Areomatics [B] Areomatics, Napthenes, Paraffins
- [C] Napthenes, Paraffins, Areomatics

[D] Areomatics, Paraffins, Napthenes

130. In orthogonal cutting, the depth of cut is 0.5mm at a cutting peed of 2 m/s. If the chip thickness is 0.75 mm, the chip velocity is

[A]	1.33 m/s		[B]	2 m/s
[C]	2.5 m/s		[D]] 3 m/s

----xxx------Mechanical Engineering (Code – 35) Paper Ends-----xxxx------