SECTION - A (PHYSICS)

[Section – A is Compulsory for all al the candidates]

Question numbers 81-110 carry 1 mark each:

1.	Why	the	tyres	are	circular	in	shape?
----	-----	-----	-------	-----	----------	----	--------

- [A] They require less material
- [B] Rolling friction is smaller than the sliding friction
- It is easy to enflate the circular tyres [C]
- [D] None of these

If range is doubled of the maximum height of a projectile, then angle is 2.

[A] tan-1 4 [B] tan⁻¹ 1/4

Page 4 of 60

tan-1 1 [C]

[D] tan-1 2

When a p-n junction diode is reverse-biased, the flow of current across the junction is 3. mainly due to.

Diffusion of charges A

- Drift of charges [B]
- [C] Both drift and diffusion of charges
- [D] Depends upon the nature materials

An x-ray photon has a wavelength of 0.02 Å. It's momentum is 4.

- $3.3 \times 10^{-22} \text{ kg m/s}$
- [B] 6.626 x 10⁻²¹ kg m/s [D] 1.65 x 10²² kg m/s
- [C] 6.626 x 10⁻²⁴ kg m/s

[A] Heating

B Lighting

Transforming voltage [C]

[D] Electroplating

Twice the earlier value

- [B] One half the earlier value
- One quarter of the earlier value
- [D] Same as the earlier value

A convex lens of power +6 D is placed in contact with a concave lens of power -4 D. What will be the nature and focal length of this combination? 7.

Concave, 25 cm [A]

[B] Convex, 50 cm [D] Concave, 100 cm

A Carnot's engine works between 200°C and 0°C and another Carnot's engine works between 0°C and -200°C. The ratio of their efficiencies will be 8.

[A] 5.77 [C] 57.7 [B] 0.577 [D] 0.0577

Two metal wires of identical dimensions are connected in series. If K1 and K2 are the the metal wires respectively, the effective conductivity of the 9. conductivities of combination is

- $2K_1K_2$
- [A] $\frac{K_1 + K_2}{2K_1K_2}$ means to well and besself [B] $\frac{K_1 + K_2}{K_1K_2}$ motionic to a sub-viniant
- 2K1K2 [C]
- $[D] \frac{K_1 K_2}{K_1 + K_2}$

Two wires of same material have lengths L, 2L and radii 2r, r, equal weights are applied on 10. them. The ratio of alongation production in two wires is

1/2

[C]

[B] . 1/8 [D] 1/4 [D] 1/4

The time taken by the spherical object to reach the terminal velocity in a viscous liquid is (if the symbols have their usual meaning)

[A], nR^2

[B]

P

 ρR [C]

 ρR^2 [D]

A rod of refractive index 1.42 is immersed in a liquid of refractive index 1.42. The rod will 12.

- Appear slightly raised inside the liquid [A]
- [B] Appear slightly bent

Become invisible [C]

[D] None of the above

13.	A uniform wire of length 5 m is c V/m. The potential difference across	arrying steady current. The electric field inside it is 0 s the ends of the wire is).:
	[A] 1 Volt [C] 0.5 Volt	[B] 0.1 Volt [D] 5 Volt	
14.	height. The initial velocity u is (Tak	ards from a height of 20 m with an initial velocity u. 9% of its energy in collision and rebounds to the same $g = 10 \text{ m/s}^2$)	I
	[A] 20 m/s	[B] 28 m/s	
	[C] 10 m/s	[D] 14 m/s	
15.	The radius of earth is 6400 km. Its o	and the same and t	
	[A] 7.1x10 ⁻⁴ F	apacitance will be	
	[C] 6.4x10 ⁶ F	[B] 6.4x10 ⁻⁴ F	
	[e] o.tato i	[D] Zero	
16.	5, the value of the	ded from $(4 \text{ cm} \times 2 \text{ cm})$ to $(5 \text{ cm} \times 4 \text{ cm})$. If the workurface tension of the liquid is	rk
	[A] 8.0 N/m	[B] 0.250 N/m	
	[C] 0.125 N/m	[B] 0.250 N/m [D] 0.2 N/m	
17.		d area A rotated in a uniform magnetic field B with	ın
18.	A source of sound frequency 600 Hz 1500 m/s and in air is 300 m/s. The f	is placed inside water. The speed of sound in water requency of sound detected in air is	is
	[A] 200 Hz	IC) . IN TO THE PARTY OF THE PA	
	[C] 600 Hz	[B] 3000 Hz	
	[0] 000 112	[D] 750 Hz	
19.	Ferromagnetic substances own their partial [A] Vacant inner shells		
		[B] Filled inner subshells	
	[C] Partially filled inner subshells	[D] None of the above	
20.	If I_0 is the intensity of principal maxwill be its intensity when the slit widt [A] $2I_0$	Francis	ıt
	[C] I ₀		
		[D] $I_0/2$	

21. 32 cells each of emf 3Vare connected in series and kept in a box. Externally the combination shows 84 V. The number of cells reversed in the connection is

[A] 0 [C] 8 [B] 2 [D] 16

22. Resistivity of a conductor in which a current density 2.5 Am⁻² is found to exist, when an electric field 15 V/m is applied to it

[A] $6\Omega m$ [C] $4\Omega m$

[B] $7\Omega m$ [D] $8\Omega m$

23. If the ratio of change in emitter current and corresponding change in the collector current is 1.013, then the value of α is

[A] 0.987 [C] 0.900 [B] 0.100 [D] Zero

24. In an ac circuit, a resistance of R Ω is connected in series with an inductance L. If phase angle between voltage and current be 45°, the value of inductive reactance will be

[A] R/4

[B] R/2

[C] R

[D] Cannot be found with given data

25. A nuclear reactor delivers a power of 10⁹ watt. What is the amount of fuel consumed by the reactor in one hour?

[A] 0.04 gm

[B] 0.08 gm

[C] 0.72 gm

[D] 0.96 gm

-----Physics Paper Ends-----

PAPER CODE: 30 to 35

SECTION-B (CHEMISTRY)

[Section B is **Compulsory** for all al the candidates]

Ouestion numbers 26-50 carry	y J	mark	each:
-------------------------------------	-----	------	-------

26	All electrons in	a d-subshell	must have	the quantum	number
70	All/Cicculons in	I a a caccine		- I	-

[A] n=2

[B] m=2

[C] s = +1/2

[D] 1 = 2

27. Sodium atom crystallizes in body centered cubic (bcc lattice) will cell edge (a) = 4.29A°. The radius of sodium atom is

[A] 18.6 A°

[B] 1.86 A°

[C] 1.86pm

[D] 1860pm

28. The molarity of pure water is

[A] °18

ÎB] 5.56

[C] 55.6

[D] 100

29. If 18 g of glucose are present in 1000 g of solvent, then the concentration of solution is

[A] 0.1 molar

[B] 0.1 molal

[C] 10 molal

• [D] 1.0 molar

30. Besides CO2, other green-house gas is

[A] N₂

[B] N₂O

[C] Ar

[D] O₂

31. According to law of mass action, the rate of reaction is directly proportional to

[A] volume of the container

[B] equilibrium constant

[C] nature of reactants

[D] molar concentration of reactants

32. At a certain temperature, pure distilled water has H_3O^+ concentration equal to 1 x 10^{-6} M. The value of K_w at the temperature will be

[A] 1.0 x 10⁻⁸

[B] 1.0 x 10⁻¹²

[C] 1.0 x 10⁻¹⁴

[D] 1.0 x 10⁻⁶

33.	In the reaction NO ₂	
	Sn + HCl Product	
	The product formed is [A] Nitrosobenzene [C] Phenylhydroxylamine	[B] Aniline [D] Benzene diazonium Chloride
34.	If copper is kept open in air, it loses its formation of	color and gains green coating, it is due to
	[A] CuO [C] Cu ₃ N ₂	[B] CuSO ₄ [D] CuCO ₃
35.	The molecule having highest percentage io [A] HI [C] HCl	nic character is [B] HBr [D] HF
36.	The halogen with highest electron affinity [A] F [C] Br	is [B] Cl [D] I
37.	In the metallurgy of iron, when limestone end up in	is added to the blast furnace, the calcium ions
	[A] Slag [C] Metallic calcium	[B] Gangue [D] Calcium oxide
38.	decomposed by water	ained, when methyl magnesium chloride is
	[A] Methane [C] Ethene	[B] Ethane [D] Ethyne
39.	The radioactive isotope of hydrogen is [A] Hydrogen [C] Deuterium	[B] Protium [D] Tritium
40.	Ortho-nitrophenol is more volatile than pa [A] Higher molecular mass	[B] Pressure of intramolecular
	[C] Absence of intramolecular hydrogen	hydrogen bonding [D] Resonance

41.	Many properties of aldehydes and ketones a [A] are unsaturated [C], are very reactive	are similar because both [B] have similar structure [D] contain carbonyl group
42.	Which of the following acids has the small [A] CH ₃ CHFCOOH [C] BrCH ₂ CH ₂ COOH	est dissociation constant? [B] FCH ₂ CH ₂ COOH [D] CH ₃ CHBrCOOH
43.	Among the following, the ion which have [A] Cr^{+3} [C] Fe^{+3}	five unpaired electrons in its ground state is [B] Mn ⁺³ [D] Ni ⁺²
44.	Among the following, the strongest base is [A] C ₆ H ₅ CH ₂ NH ₂ [C] o-NO ₂ -C ₆ H ₄ NH ₂	[B] $m-NO_2-C_6H_4NH_2$ [D] $C_6H_5NH_2$
45.	The IUPAC name of CH ₂ =CHCN is [A] Ethenenitrile [C] Cyanoethane	[B] Vinyl cyanide [D] 2-propenenitrile
46.	The correct order of acidic strength is [A] HClO ₄ > HBrO ₄ > HIO ₄ [C] HBrO ₄ > HClO ₄ > HIO ₄	[B] HIO ₄ > HBrO ₄ > HClO ₄ [D] HBrO ₄ > HIO ₄ > HClO ₄
47.	Natural rubber is a polymer of [A] Butadiene [C] Styrene	[B] Ethyne [D] Isoprene
48.	Which of the following factor does not in [A] Nature of the reactants [C] Molecularity of the reaction	fluence the rate of reaction? [B] Concentration of the reactants [D] Temperature
49.	Hard water contains [A] Ca ²⁺ and Mg ²⁺ [C] Na ⁺ and K ⁺	[B] NO ₃ and PO ₃ ³ - [D] Dissolved gases
50.	[A] MSO_4 [C] $M_2(SO_4)_3$	ll form its sulfate salt with chemical formula [B] M ₂ SO ₄ [D] M ₃ (SO ₄) ₂ y Paper Ends

SECTION - C (MATHEMATICS)

[Section C is Compulsory for all al the candidates]

Question numbers 51-80 carry 1 mark each:

- If the vertices of a triangle are (2,4), (6,4) and (2,0), then the coordinate of in-centre 51.
 - [A] (5,4)°

3

[A] $(5,4)^6$ [C] $(6+2\sqrt{2}, 2\sqrt{2})$

- [B] (-5,-4)[D] $(6-2\sqrt{2}, 2\sqrt{2})$
- The value of k for which the points (1,4), (k,-2) and (-3,16) are collinear is 52.
 - [A]

[C]

[D] 4

- The harmonic mean of $\frac{a}{1-ab}$ and $\frac{a}{1+ab}$ is 53.
 - $[A] \frac{a}{\sqrt{1-a^2h^2}}$

- [D] $\frac{1}{1-a^2h^2}$
- The number of lines drawn through six points lying on a circle is 54
 - [A] 12

[B] 15

[C] 24

- [D] 30
- If $\cos^{-1}\left(\frac{3}{5}\right) \sin^{-1}\left(\frac{4}{5}\right) = \cos^{-1}(x)$, then x is equal to 55.

- [B]
- [D] none of these
- The solution of the differential equation $y dx + (x + x^2y)dy = 0$, is 56.

[B] $\log y = Cx$

 $[A] - \frac{1}{xy} = C$ $[C] - \frac{1}{xy} + \log \dot{y} = C$

- $\int_{C} [D] \frac{1}{xy} + \log y = C$
- The points (0, 8/3), (1,3) and (82,30) are the vertices of 57.
 - an obtuse angled triangle an right angled triangle [C]

- an acute angled triangle [B]
- none of these D

The value of k for which the line x + y + 1 = 0 touches the parabola $y^2 = kx$, is [B] 4 58.

[C] 2

[D]

The mean and variance of a random variable having a binomial distribution are 4 and 2 59. respectively, then P(X = 1) is

[A] 1/16

[B] 1/32

1/8 [C]

1/4

Two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are 60. the roots of the quadratic equation

[A] $x^2 - 18x + 16 = 0$

[C] $x^2 - 18x - 16 = 0$

[B] $x^2 + 18x - 16 = 0$ [D] $x^2 + 18x + 16 = 0$

A husband and wife appear in an interview for two vacancies in the same post. The 61. probability of the husband's selection is 1/7 and that of wife's selection is 1/5. Then the probability that only one of them will be selected is

A 4/7

12/35

[C] 3/7 ✓ [D] 2/7

The Binomial distribution whose mean is 10 and standard deviation is $2\sqrt{2}$, is 62.

 $\left(\frac{4}{5} + \frac{1}{5}\right)^{50}$

[B] $\left(\frac{4}{5} + \frac{1}{5}\right)^{1/50}$

[C] $\left(\frac{4}{5} + \frac{5}{1}\right)^{50}$

[D] none of these

The complementary function of the differential equation $\frac{d^2y}{dx^2} - 2k \frac{dy}{dx} + k^2y = 0$, is 63.

[A] $(C_1x + C_2) e^{kx}$ [C] $(C_1) e^{-kx}$

[B] $(C_1) e^{kx}$

[D] none of these

The value of $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7}$ is equal to 64.

[A] $\pi/6$

[B] $\pi/3$

[C] $\pi/4$

[D] None of these

The directional derivative of the function $f(x, y, z) = xy^2 + yz^3$ at the point (2, -1, 1)65. in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$ is

[A] -8/3

11/3 [B]

[C]8/3 [D] -11/3

- If the curl of a vector field is zero, then the vector field is [B] irrotational 6.

 - cannot decide rotational both rotational and irrotational
- The value of $\iint_S \vec{r} \cdot \hat{n} dS$, where S is a close surface is 67.
 - [D] 3V
 - [A]
 - Distance between two planes 2x + y + 2z = 8, 4x + 2y + 4z + 5 = 0 is
- 68.
 - [D] 3/2 [A] 7/2
 - [C] 5/2
- If the maximum value of $y = a \cos x \frac{1}{3} \cos 3x$ occurs when $x = \pi/6$ then the value robability of the husband's selection is 1/7 and that of wife's selection is 1/5. Tai a fo 69. [B] 2 med to one vino tash with
 - [A] -2
 - [D] $-2/\sqrt{3}$ [C] 2/\sqrt{3}
- The two curves $y^2 = 4x$ and $x^2 + y^2 6x + 1 = 0$ at the point (1,2) 70.
 - [A] intersect or orthogonality and a B [B] intersect at an angle $\pi/3$
 - [D] None of these touch each other
- [C] The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x-axis 71. is
 - [B] 2 sq units 1 sq unit [A] 4 sq units [D]
 - 3 sq units [C]
- The value of $\int_{-2}^{3} |1 x^2| dx$ is 72.
 - 1/3 [A] 14/3
 - [C] 28/3
- If z = f(y/x), then the value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is 73.
- [B] [A] 0
 - [D] none of these [C] -1
- The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has a local minimum at 74.
 - [B] [A] -2
 - 2 [D] [C]

PAPER CODE: 30 to 35

If $A^2 - A + I = 0$, then the inverse of A is 75.

[A] A+I

[C] I-A

[D] A-I

The diagonal elements of skew symmetric matrix are always 76.

[A] non-zero

[B] Zero

[C] of unit modulus

[D] none of these

77. The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^4$ and of $(1-\alpha x)^6$ is the same then α equals

[A] 3/5

[B] -5/3

[C] -3/10

Single Hard to [D] 10/3 out and some

If the value of k so that $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ may be 78. perpendicular is given by

[A] -7/10

[B] -10/7 as 10 and made and

[C] -10 [D] 10/7

If A be square matrix of type 4 by 4 and its determinant is 2. Then the determinant of 79. adj A is

[A] 8

[B]

[C] 16

[D] 2

x + y + z = 6, x + 2y + 3z = 10, system of linear equations: 80. $x + 2y + \lambda z = \mu$ has no solution, then the value of λ and μ are

[A] $\lambda = 3$, $\mu \neq 10$

[B] $\lambda = 3$, $\mu = 10$

[C] $\lambda \neq 3$, for any value of μ

[D] $\mu \neq 3$, for any value of λ

-----Mathematics Paper Ends-----

CANDIDATE HAS TO ATTEMPT QUESTION NUMBERS 81-130 OF SECTION-D FROM APPROPRIATE ENGINEERING BRANCH AS SHOWN IN THE ADMIT CARD OF NEE-2018

SECTION – D (Agricultural Engineering) [Candidate who has opted for AE (Code-30) in NEE - 2018]

Question	numbers	81-110	carry	1	mark each:
----------	---------	--------	-------	---	------------

			have the other
The	magnitude of the force of friction between	two b	oodies, one lying above the other,
de	epends upon the roughness of the		t to day to the first of the St.
[A]	upper body	[B]	lower body the body having more roughness
[C]	both the bodies	[D]	the body having most
Whi	ich of the following statement is correct for	the IC	engine?
[A]	Fuel for the SI engine is cheaper than	[B]	Torque characteristics of the SI
	the CI engine		engine is more uniform than the
	yam	M.I	CI engine Reliability of the SI engine is
[C]	Expansion ratio of the SI engine is higher than the CI engine	[D]	much lower than that of the CI engine
Whi	ch of the following is hand operated sowing	g equi	pment?
		[B]	Dibbler
[C]	Planter [8]	[D]	Seed drill
Who	n the flow in an open channel is gradually	varied	I the flow is said to be
	Steady uniform flow	[B]	Steady non-uniform flow
		[D]	
	Out of the Production		and form of D. Th. A. i
		er a te	nsile force of P. The strain produced
		(D)	0.11/157 138 101 E = 4.11
[A]			
[C]	0.01 I/L	[D]	0.001 l/L
Norm	nal speed of power-take-off (pto) shaft is		
		[B]	540 rpm
			그렇게 돼요 뭐요 뭐요 그 아니다 아니다 아니는 데 이 아니는 아니는 아니다 아니다.
[0]	MATERIAL ENGLISH CHESTA	PRO	CTIONAD EROSE APPR
Mow	ers are used to cut	No. Co.	THE MINTER
[A]	grasses	[B]	mustard
1	D.		- Control of the Cont
	[A] [C] Whi [A] [C] Whe [A] [C] A ba in the [A] [C] Norm [A] [C] Mow	[A] upper body [C] both the bodies Which of the following statement is correct for [A] Fuel for the SI engine is cheaper than the CI engine [C] Expansion ratio of the SI engine is higher than the CI engine Which of the following is hand operated sowin [A] Broadcaster [C] Planter When the flow in an open channel is gradually [A] Steady uniform flow [C] Unsteady uniform flow A bar of length L meters extends by l mm und in the bar is [A] 1/L [C] 0.01 1/L Normal speed of power-take-off (pto) shaft is [A] 440 rpm [C] 640 rpm Mowers are used to cut	depends upon the roughness of the [A] upper body [C] both the bodies Which of the following statement is correct for the IC [A] Fuel for the SI engine is cheaper than [B] the CI engine [C] Expansion ratio of the SI engine is [D] higher than the CI engine Which of the following is hand operated sowing equing [A] Broadcaster [C] Planter When the flow in an open channel is gradually varied [A] Steady uniform flow [A] Steady uniform flow [B] [C] Unsteady uniform flow [D] A bar of length L meters extends by I mm under a term in the bar is [A] I/L [C] 0.01 I/L Normal speed of power-take-off (pto) shaft is [A] 440 rpm [C] 640 rpm [D] Mowers are used to cut

88.	Poise is the unit of [A] Surface tension [C] Viscosity	[B] Buoyancy force [D] Kinematic viscosity	
89.	The rise and fall method of leveling provid [A] Back sight [C] Fore sight	les a complete check on [B] Intermediate sight [D] All of these	
90.	Average firing interval for 6-cylinder, 4 cy [A] 120° [C] 240°	[B] 180 ⁰ [D] 360 ⁰	
91.	Mole drain is the most suitable drainage sy [A] Heavy clay soil [C] Sandy soil	estem for [B] Loamy soil [D] Silty soil	
92.	Capillary water is held in the soil due to [A] Absorption force [C] Gravitational force	[B] Surface tension [D] Osmotic force	
93.	Hydraulically most efficient cross section of [A] triangular [C] semi-circular	of open channel is [B] rectangular [D] trapezoidal	
94.	The phenomenon occurring in an open chechanges to slowly flowing stream causing [A] water hammer [C] critical discharge	annel when a rapidly flowing stream abrup a distinct rise of liquid surface, is [B] hydraulic jump [D] critical depth	otly
95.	The minimum wind velocity required to in [A] critical velocity [C] extrinsic velocity	itiate movement of soil particle is known as [B] threshold velocity [D] intrinsic velocity	S
96.	Drip irrigation is not suitable for cultivatio [A] paddy [C] vegetable	n of [B] orchard [D] flower	
97.	From psychrometric chart, the following p [A] relative humidity [C] barometric pressure	arameter cannot be determined [B] air temperature [D] wind velocity	

F	Exam-I	II/18/30-35/A Page 10 0
	98.	Size of mould board plough is expressed in terms of its [B] depth of cut [C] length of share [D] number of mould board [D] hove
	99.	Tractors are generally fitted with [A] sliding mesh gear box [C] Both A & B
	100.	Most popular equipment for rice milling is [A] dehusker [C] huller [B] sheller [D] polisher
	101.	[C] huller The centre of the knife section must stop in the centre of guard on each stroke is called [B] Adjustment [A] Alignment [C] Registration [D] Transmission
	102.	Seasoning of timber is done by keeping it in [A] water [C] soil [B] oil [D] wood paint
	103.	Ripening of some of the fruits gets enhanced by gas [A] Oxygen [C] Carbon dioxide [D] Ethylene
	104.	In a gas solid mixture, average particle size of the solid particle is 250µm. The equipment used to separate the solid particle from the gas is [A] Tubular Centrifuge [B] Cyclone Separator [C] Disk Bowl Centrifuge [D] Gravity Setting separator
	105.	For uniform value of temperature in the air conditioning room, essential control is of [A] temperature gradient [B] air velocity [C] humidity [D] vapour
	106.	The Reynolds number is the ratio of [A] dynamic force to weight [C] inertial force to surface tension [D] inertial force to viscous force
	107.	Centrifugal discharge is used in [A] Belt Conveyor [C] Screw Conveyor [D] Bucket elevator

108.	Thermodynamic	is the study of
	F 4 3	'I'll wissen and a

- [A] energy, equilibrium and entropy
- [C] energy, equilibrium and process
- [B] energy, equilibrium and enthalpy
- [D] process, enthalpy and entropy

- 109. The size of clay particle is
 - [A] less than 0.002 mm
 - [C] less than 0.2 mm

- [B] less than 0.02 mm
- [D] less than 2 mm
- 110. The maximum bending moment occurs in a beam where
 - [A] shear force is maximum

- [B] shear force is minimum
- [C] shear force is zero
- [D] none of the above

Question numbers 111-130 carry 2 marks each:

- 111. The length of a line was found to be 500 m while measured with 20 m chain. It was found that the chain was 0.02 m too long. What is the actual length of line?
 - [A] 499 m

[B] 499.5 m

[C] 500.5 m

- [D] 501 m
- 112. Diameter and stroke length of the piston of a 4 stroke 4-cylinder diesel engine are 10 cm and 12 cm, respectively. The speed of the crank shaft is 2000 rpm. What will be the brake power of the engine, if the brake mean effective pressure is 7×10⁵ N/m²? (Assume friction power 25 kW)
 - [A] 11.00 kW

[B] 18.98 kW

[C] 43.98 kW

- [D] 68.98 kW
- 113. A cantilever beam of span 3 m carries a point load 100 N at the free end. The maximum B.M in the beam will be
 - [A] 100 N-m

[B] 150 N-m

[C] 300 N-m

- [D] 600 N-m
- 114. A four stroke diesel engine delivers 35 kW with a mechanical efficiency of 80%. Power lost in friction in the engine is
 - [A] 8.75 kW

[B] 35 kW

[C] 43.75 kW

[D] 78.75 kW

	TTT /1 C	120 25/A	age 18 of 64			1200	
Exan	1-111/18	3/30-35/A				ameter. The engine runs at 1200 avelling speed of the tractor will	
			diameter rear	wheel	dia	ameter. The engine runs at 1200 avelling speed of the tractor will 1.3 km/h	
115	. A 2	-WD 35 hp tractor has	1.5 m diamed is 30:1	I. The	па	avenue de la companya	
	rev/	min. The total reduction	on of the special	rp1	11	3 km/h	
				[D]	45	5.2 km/h	
	[A]	0.56 km/h		[D]	75	The actual field	
	[C]	22.6 Km/n	191	field 6	effi	iciency of 75%. The accuse	
116.	Λ 2	m combine is operati	ng at 4 kmph with a	Ticia .		iciency of 75%. The actual field	
110.	capa	ncity will be		[B]	0.	.8 ha/h	
	[A]	0.6 ha/h		[D]	no	one of these	
			3 while	only 6	0 r	m ³ water is available at the farm	
117.	Wat	er delivered to the car	nal is 100 m wille	Conve	eya	ance efficiency will be	
	head	and only 25 m is see	red in the root zone.	[B]	3	ance efficiency will be	
	[A]	2370		[D]	8	35%	
	[C]	60%	Land and the mile			and death of	
	221	1 C C 1 1 1 1 1	maranh due to a 6	h stor	m	is 470 m ³ /s. The mean depth of s of 0.25 cm/h and a constant base	
118.	The	peak of a flood nyu	ng an average infiltra	ation lo	oss	s of 0.25 cm/h and a constant base	
	raini	of 15 m ³ /s, what is the	e effective rainfall?				
	Ilow	01 15 m /s, what is th	ie checure rame	[B]		8 cm	
		0.25 cm 6.5 cm		[D]	4	455 m ³ /s	
	[C]					and the diamet salous same construction	
119.	Who	will be the draft re	equirement to pull a	four	bo	ottom 30 cm plough working at a	
117.	denth	of 15 cm? The soil	resistance is 0.7kg/cr	n^2			
	[A]	84 kg		[B]		120 kg	
	[C]	630 kg		[D]]	1260 kg	
120	Fora	given location if R =	= 310, $K = 0.1$ t/ha,	L = 10	00	$M_{\rm H}$ m, $S = 12\%$, $C = 0.18$, $LS = 3.2$, P	
120.		. Soil loss will be					
	- 0.0	. 3011 1033 WIII 00					
	r A 7	0.01071 t/ha		[B	1	10.71 t/ha	
	[A]			[D	100	1071 t/ha	
	[C]	89.25 t/ha		[D	.1	·	
	eest	4 - I - lootio tile	or are used to corm	the de		on flow from 1000 Call	
121.	The c	corrugated plastic tile	es are used to carry	the de	esig	gn flow from 1000 m of tile spaced	
	30 m	apart. The drainag	e requirement for	optim	um	n plant growth is to lower ground	1
	water	table by 250 mm/da	ay uniformity over t	the en	tire	e area. The drainage porosity of the	3
	soil is	4%. Drainage coeff	icient will be				
		1 The Labour 1		1 2 -			
		0.00033 m/day		[E	3]	0.01 m/day	
	[C]	0.25 m/day		[[[[C	0.3 m/day	
	1000					The state of the s	

			THER CODE: 50
122.	A rectangular canal has a bottom width of m ³ /s. The critical depth, in m, is	5.0 m. The	canal is carrying a discharge of 20
	[A] 1.09 [C] 2.12	[B] [D]	1.18 2.62
123.	Which of the following are the advantages	of hammer	mill?
	 a. Product may be relatively uniform b. Freedom from significant damage du c. Freedom from damage when operati d. Hammer wear does not materially re 	ng empty	
	[A] a, b and c	[B]	a, b and d
	[A] a, b and c [C] a, c and d	[D]	b, c and d
124.	Which of the following are physical proper	rties of agri	cultural material?
	[A] a, b and c [C] a, c and d	[B] [D]	
25.	One tonne of carrot is dried from 24% mowater is removed in drying?	oisture (wb)	to 12% moisture (wb). How mucl
	[A] 120 kg [C] 240 kg	[B] [D]	136 kg 864 kg
26.	A material consisting of 20 mm particle requires 18 kJ/kg energy for this size remuch energy will be required (kJ/kg) to c Rittinger's law	eduction. If	other conditions are similar, how
	[A] 5.82 [C] 35.16	. [B] [D]	16.43 61.53

127.	Stationary mass of gas is compressed withou 0.105 MPa to a final state of 0.15 m ³ with work done on the system will be	t friction constan	n from an initial state of it pressure during the	process.	The
	[A] 15.75 kI	[B]	31.50 kJ		

[C] 47.25 kJ [D] 63.00 kJ

A ball mill of 1.5 m diameter is charged with balls each having of 7.0 cm diameter. The 128. theoretical operating speed of rotation in rpm is

[A] 15 [B]

[C]25 [D] 35

A soil sample has a porosity of 40%. The specific gravity of solid is 2.7. What will be 129. unit weight of soil, if it is 50% saturated?

[A] 0.124 kN/m³ [C] 19.81 kN/m³

[B] 17.85 kN/m³

[D] 66.7 kN/m³

Water is flowing in a fire hose with a velocity of 1.0 m/s and a pressure of 200 kPa. At 130. the nozzle the pressure decreases to atmospheric pressure (101.3 kPa). What will be velocity of the water exiting the nozzle, if there is no change in the height?

1.4 m/s A

 $3.5 \, \text{m/s}$

7 m/s [C]

[D] 14 m/s

-Agricultural Engineering Paper Ends-

SECTION – D (Civil Engineering) [Candidate who has opted for CE (Code-31) in NEE - 2018]

Question	numbers	81-110	carry 1	mark each:
----------	---------	--------	---------	------------

81.	[A]	ched and sloping roof is suitable for Coastal regions Covering large areas	[B]	Plain regions All of the above
82.	[A]	mper is a tool used for Testing of stones / Dressing of stones	[B]	Quarrying of stones None of the above
83.	The [A]	Reduces the strength Does not change the strength	[B] [D]	Increases the strength All of the above
84.	For of	bars in tension, a standard hook has an ancl	norage	e value equivalent to a straight length
	[A] [C]	8 times diameter of bar 16 times diameter of bar	[B] [D]	12 times diameter of bar 24 times diameter of bar
85.	The	principal of 'working from whole to part' is	used	in surveying because
	[A]	Plotting becomes easy	[B]	Survey work can be completely quickly
	[C]	Accumulation of errors is prevented	[D]	All of the above
6.	The I	ength of the chain is measured from		
	[A]	Center of one handle to center of the other handle	[B]	Outside of one handle to the outside of the other handle
	[C]	Outside of one handle to inside of the other handle	[D]	Inside of one handle to the inside of the other handle
7.	The p	process of turning the telescope about the v	ertica	l axis in horizontal plane is called
	[A]	Transiting Plunging	[B]	Reversing Swinging

Exan	m-III/18/30-35/A Page 22 01 0		the surveying
	te and to	he bu	ilt across a wide river,
88.	To determine the length of a bridge proposed to	00 00	oder atabilitation
00.	To determine the length of a bridge proposed to method of choice would be [A] Tacheometry	[B] [D]	Chain surveying Triangulation
	[C] Hydrographic surveying		
89.	Void ratio of a soil mass can [A] Never greater than unity [C] Take any value greater than zero	[B]	Be zero Can take values between zero and one
90.	The shear strength of a soil [A] is directly proportional to the angle of	[B]	is inversely proportional to the
	internal friction [C] decreases with increase in normal stress	[D]	increases with increase in normal
	[D] All of the above		stress and segments for 2000
91.	The major principal stress in an element of	cohes	ionless soil within the backfill of a
	[A] is vertical if the soil is in an active state of plastic equilibrium	[B]	. 1:Cil - coil is in a nassive
	[C] Is inclined at 45° to the vertical	[D]	Is inclined at $45^{0}+\varphi/2$ to the vertical
92.	Coefficient of permeability of the soil		
72.	[A] Does not depend on temperature	[B]	Increases with increase in temperature
	[C] Increases with decrease in temperature		None of the above
93.	The neutral stress in a soil mass is		
, ,	[A] force per neutral area	[B]	stress taken up by both soil particles and pore water
	[C] stress taken up by pore water alone	[D]	stress taken up by soil particle alone
94.	The suitable method of forecasting population to	for a y	young and rapidly increasing city is
	[A] Arithmetic increase method [C] Incremental increase method	[B] [D]	Geometric increase method Graphical method

The maximum bending moment in a simply supported beam of length 'L' subjected to a

BI

D

2WL/3

2WL/9

point load of magnitude 'W' at a distance of 'L/3' from the left hand support is

103.

[A] WŁ/3

[C]

WL/9

		Page 24 of 64		The same and the s
	TTT/1	8/30-35/A		ced stress 15
Exan	n-111/1	o/30 certain	, indu	
104	. Du	Page 24 of or Pa	[B]	Direct tensile None of the above
	LAT	Direct compression	1	-fa beam follows
	[A]	Shear lar C	ross s	section of a
	[0]	great a rectangular c	,10	, andth
105.	The	Direct compression Shear shear stress distribution over a rectangular of	[B]	An elliptical path
	[A]	A straight line path	[2]	TOTAL STREET,
	ren	A parabolic path		
106.	Hyd	drograph is the graphical representation of	[B]	Surface runoff and time Rainfall and time
	[A]	Runoff and time		
	[C]	Groundwater flow and time		
107.	The [A]	The greatest rainfall for a given duration that is physically possible The rainfall for a given duration that is physically possible impossible to occur	[Б]	The rainfall of a given duration with maximum probability of occurrence None of the above
108.	Ani	deal fluid is		Botton, most layer of paver entire
100.	All		- cm 7	n : .: along and incompressible
	[A]	One which obeys Newton's law of viscosity		azmos sed sed
	101	Very viscous	[D]	Frictionless and compression
	[C]	very viscous		at House closus and to train manufacture.
109.	Size	of the venturimeter is specified by		A 15d
	TAT	Pipe diameter	[B]	Throat diameter
	[A]	Pipe diameter	[D	/
	[C]	Angle of diverging section	17	diameter
110.	The d	lischarge of the rectangular notch varies v	with t	he head to the power
	F 4.3	1/2 /	r D	2/2
	[A]	1/2	[B	
	[C]	5/2	[D	0] 5/4

Que	stion	numbers 111-130 carry 2 marks each		
111.	For	good bonding in brick masonry		[C] Satisfactor for regularities
		All brick need to be uniform in size	[B]	Bats must be used in alternate courses
	[C]	The vertical joints in alternate courses should fall in plumb	[D]	Cement mortor used must have surkhi as additive
112.	For	complete hydration of the cement the water	ceme	nt ratio needed to be
	[A] [C]	Less than 0.25 More than 0.35 but less than 0.45	[B] [D]	More than 0.25 but less than 0.35 More than 0.45 but less than 0.60
113.	A si	ngle rolling load of 8 kN rolls along a gir ling moment will be	der o	f 15 m span. The absolute maximum
	[A] [C]	8 kN 30 kN	[B]	15 kN 60 kN
114.	If the	e true bearing of a line AB is 270° then azir	nuth	of the line is
	[A] [C]	270° 45°	[B]	90 ⁰ None of these
115.	If the	fore bearing of a line AB is 35° and that o	fline	BC is 15°, then the included angle is
	[A] [C]	20° 160°		50 ⁰ 230 ⁰
116.		ter content of a soil is 40%, specific gree of saturation is	avity	G is 2.7 and void ratio is 1.35, the
		70%	[B]	75%
	[C]	80%	[D]	85%

117. A cylindrical sample of saturated soil failed under an axial vertical stress of 100 N/m² when tested in an unconfined compression test apparatus. The value of cohesion and angle of internal friction for the soil are respectively [A] 50 N/m², 45⁰

[A]

11

 50 N/m^2 , 0^0 [B]

[C] 100 N/m², 45⁰

 $100 \text{ N/m}^2, 0^0$ [D]

		Page 26 of 64		
Exam-l	II/18/3	60-35/A Page	it is	classified as
118.	If agg [A] [C]	page 26 of strength of the page 26 of strength o	[B] [D] cons	Strong Unsuitable for road surfacing Unsuitable for road surfacing Struction at a place where maximum Greater than 40°C
119.	11		1	of the above
	[A] [C]	Less than 40°C	[D] eight	is equal to
120.	The	Equal to 40°C elongation of a conical bar under its own w	[B]	One half that of a prismatic bar of
	[A]	That of a prismatic bar of same length	ls afc	one fourth that of a prismatic bar of
	[C]	One third that of a prismatic bar of same length		same length
121.	The	difference in ordinate of the shear curve b	etwe	en any two section is equal to the area
	[A]	Load curve between these two sections	[B	sections
	[C]	Bending moment curve between these two sections	e _{ms} [D	Load curve between these two sections plus concentrated loads applied between the sections
122.	A th	ree hinged arch is carrying uniformly dis- from shear force and bending moment if	tribut its sh	
	[A] [C]	Circular Elliptical		B] Parabolic None of the above D]
123.	Sco	ur valves are provided		
	[A]			B] At every depression and deed ends to drain out the waste water that
	[C]	At the foot of rising main along to slope to prevent back running of water	he	may collect there [D] At every summit of rising mains

	If the time of concentration is 9 minutes, then the intensity of rainfall according to British
124.	Ministry of health formula will be [A] 4 mm/hr [C] 20 mm/hr [D] 40 mm/hr
125.	Sewage sickness relates to [A] Toxicity of sewage interfering with [B] Destruction of aquatic flora and fauna due to gross pollution of receiving bodies of water by sewage
	[C] Reduction in the waste purifying [D] Clogging of pores in soil due to excessive application of sewage to land, obstructing aeration and leading to septic conditions
126.	Maximum percentage reinforcement in case of slabs is limiting to [A] 2 [C] 6 [D] 8
127.	The specific weight of mercury at 20°C is in kN/m³ [A] 13600 [B] 133.00 [C] 13.60
128.	For a liquid at rest, the piezometric head [A] Is constant at all points in the liquid [B] Increases with the depth below the free surface
	[C] Decreases with depth below the free [D] Depends on the coefficient of viscosity
129.	A streamline is a [A] Line that represent the total energy of a [B] Line so drawn that the velocity vector is normal to it at every point at a given instant
	[C] Line such that the velocity vector is [D] Line that represents the flow cross tangent to it, at every point, at a given section instant
130.	The standard symon's type rain gauge has a collecting area of diameter
	[A] \(\sigma \) 5.08 cm [C] 12.7 cm [B] 10 cm [D] 25.4 cm
	Civil Engineering Paper Ends

SECTION - D (Computer Science and Engineering)

[Candidate who has opted for CSE (Code-32) in NEE - 2018]

Question numbers 81-110 carry 1 mark each:

81.	What is the octal equivalent of (1110001111)2

[A] (707 1)₈

 $(1617)_8$ [B]

[C] (7074)₈

[D] $(6171)_8$

To access the services of operating system, the interface is provided by the 82.

System calls

API [C]

Assembly instructions [D]

Which of the following expressions is in the sum-of-products (SOP) form? 83.

(A + B)(C + D)[A]

[B] (A)B(CD)

AB(CD) [C]

AB + CD

In Unix, which system call creates the new process? 84.

Fork A

[B] New

[C] Create

[D] None of these

85. DeMorgan's theorem state that

[A] (x+y)=x'+y'

[B] (x+y)'=x+y'

[C] (x+y)'=x'+y'

[D] (x+y)'=x'+y

In the Round Robin (RR) scheduling; if the time quantum (q) is too large, then 86.

More context switches will occur [A]

Scheduling is same as First Come First Served (FCFS)

The average turnaround time decreases [C]

[D] No effect

Which page replacement policy sometimes leads to more page faults when size of the 87. memory is increased?

Optimal [A]

[B] LRU

FIFO [C]

None of these [D]

					<u>P.</u>	APER CODI	E: 32	
88.	A	combinational circuit that	t selects one i	from many in	puts			
	[A]			[B] [D]	Demux Encoder			
89.	The	e computer architecture	aimed at red	ducing the ti	me of execution	n of instructi	ons is	
	_							
	[A] [C]	CISC RISC		[B] [D]	ANNA ISA			
90.	Hov	w many buses are connec	cted as part o	of the 8085A	microprocessor	?		
	[A] [C]	3 8	[D] Four	[B] [D]				
91.	Whi	ch of the following pro	gram combin	es two or mo	re object codes			
	[A] [C]	Loader Compiler		[B] [D]	Linker Interpreter			
92.	Time	e sharing provides						
	[A] [C]	Disk management Concurrent execution		[B] [D]	File system m All of these	nanagement		
3.	Belad	dy's anomaly is related	to					
	[A] [C]	Thrashing in paging Abnormal page fault i	n FIFO	[B]	Abnormal se Abnormal pa	gmentation ge fault in L	RU	
4.	The d	lata structure which is	one ended is		lo qualan			
	[A] [C]	Queue Tree	[8] All a	[B] [D]	Stack Graph			
5.		ary search tree whose	left sub-tree	e and right s	ub-tree differ i	n height by	at most	1
	[A]	AVL tree Lemma tree		[B] [D]	Red-black tr None of thes			

Exan	n-III/	18/30-35/A	Page					
		hich of the following		mmutativ	e but	not associative?		
06	11/	hish af the following	operation	is comme				
96.	W	nich of the following			[B]	OR		
	[A]				[D]	XOR		
	ICI	NAND						
	[0]	11/11/10		age class				
97.	Wh	nich is not the keywo	rd for Stor	age				
					[B]	Static		
	[A]	External			[D]	Register		
	[C]	Auto						
98.	Flip	flop is used to store						
		Change			[B]	Two bit information		
	[A]	Zero bit information	on		[D]	Four bit information		
	[C]	One bit information	n		[2]	Tour out minor		
				191				
99.	Whi	ch memory has the l	owest acc	cess time?				
		repos			ID1	Pagisters		
	[A]	Cache			[D]	Registers		
	[C]	Main memory	Linker		[D]		sbad.i	
			Interoret	ICH			Comp	
100.	A 32	bit address bus allo	ws access	s to a memory	of ca	pacity		
100.	11 32	on address ous and	,,,,,			abirong;		omi l
	TA1	64Mb			[B]	16Mb		
					[D]			
1	[C]	1Gb maganum mat			[2]	rent execution		
		0.00	170 HA	.:	r ovo			
			n 8085 n	nicroprocesso	or exec	cutes service routine		
1	vector	·location						
[]	A] (0000h	Abnorm		[B]	0075h		
	-	003Ch			[D]	0034h		
L								
102 T	The ext	atam hua ia mada i	in of					
102. T	ne sy	stem bus is made u	ib of		St par			
[A	A] I	Data bus		[8]	[B]	Data and address b	uses	
[C	CI D	ata and control bu	ises	101	[D]			
	,				[-,1			
103 V	actor	address line for D	ST2 ic2					
103. V	CCIOI	address line for K	31315!		9911-0			
[A	.] 0	018H			[B]	0016H		
[C	1 00	H800			[D]			
						002011		

				PAPER CODE: 32			
104.	Which one of the following is called self referential structure?						
	[A] [C]	Queue Linked list	[B]	Stack Array			
105.	The	CPU can perform read or write operations		point of time in			
	[A]	ROM	at ally	point of time in			
	[C]	EPROM	[B]	PROM RAM			
106.	If a	variable is a pointer to a structure, then w	vhich o	of the following operator is used to			
	If a variable is a pointer to a structure, then which of the following operator is used to access data members of the structure through the pointer variable?						
	[A]	·	[B]				
	[C]	-> (A * X) it months bout St (X * A) X in	[D]	F. F. Y. Z. mile the values			
107.	As soon as a pointer variable in 'C' is freed, its value						
	[A] [C]	remains the same is set to 1	[B] [D]	becomes unpredictable			
108.	In th	<pre>e program given below, point out the erro #include<stdio.h></stdio.h></pre>		ny, in the 'for' loop?			
	[A]	The condition in the for loop is a must	[B	B] The two semicolons should be dropped			
	[C]	Error in for loop	[[
09.	Which of the following cannot be checked in a switch - case statement?						
	[A] [C].	Character Float		B] Integer D] Enum			

110. What is the output of the following code?

- [A] Infinite loop
- [C] No output

- [B] Prints "Hello" once
- [D] Compile error

Question numbers 111-130 carry 2 marks each:

111. If X, Y and Z are 3 boolean variables, then X (Y + Z) is not equals (X + Y) (X + Z), if X, Y, Z take the values

[A] 0,0,0

[C] 1,0,1

[B] 0,1,0

[D] 0,1,1

112. With only one process can execute at a time; meanwhile all other process are waiting for the processor. With more than one process can be running simultaneously each on a different processor.

- [A] Multiprogramming, Uniprocessing
- [B] Uniprogramming, Multiprocessing
- [C] Multiprocessing, Multiprogramming
- [D] Multiprogramming, Multiprocessing

113. In UNIX, the return value for the fork system call is _____ for the child process and for the parent process

[A] A negative integer, Zero

[B] Zero, A negative integer

[C] Zero, A nonzero integer

[D] A nonzero integer, Zero

114. The output of an AND gate with three inputs, A, B, and C, is HIGH when _____.

[A] A = 1, B = 1, C = 0

[C] A = 1, B = 0, C = 1

[B] A = 0, B = 0, C = 0

[D] A = 1, B = 1, C = 1

What is meant by of stream in C++? 115.

Reads from a file

Both a & b

Writes to a file

[D] None of these

What is the average waiting time i 116.

Process	Arrival Time	Execute Time	Service Time
Р0	0	5	0
P1	1	3	5
P2	2	8	8
Р3	3	6	16

[A] 5.75

[C] 5.00

[D] 3.25

Which of the following statements are true? 117.

I. Shortest remaining time first scheduling may cause starvation

II. Preemptive scheduling may cause starvation

III. Round robin is better than FCFS in terms of response time

Ionly

[B] I and III only

II and III only [C]

[D] I, II and III

Consider the situation in which assignment operation is very costly. Which of the 118. following sorting algorithm should be performed so that the number of assignment operations is minimized in general?

[A] Heap sort

Insertion sort [B]

Selection sort [C]

None of these

Ex	am-II	I/18/30-35/A	1 6	7		
1		The result of the subtract A] 10 ₁₆ C] 65 ₁₆ 9 with signed 2's comple		[B] [D]		
12	20	9 with signed 2's compl	ement represent			
	· D	A1 11110011		[B]	* * * * * 1 () () [
12	1. In	a complete k-ary tree	e, every internal node	nodes	s is:	
	110	n(k-1)+1	a tree with n internal	rB1	(n-1) k+1 n(k-1)	
122	Ch	noose the correct statem	ent.			
	II. file	The scope of a macro The scope of a macro New line is a macro de A macro definition m	efinition delimiter	m the	point of definition to the end of the	
	[A] [C]	I and II I, II, III and IV		[B] [D]	I, II and III I, II, IV	
123.	The 'u' 'x'?	is any other vertex the	irst spanning tree is on it is not an 'x' if fr	alled om ev	'x' if it has at least two children, if very child 'w' of 'u'. Then what is	
	[A] [C]	Child node Ancestor of root		[B] [D]	Descendant node of root Articulation node	
124.	A co	A counting semaphore is initialized to 15. The 16P (wait) operations and 4V (signal) operations were completed in this semaphore. The resulting value of semaphore is				
	[A]	0		[B]	3	
	[C]	10			8	

125. How many 64K × 1 RAM chips are needed to provide memory capacity of 256 K-Bytes
[A] 64

[A] 64 [C] 32

[B] 128 [D] 256

126. A 5 stage pipeline with the stages taking 1, 1, 3, 1, 1 units of time has a throughput of

[A] 1/3 [C] 7

[B] 1/7 [D] 3

127. Choose the correct for the following code segment

```
for ( i = 0; i < 10; i + +)
printf ("%d", i & 1);
```

[A] Compile time error

[C] 1111111111

[B] 01111111111 [D] 0101010101

128. Choose the correct for the following code segment

```
void main()
{
    int m = 10;
    int n, n1;
    n = ++m;
    n1 = m++;
    n--;
    --n1;
    n -= n1;
    printf("%d",n);
}
```

[A] 1 [C] 2 [B] 0 [D] 3

Choose the correct for the following code segment 129. int i = 10; void main (); A 5 stage pipeline wan the stages taking I, I, 3 I, I units of time has a though but int i = 20; int i = 30; cout << i << ::i; } 3020 [B] 3010 [A] Compile time error [D] Run time error [C] The average memory access time for a machine with a cache hit rate of 90% where the 130. cache access time is 10ns and the memory access time is 100ns is [A] 50ns 45ns . [B] 70ns [C] [D]19ns CSE (CODE 32) Paper Ends ---

SECTION - D (Electronics and Communication Engineering)

[Candidate who has opted for ECE (Code-33) in NEE - 2018]

Question numbers 81-110 carry 1 mark each:

81. An AM signal is represented by

$$x(t) = (20 + 4\sin 500\pi t)\cos(2\pi \times 10^5 t) V$$

The modulation index is

[A] 20

[B] 4

[C] 0.2

[D] 10

82. For an AM signal, the bandwidth is 10 kHz and the highest frequency component present is 705 kHz. The carrier frequency used for this AM signal is

[A] 695 kHz

[B] 700 kHz

[C] 705 kHz

[D] 710 kHz

83. The Fourier transform M (f) of a signal m(t) is shown in figure. It is to be transmitted from a source to destination. It is known that the signal is amplitude normalized between 1 to 1, and frequency f has unit of Hz. If USSB is employed, the bandwidth of the modulated signal is

[A] 5 kHz [C] 20 kHz [B] 10 kHz

[D] None of the above

84. Biasing Mechanism used in integrated circuit is

[A] Fixed Bias[C] Emitter Bias

[B] Boot strap Bias

[D] Current mirror Bias

(Space for rough works)

	Q. 5			a u sing Bias	
85	Th	ermal run away effect will be more in w	hich o	f the following Dias	
0.0	[A]	Fixed Bias	[D]	Collector to Base Bias	
86.	. If t	he amplification of a single stage is not suf- of the correct magnitude for the intend- nected to achieve desired result?	fficient led app		
	[A]	Cascode connection	[B]	Complementary symmetry connection	
	[C]	Cascade connection	[D]	Totem pole connection	
87.	An	amplifier uses negative feedback to instance. Then the suitable feedback topolog	ncrease y is	the input resistance and output	
	[A] [C]	Shunt – Shunt Series – Series	[B]	Shunt – Series Series – Shunt	
88.	The [A]	ripple factor in case of a full wave rectifie 1.21 0.48	r is [B] [D]	0.50 1.0	
89.	Why is a Schmitt trigger introduced between logic circuits?				
	[A]	It reduces propagation delay	[B]	It cleans up the logic pulse into good rectangular shape	
	[C]	It converts negative logic to positive and vice versa	[D]	It increases noise margin	
90.	Consider the following statements regarding an RC phase shift oscillator 1. The amplifier gain is positive. 2. The amplifier gain is negative. 3. The phase shift introduced by the feedback network is 180°. 4. The phase shift introduced by the feedback network is 360°. Of these statements				
		1 and 3 are correct 2 and 4 are correct	[B] [D]	2 and 3 are correct 1 and 4 are correct	

Page 39 of 64

91.	For [A]	LC oscillators are more stable than crystal oscillator	[B]	Crystal oscillators have ingliest Q
	[C]	Phase shift oscillators have the widest range of frequency	[D]	Wien bridge oscillator is used where a single frequency oscillator is required
		200	an fill	d and man phonon bereits relation to the
92.	In a	Class AB amplifier, the current flows through	ugh th	e active device for
	[A]	Less than half of the duration of input cycle		
	[C]	More than half but less than full cycle duration	[D]	Full duration of input cycle
93.	The	sum of two oppositely rotating circularly	polari	zed, waves of equal amplitude will
	[A]	A circularly polarized wave	[B]	A linearly polarized wave
	[C]	An elliptically polarized wave	[D]	An unpolarized wave
94.	If an line,	infinite homogeneous isotropic medium the characteristic impedance of the corresp	is mo	deled as an equivalent transmission ag transmission line is known as its
		characteristics impedance wave impedance	[B] [D]	intrinsic impedance
95.	N-ty	pe devices are preferred over P-type device	es bec	ause of the following reason
	[A]	Mobility of hole is higher than mobility of electron	[B]	Mobility of hole is equal to mobility of electron
	[C]	For same doping n-type materials give less current than p-type materials	[D]	For same doping n-type materials give more current than p-type materials
96.		phenomenon known as "Early Effect" in a fective base width caused by	a bipo	lar transistor refers to a reduction of
	[A]	Electron hole recombination at the base	[B]	the reverse biasing of the base collector junction
	[C]	the forward biasing of emitter base junction	[D]	

Exam	Paring survey		har of comparator
	In order to build a 3 bit simultaneous A/D con-	verter,	what is the number of comparation
97.	In order to build a 3 bit simultaneous 102		Committee of the last of the l
	circuits required?	[B]	8
	[A] 7	[D]	16
	[C] 15		
98.	Consider the following		
	Any combinational circuit can be built using		
	1.11.11		
	EX-OR gates Multiplexers		
	Which of these are correct?		acitesto
	[A] 1, 2 and 3	[B]	1, 3 and 4
	[C] 2, 3 and 4	[D]	1, 2 and 4
	[6] 2,5 4.10		
99.	Evaluate (X xor Y) xor Y		
//.	[A] All 1's	[B]	All 0's
	[C] X	[D]	Y
	finm is modeled as an equivalent transmission	om.	
100.	Dual slope integration type Analog-to-digital c	onvert	ers provide .
100.	[A] higher speeds compared to all other		
	types of A/D converters	[2]	putting extreme requirements on
	types of the contracts		component stability
	[C] good rejection of power supply hum	[D]	better resolution compared to all
	The state of the s	7 - 7	other types of A/D converters for
			the same number of bits
101.	The forbidden energy gap for silicon is		
	[A] 0.12eV	[B]	0.72eV
	[C] 1.12eV	[D]	7.2eV
	elegated and a second		
102.	The fastest mode of data transfer from CPU to	memo	ory in a microprocessor is
	[A] memory mapped I/O	[B]	I/O mapped I/O
	[C] interrupt driven I/O	[D]	DMA
103.	In a CRO List Cat. Cit.		10
105.	In a CRO which of the following is not a part	of elec	tron gun
	[A] cathode	(D)	and a branch thousand the case
	[C] accelerating anode	[B]	grid X - Y plates
	dilodo		A - I Diates

		PAPER CODE: 33
104.	Assertion (A): Shunt of an ammeter has a low Reason (R): Shunt may be connected in series [A] Both A and R are true and R is a series	
	explanation of A	[B] Both A and R are true but R is not correct explanation of A
	[C] A is true R is false	[D] A is false R is true
105.	If an inductance L is connected in one arm of three arms	of bridge and resistance R ₁ , R ₂ , R ₃ in other
	[A] the bridge cannot be balanced[C] he bridge is balanced for some specified value of frequency	[B] the bridge can be balancedd [D] the bridge is balanced for some specific values of R₁, R₂, R₃
106.	Which of these has a magnetic brake?	
	[A] Thermocouple ammeter [C] Dynamometer wattmeter	[B] Energy meter [D] Frequency meter
107.	The input impedance of CRO is about	
	[A] zero [C] 100 Ω	[B] 10Ω [D] one mega ohm
108.	The correct sequence of steps in the instruction [A] Fetch, Execute, Decode and Read effective address [C] Fetch, Decode, Read effective address and Execute	on cycle of a basic computer is ad [B] Read effective address, Decode, Fetch and Execute ss [D] Fetch, Read effective address, Decode and Execute
109.	The difference between measured value and	true value is called
	[A] gross error [C] probable error	[B] relative error [D] absolute error
110.	Noise generated in a resistor is also known a [A] partition noise [C] thermal noise	[B] white noise [D] shot noise
Que	estion numbers 111-130 carry 2 marks each	The second section and second second second
111.	The 3dB cutoff frequency of a d.c ampl	ifier is 5 MHz. What is its rise time? [B] 200 ns
	[A] 350 ns [C] 70 ns	[D] 35 ns

In the following circuit if feedback R_f resistor is removed what is its effect on I/P and O/P resistance

- Both increases
- I/P increases and O/P decreases
- Both decreases [B]
- I/P decreases and O/P increases [D]
- For a given filter order, which one of the following type of filter has the least amount of ripple both in passband and stop band?
 - Chebyshev type I

Bessel [B]

Chebyshev typeII

- [D] Elliptic
- A zener diode in the circuit shown in the figure below has a knee current of 5 mA, and a maximum allowed power dissipation of 330 mW. What are the minimum and maximum 114. load currents that can be drawn safely from the circuit, keeping the output voltage at 6V?

- 0 mA, 180 mA [A]
- 10 mA, 55 mA [C]

- 5 mA, 110 mA
- 60 mA, 180 mA
- A second order bandpass active filter can be obtained by cascading a low pass second 115. order section having cutoff frequency f_{OH} with a high pass second order section having cutoff frequency f_{OL} provided
 - [A] for > for

[B] $f_{OH} < f_{OL}$

[C] $f_{OH} = f_{OL}$ [D] $f_{OH} \leq \frac{1}{2} f_{OL}$

The low frequency gain of the low pass filter shown in the given figure is 116.

10 dB

30 dB [C]

[B]

[D]40 dB

A dc power supply has a no load voltage of 30 V, and a full load voltage of 25 V at a full load current of 1A. Its output resistance and load regulation, respectively are 117. [B] 25Ω and 20%

[A] 5 Ω and 20%

5 Ω and 16.7% seeds 10 snow [C] [C]

[D] 25Ω and 16.7%

An opamp based inverting amplifier has a gain of 10 and a bandwidth of 100kHz. If the gain of the amplifier is reduced to unity, its bandwidth will changes to 118. [B] 100kHz

[A] 10kHz

[C] 1MHz

[D] 10MHz

A coil of inductance 2H and resistance 1 Ω is connected to a 10V battery with negligible internal resistance. The amount of energy stored in the magnetic field is 119. [B]

[A] 100

200 [C]

400 [D]

To maximize power transfer, a lossless transmission line is to be matched to a resistive load impedance via a $\lambda/4$ transformer as shown 120.

- A series RLC circuit is switched on to a step voltage V at t=0. What are the initial and final values of the current in the circuit respectively? 121.
 - V/R, V/R [A]
 - Zero, Zero [C]

- Zero, infinity [B]
- [D] Zero, V/R
- The voltage V in the figure is equal to 122.

3V [A] - 3V [C]

- [B]
- None of these [D]
- A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same 123. gain in the 20/30 GHz band, antenna size required is metre
 - 100 [A]
 - [C]

- [B]
- [D] 10

124. v_{TH} , $R_{TH} = ?$

- $2 V, 4 \Omega$ [A]
- 4 V, 5Ω [C]

- $4 \text{ V}, 4 \Omega$ [B]
- [D] 2 V, 5 Ω
- Which of the following does not cause losses in optical fibre cables? 125.
 - Stepped index operation [A]
 - Micro bending [C]

- **Impurities** [B]
- Attenuation in glass [D]

A diode detector has a load of $k\Omega$ shunted by a 10000 pF capacitor. The diode has a shunted by a 10000 pF capacitor. The diode has a shunted by a 10000 pF capacitor. 126. forward resistance of 1 Ω . The maximum permissible depth of modulation, so as to avoid diagonal clipping, with maximum permissible depth of hkHz will be avoid diagonal clipping, with modulating signal frequency of 10 kHz will be

[B] 0.628 [D] None of these

Super heterodyne receiver uses an IF frequency of 455 kHz. The receiver is tuned to a transmitter having a carrier of the standard of the stan 127. transmitter having a carrier frequency of 455 kHz. The receiver is timage frequency will be

[A] 2855 kHz

[C] 1845 kHz

[B] 3310 kHz

[D] 1490 kHz

Four signals each band limited to 5 kHz are sampled at twice the Nyquist rate. The 128. resulting PAM samples are transmitted over a single channel after time division multiplexing. The theoretical minimum transmissions bandwidth of the channel should

[A] 5 kHz

40 kHz [C]

[B] 20 kHz

[D] 80 kHz

Assertion (A): Free space does not interfere with normal radiation and propagation of 129.

Reason (R): Free space has no magnetic or gravitational fields

Both A and R are correct and R is correct explanation of A

[C] A is correct but R is wrong Both A and R are correct but R is not correct explanation of A

A is wrong but R is correct

130. Waveform shown in figure is that for

[A] FM

AM-DSB [C]

[B] PCM

D AM-SSB

-ECE (CODE 33) Paper Ends ---

87.

[A]

[C]

SECTION – D (Electrical Engineering) [Candidate who has opted for EE (Code-34) in NEE - 2018]

Que	stion n	umbers 81-110 carry 1 mark each:		A STATE OF THE PARTY OF
81.	The	resistivity of the conductor depends on		
	[A]	area of the conductor type of material	[B]	length of the conductor none of these
82.	Too	obtain a high value of capacitance, the perm	ittivity	of dielectric medium should be
	[A] [C]	low high	[B]	Zero Unity
83.	Mag [A] [C]	gnetic flux of 1 Weber = Maxwells 10^4 10^8	[B]	10 ⁻⁸ 10 ⁻⁴
84.	Whic	h of the following represents ohms law?		
	[A] [C]	V = RI $I = GV$	[B]	$J = \sigma E$ All of the above
85.	Rete	ntivity will be high in	LD3	Ctaal
	[A] [C]	Soft iron Air	[B] [D]	
36.	Mutu	nal inductance is measure by bridge		
	[A]	Hay's Anderson's	[B]	7

As a result of reflection from a plane conducting wall, electromagnetic waves acquire an

[B]

[D]

apparent velocity greater than the velocity of light in space. This is called the

velocity of propagation

group velocity

normal velocity

phase velocity

NEE-	.111/10/			. f the
88.	Two	infinite parallel metal plates are charged we polarity. The electric field in the gap between	ith ed	qual surface charge density of the plates is
80.	same	polarity. The produced by one plate	[B]	double the field produced by one plate
	[A]	dent on coordinates of field points	[D]	zero
89.	[C]	le a hollow conducting sphere	rDl	electric field is a non zero
07.	[A]	electric field is zero	[B]	constant field changes with
	[C]	electric field changes with magnitude of the charge given to the conductor	[D]	distance from the center of the sphere
90.	Elect	tric field intensity (E) at a point in an elect	ric fie	eld is equal to
	[A] [C]	potential gradient (potential gradient) ^{1/2}	[B]	t'al amadient)
91.	If field	d current is decreased in shunt dc motor, t	the sp	
	[A] [C]	remains same decrease	[B	Cul - shave
92.	Insul	ation resistance can be measured by	me	thod
	[A] [C]	loss of charge Ohmmeter		3] voltmeter-ammeter D] wheat-stone bridge
93.	Eddy	current loss will depends on		
	[A] [C]	frequency thickness		B] flux density D] all of the above
94.	Whic	ch method gives accurate measurement	of lo	w resistance?
	[A] [C]	Potentiometer Wheat-stone Bridge		[B] Ohmmeter [D] Voltmeter-Ammeter

Which type of DC generator is used to charge the batteries?

[C]

[A]

[A]

[C]

shunt generator

series generator

more than

less than

Distribution transformers have core losses...

101.

102.

long shunt compound generator

[D] none of the above

.....full load copper loss

negligible compared

equal to

[B]

103. When pure inductive load is connected to the alternator, what is the effect of armature reaction?

[A] cross magnetization

[B] demagnetization

magnetization [C]

[D] none of the above

104. In a DC Motor 3 point starter is used to

- provide protection against Low-Voltage [B] provides overload protection
- limit the starting current to a safer value
- [D] All of above

Transformer oil is used as 105.

- an inert medium
- a coolant [C]

- [B] an insulation
 - both [B] and [C]

For maximum starting torque in an induction motor 106.

- [A] $r_2 = x_2$
- [C] $r_2 = 0.5x_2$

Maximum power transfer capability of transmission line can be increased by 107.

parallel transmission lines

- [B] using series capacitance
- using bundled conductors [D] All of the above

108. Unit of deflection sensitivity of a CRO is

- [A] V/mm
- [C] mm/mV

- [B] meter / volt
- [D] mm / V

109. A reactance relay is

- Voltage restrained directional relay
- [B] Directional restrained over current relay
- Voltage restrained over current relay [C]
- [D] None of these

E	Exam-I	11/18	2/30-35/A Page 50 of 64		PAPER CODE: 34
	110.	Whi	ch statement is true for latching current?		
		[A] [C]	It is related to turn off process of the device It is related to turn on process of the device		It is related to conduction process of device. Both [C] and [B]
Q	uestio	n nu	mbers 111-130 carry 2 marks each:		
11	I. F	Find induction	the reactance voltage when current is cance is 1H?	hanged	from -2A to 2A in 4 sec and self
	[A	-	0 V I V		4 V 2 V
112	2. H	ow n	nuch current is drawn by the primary of operate a device having an impedance	a trans	former which steps down 220 V to Ω
	[A [C]	-	.01 A .1 A	[B]	1.1A 0.01 A
113.	For	r flat	voltage profile system, voltage regulat	ion is	
	[A]	09	%	[B]	100%
	[C]	50	0%	[D]	any of the above
114.	Feri	ranti	effect will not occur in which of the fo	llowin	g transmission lines?
	[A]	Lo	ng transmission lines	[B]	Short transmission lines
	[C]	Me	edium transmission lines	[D]	All of the above
115.	mult	iplyi	nometer with a full scale current of ing power (the ratio of measured cu h this galvanometer is		
	[A]	110		[B]	100
	[C]	11		[D]	10

PAPER CODE: 34

1	16.	The is ab	measured value of a resolute error of the mea	esistance is 10.25 of asurement?	nm, w	hereas its value of 10.22 ohm. What
		[A] [C]	0.01 ohm 15.36 ohm	[8] 0.27	[B] [D]	0.03 ohm 10.26 ohm
1			vo meters X and Y rection, then	require 40 mA and	50 n	nA, respectively to give full scale
		[A] [C]	Y is more sensitive both X and Y are equ	ally sensitive	[B] [D]	X is more sensitive it would not be possible to asses then sensitivity on the basis of the given data
11	r	eadir		nt can read up to (1	/5) th o	50 division and gives a full scale of a scale division with a fair degree in mA?
	[/	3	25 mA 50 mA	A MI to per ammeler	[B] [D]	40 mA 80 mA
119	. A	0 - oltage	100 V voltmeter has e measured by the volt	a guaranteed accumeter is 75 V. The	uracy limiti	of 2 % of full scale reading. The ng error in percentage is
	[A]		.33 %	ner, fed from a 40 ad to 320V, 405ta	[B] [D]	2.66 % 1 %
120.	An	SCF ge cu	R has half cycle surg	ge current rating of	3000	A for 50 Hz supply. One cycle
	[A] [C]		000 A 21.32 A	es anononieme n	[B] [D]	6000 A 4242.64 A
121.			DC generator has ses are 100Ω and 0.1 will be	an induced volta Ω respectively. T	ge of	f 200 V, and field and armature rminal voltage is 180 V. The load
	[A] [C]	200	3.2 A	of (8)	[B]	198.2 A 129.8 A
					- 1	

128.

Exam-III/18/30-35/A			Page 52 of 0		PAPER CODE: 54	
		or and Call it.	has input voltage 110 V	and outpu	at voltage 150 V. The value of duty	
	122. A	step up chopper cle is	has input voices			
	[A	1 0.45		[B]	0.67 0.27	
. 13	23. A inc	3Φ, 50 Hz, 6 poluced in the rotor	ole cage motor is running will be	g with a	slip of 3%. The frequency of emf	
	[A] [C]			[B] [D]	1.25 Hz 51.5 Hz	
12	4. Wh	at will be the tot	al flux emitted by a source	ce of 60 c	andle power?	
	[A] [C]	754.2 lumens 60 lumens	ale with 50 division and (1/5) of a scale division structure of many	[B] [D]	0.001326 lumens None of these	
125	. The	full scale deflecting ge of self-induc	ction torque of a 20 A N tance of the instrument i	II type ar	nmeter is 6×10^{-5} Nm. The rate of	
	[A] [C]	0.3 μH/rad 0.33 μH/rad		[B] [D]	0.35 μH/rad 0.4 μH/rad	
126.	speed		the supply is changed t		n a 400V, 50Hz supply, the rated 40Hz, find the rated speed in rpm	
		776 784		[B] [D]	800 768	
127.	plants [A] 3	is 200rpm. The	ient pole rotor of a sy number of poles requir	red when	us generator, used in hydro power its output frequency is 50Hz is 48	
	[C] 2	4		[D]	40	
128.	A cond 2 wb/m	uctor of length ² with a velocit	1 m moves at right and ty of 5 m/s. The induce	gles to t	he magnetic field of flux density of the conductor will be	
	[A] 20 [C] 2	V V		. [B] [D]	10 V 40 V	

VEE-I	11/18/.	30-35/A		3 of 64			PAPER CODE: 34
129.	The in th	efficienc e range o	y of a three-phase	induction	motor at fu	II load, fed f	from a 50Hz supply, is
	[A]	97%					
	[C]	90%			ID1	85%	
30.	A 25	kVA, 33	300/400 V transfo	rmer has a	primary cu	rrent of	
	[A]	0.23 A		101	10 10	7 00 A	
	[C]	9.72 A	Son contract on bottomasses		[D]	7.98 A 7.58 A	

PAPER SET: 3113CE11

SECTION - A (Physics)

Questions 1-25 carry 1 mark each:

- Which of the following is a derived quantity?
- [A] Mass
- [B] Thermodynamic temperature
- [C] Luminous intensity
- [D] Surface tension
- Which of the following is a dimensionless constant?
- [A] Gravitational constant
- [B] Planck constant
- [C] Dielectric constant
- [D] Universal gas constant
- 3. 'n' number of bullets, per second eject from a machine gun. Mass of each bullet is m-kg and velocity is v m/s. The force acting on the machine gun, in Newtons, is
- [A] Mnv
- [B] mn/v
- [C] Mn
- [D] my/n
- 4. When a particle rotates in a circular path, its acceleration
- [A] Remains constant
- [B] Does not remain constant
- but constant [C] Magnitude remains direction changes
- but remains constant [D] Direction magnitude changes
- 5. Escape velocity of earth is ve. If mass and radius of a planet is twice that of the earth, the escape velocity of the planet will be
- [A] V

1B1 2V

- [D] 16ve [C] 4ve
- Which of the followings is more elastic?
- [A] Rubber
- [B] Glass
- [C] Steel
- [D] Copper
- The dimension of modulus of elasticity is . [B] ML-T
- A MLT
- [D] ML-1T-1
- [C] MLT-2
- A body just floats in a liquid. Their densities are equal. If the body be pressed slightly downward then the body will
- [A] Oscillates up and down

NIL

- (B) Sink
- F -wal [C] Come to the previous position quickly
- [D] Come to the previous position slowly
- According to Newton's law, viscous force depends on
- [A] Directly proportional to the area of cross section of two liquid layers.
- [B] Inversely proportional to the area of cross section of two liquid layers.
- [C] Directly proportional to square of the area of cross section.
- [D] None of these.
- 10. The spherical shape of a rain drop is due to
- [A] Density of water -
- B Surface tension [D] Gravity
- [C] Atmospheric pressure
- 11. The kinetic energy of a body of mass 1 kg is 12.5 kg m²/s². Its momentum in units of kg-m/s is
- [A] 25

[B] 5

[C] 0

[D] 12.5

PAPER SET: 3113CE11

- 12. Two holes are made in a copper plate. The plate is heated. The distance between the
- [A] Remains unchanged [B] Increases
- [C] Decreases
- [D] None of these.
- 13. The ratio of lengths of two iron rods is 1:2 and that of their cross-sectional areas is 2:3. Due to equal increase in temperature, the ratio of their volume expansions is
- 11 12
- JBT 1:3
- ICI 2.3
- [D] 1:6
- 14. It H amount of heat required to increase the m gm of substance by to C then
- [A] ta Mh
- [B] taH/m
- [C] tam/H
- [D] tal/mH
- 15. Specific heat of copper is 0.1 calgm⁻¹ °C⁻¹. The water equivalent of 0.4 kg of copper calorimeter
- [A] 40 gm
- [B] 4000 gm
- [C] 200 gm
- [D] 4 gm
- 16. In which process the P-V diagram is a straight line parallel to volume axis?
- [A] Isothermal
- [B] Isobaric
- [C] Irreversible
- [D] Adiabatic
- 17. The period of oscillation of a simple pendulum of constant length at earth's surface is T. Its period inside the mine is
- [A] Greater than T
- [B] Less than T
- [C] Equal to T
- [D] Cannot be compared
- 18. Doppler effect is applicable to
- [A] Sound only
- [B] Light only
- [C] Both sound and light
- [D] None of these

- 19. Velocity of longitudinal wave in a string is
- [A] $\sqrt{(Y/\rho)}$
- [D] O
- Where, Y is the Young's modulus and p is [C] $\sqrt{(3Y/p)}$ the density of the material respectively.
- The speed of sound will be greatest in
- Air [A]

- [B] Vacuum
- Water [C]
- [D] Metal
- Which of the following characteristics of sound is affected by the change in temperature?
- [A] Wave length
- [B] Amplitude
- Intensity ICI
- [D] Frequency
- 22. For interference, the interfering beams must be
- [A] Spatially coherent only
- [B] Temporally coherent only
- Both spatially and temporally coherent [C]
- None of these. [D]
- 23. The differential form of Faraday's law of electromagnetic induction is
- $[A] \nabla X B = -\partial E/\partial t$
- [B] $\nabla \times B = \mu_0 J$
- [C] $\nabla X \mathbf{E} = -\partial \mathbf{B}/\partial t$
- [D] $\nabla \times \mathbf{B} = -\partial^2 \mathbf{E}/\partial t^2$ Where symbols have their usual meanings.
- 24. Does a charge at rest establish a magnetic field?
- [A] Yes

- [B] No
- [C] Cannot be concluded [D] None of these
- 25. The direction of induced e. m. f. in a circuit is given by
- [A] Faraday's law
- [B] Lenz's law
- Ampere's law
- [D] Gauss's law

SECTION - B (Chemistry)

Questions 26-50 carry 1 mark each:

- 26. Stains of Iron rust on clothes can be removed by
- [A] Petrol
- [B] Oxalic acid
- [C] H.O.
- [D] Alcohol
- 27. The components present in producer gas are
- [A] CO + N
- [B] CO + H-
- [C] CO+ H
- [D] CO + NO2
- 28. Heating of rubber with sulphur is known as
- [A] Sulphonation
- [B] Galvanization
- [C] Vulcanization
- [D] Bessemerisation
- 29. LiAlH4 converts acetic acid into
- [A] Acetaldehyde
- [B] Methane
- [C] Methyl alcohol
- [D] Ethyl alcohol
- 30. The addition of the Grignard reagent to acetaldehyde is a nucleophilic addition to the carbonyl group. The nucleophile in this reaction is
- [A] : CH3
- [B] CH3+
- ICI Br
- [D] CH3 CHO
- 31. Choose the correct IUPAC name for CH - CH - CHO

СН-СН-

- [A] Butan 2-aldehyde [B] 2-methyl butanal
- [C] 3-methyl iso butyraldehyde [D] 2-ethyl propanal
- 32. Gold number is a measure of the
- [A] Protective action by a lyophilic colloid on a lyophobic colloid
- [B] Protective action of a lyophobic colloid on a lyophilic colloid

- [C] Number of mg of gold in a standard red gold solution
- [D] Stability of gold solution
- 33. Hydrolysis of Ester in alkaline medium is
- [A] First order reaction with molecularity one
- [B] Second order reaction with molecularity
- [C] First order reaction with molecularity two
- [D] Second order reaction with molecularity
- 34. On the basis of Le-Chatelier's principle, predict which of the following conditions is unfavourable for formation of SO₃? Given that $2SO_2 + O_2 = 2SO_3$; $\Delta H = -42$ kcal
- [A] Low temperature [B] High pressure
- [C] High temperature [D] High concentration of SO2
- 35. Which one is true
- [A] $Kp = Kc (RT)^{\Delta n}$
- [B] $Kc = Kp(RT)^{\Delta n}$
- [C] $Kc/RT = (Kp)^{\Delta n}$
- [D] $Kp/RT = (Kc)^{\Delta n}$
- 36. The normality of a solution of NaOH, 100 ml of which contains 4 g of NaOH, is
- [A] 0.1

- [B] 1.0
- [C] 4.0.
- [D] = 0.4
- 37. In a face centered cubic cell, an atom at the face centre'is shared by
- [A] 4 unit cells
- [B] 2 unit cells
- [C] I unit cell
- [D] 6 unit cells
- 38. Which of the followings is an insulator?
- [A] Graphite
- [B] Silicon
- [C]—Diamond
- [D] Aluminium

PAPER SET: 3113CE11

- the 39. The relationship which describes with variation of vapour pressure temperature is called
- [A] Hess law
- [B] Arrhenius equation
- [C] Kirchoff's law [D] Claussius Clapeyron equation
- 40. Solubility product of A-B is 4x10-9 (moles/lit) Its solubility is
- [M 01 1/4]
- [B] 4 x10 M
- (C) 10 M
- [D] 2x10 M
- 41. Volume of 4.4 g of CO2 at N.T.P is
- [A] 22.4 L
- [B] 2.24 L
- [C] 224 L
- [D] 44.8 L
- 42. For the adsorption of a gas on a solid, the plot of log x/m versus log p is linear with slope equal to
- IAI K
- [B] Log k
- [C] n
- [D] 1/n
- 43 The slag obtained during the extraction of copper pyrites is mainly composed of
- [A] Cu-S
- [B] FeSiO3
- [C] CuSiO;
- [D] SiO
- 44. Gun metal is an alloy of
- [A] Mg. Sn. Zn
- [B] Cu, Ni. Zn
- [C] Cu, Sn, Zn'
- [D] Cu, Sb, Zn, Pb
- 45. The first order reaction has specific rate constant of 2 min-1. The half life of the reaction will be
- [A] 1.653 min
- [B] 0.347 min
- [C] 2.0 min
- [D] 0.0347 min
- 46. The calorific value of Coal gas is
- [A] 2700 KCal/m³
 - [B] 4500 to 5900 KCal/m3
- [C] 1800 KCal/m
 - [D] 900 KCal/m3
- 47 Sulphonation of benzoic acid gives

- [A] o-benzene sulphonic acid
- [B] m-benzene sulphonic acid
- [C] p-benzene sulphonic acid
- [D] o & p-benzene sulphonic acid
- 48. Lead pipes are readily corroded by
- [A] Water
- [B] Concentrated H-SC
- [C] Acetic acid
- [D] Dilute H2SO2
- 49. Tear gas is
- [A] chloropicrin
- [B] Methylene chloride
- [C] chloretone
- [D] Methyl chloride
- 50. The bond orders in O₂⁺ and O₂⁻ respectively are
 - [A] 2.5 & 1.5
- [B] 1.5 & 2.5
- [C] 2 & 1.5
- [D] 3 & 2

SECTION – C (Mathematics)

Questions 51-80 carry 1 mark each:

- √51. A multiple choice test consists of 8 questions with 3 answer options for each question of which only one is correct. A student answers each question by rolling an unbiased dice checking the first answer if he gets 1 or 2, the second answer if he gets 3 or 4 and the third answer if he gets 5 or 6. To get a distinction, the student must secure at least 75% correct answers. If there is no negative marking, the probability that the student secures a distinction is
 - [A] 43
- [B] 1 (169
- [C]
- [D]

- $\{2\}$ Let $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8\}$. If the Cartesian product A X B, chosen randomly, the probability of a + b = 9 is (where $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$)
- [A] 1/4

[B] 1/5

[C] 1

- [D] 0
- 53. $Sec^2 \theta = \frac{4xy}{(x+y)^2}$ is true if and only if
- [B] $x = y, x \neq 0$
- [C] x = y
- $_{1} \quad [D] \quad x \neq 0, y \neq 0$
- 54. If $\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$, then

 [A] $x = \pm \frac{1}{\sqrt{2}}$ [B] $x = \pm \frac{1}{\sqrt{3}}$

- 55. If $Sin^{-1}\frac{x}{5} + Co\sec^{-1}\frac{5}{4} = \frac{\pi}{2}$, then a value of
- X IS

[A] 1

- [D] 5
- 56. Solution of the simultaneous equations x-y+z=0, 2x+3y-5z=7 and 3x - 4y - 2z = -1 is
- [A] $x = 11_7, y = 21_{14}, z = \frac{1}{7}$
- [B] $x = 11_9, y = 0, z = -11_9$
- [C] x = 11/8, y = 21/16, z = -1/16
- [D] None of these
- Consider the system of equations 2x - y - 2z = 2, x - 2y + z = -4 and

- x + y + kz = 4. What is the value of k for no solution of the system of equations?
- [A] 1

[B] 2

[C] 3

- [D] -3
- 58. The real number x, when added to its inverse, gives the minimum value of sum at x equal to
 - [A] 2

[B] I

[C] -1

- [D] -2
- 59. The sum of the divisors of 360 is [B] 1440
- [A] 1170
- [C] 650
- [D] 870.
- 60. Highest power of 3 contained in 1001 is
- [A] 64

[B] 48

[C] 50

- [D] 46
- 61. The probability of Krishna will be alive for 10 years hence is 7/15 and that for Hari is 7/10. The probability that both Krishna and Hari will die 10 years hence is
 - [A] 4/25
- [B] 7/50
- [C] 49/150
- [D] 28/75
- 62. If $x^2 + y^2 = 1$, then
- [A] $yy' 2(y')^2 + 1 = 0$ [B] $yy' + (y')^2 + 1 = 0$
- [C] $yy' (y')^2 1 = 0$ [D] $yy' + 2(y')^2 + 1 = 0$
- 63. A gardener having 120 m long fencing wishes to enclose a rectangular plot of land of greatest area and also to erect a fence using the available fencing materials across the land parallel to two of its sides. The maximum area he can enclose is
- [A] 850 m²
- [B] 500 m²
- [C] 600 m
- [D] 900 m

Page 8 of 13

PAPER CODE: 31

PAPER SET: 3113CE11

- 64. The radius of curvature of $y = 4\sin x \sin 2x$ at $x = \pi/2$ is
- [A] 5\5

- [D] 37√37
- 65 If $u = \frac{1}{2} + \frac{3}{2} + \frac{3}{4}$, then
- $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = ?$
- [A] 0
- [B] $(x+y+z)^2$
- [D] None of these
- 66. The coordinates of the points on the curve $y = x^2 + 3x + 4$, the tangent at which passes through the origin, are
- [A] (2, 14); (-2, 2) [B] (2, 14); (-2, -2)
- [C] (2, 14); (2, 2) [D] None of these
- 67. The two curves $x^3 3xy^2 + 2 = 0$ and $3x^2y - y^4 - 2 = 0$, intersect at an angle of
- [A] 450
- $[B] 60^{\circ}$
- [C] 90°
- [D] 30°
- 68. If n be a positive integer greater than 1, and if $A = n^n$, B = 1.3.5...(2n-1), then the relation between A and B is
- [A] A = B
- [B] A>B
- [C] A < B
- [D] None of these
- 69. How many three digit odd numbers can be formed using the digits 1, 2, 3, 4, 5, and 6, when repetition of digits are allowed?
- IA 648
- [B] 120

- [D] 216
- 70. $1+\frac{4}{5}+\frac{7}{5^2}+\frac{10}{5^3}+\dots$ [B] 11/8 [C] 35/16 [D] 7/16

- 171. If $a^x = b^y = c^2$ and a,b,c are in G.P. then x,y,z are in
 - [A] A. P.
- [C] H. P.
- [D] None of these
- $\int 72. \text{ If } (1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n^n,$ then $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^3$ is equal to
 - [A] (2n)!n!n!
- [B] $\frac{(2n)!}{2(n!)^2}$ [D] 2^{2n-2}

[C] 2^n

- straight line is parallel √ 73. A 2x+3y+11=0 and that the sum of the intercepts on the axes is 15. The equation of the line is

 - [A] 2x+3y-18=0 [B] 2x-3y-18=0

 - [C] 2x+3y+18=0 [D] 2x-3y+18=0
- √ 74. The equation of the bisector of the obtuse angle between the straight 4x + 3y - 11 = 0 and 4x + 12y + 9 = 0 is

 - [A] 9x-7y-41=0 [B] 7x+9y-3=0
 - [C] 9x + 7y + 3 = 0
- [D] None of these
- $\sqrt{.75}$. $\int \frac{x^2+1}{x^4+1} dx$ is equal to

- [A] $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^2}{\sqrt{2} x} \right) + C$
- [B] $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^2 1}{\sqrt{2} x} \right) + C$
- $\frac{|C|}{\sqrt{2}} \tan^{-1} \left(\frac{x^2 + 1}{x} \right) + C$
- $\tan \left(\frac{1}{\sqrt{2}x}\right) + C$
- 76. $\int_{0}^{\pi/4} \frac{\sin^{2} x \cos^{2} x}{(\sin^{3} x + \cos^{3} x)^{2}} dx$ is equal to
- [4] 1/6
- [B] 1/12

[C] 1/4

- [D] None of these
- 77. $\lceil \log(\sin x) dx \rceil$ is equal to
- $|A| = \frac{\pi}{2} \log 2$
- $[B] \quad \frac{\pi}{2} \log \frac{1}{2}$
- [C] log 2
- [D] $\frac{\pi}{4} \log \frac{1}{2}$
- 78. The equation of the curve whose slope is $\frac{dy}{dx} = \frac{2y}{x}$, x > 0, y > 0 and passes through the point (1, 1) is

- [A] $x^2 = y$ [B] $y^2 = x$ [C] $x^2 = 2y$ [D] $y^2 = 2x$
- 39. The equation of the plane through the points (1, 1, 0), (-2, 2, -1) and (1, 2, 1) is
- [A] 2x+3y+3z=5 [B] 2x-3y+3z=5
- [C] 2x+3y-3z=3 [D] 2x+3y-3z=5

- \sim 80. If 'r' is an integer, then $r(r^2-1)(3r+2)$ is divisible by
 - [A] 21

[B] 24

[C] 48

[D] 14

SECTION - D (Civil Engineering)

Questions 81 - 110 carry 1 mark each:

- 81. Shear stress on principal planes is
- VIAT zero
- [B] maximum
- [C] minimum
- [D] None of these
- 82. The variation of bending moment in the portion of a beam carrying linearly varying load is
- [A] linear
- [B] Parabolic
- Cor cubic
- [D] Constant
- 83. The ratio of intensity of stress in case of a suddenly applied load to that in case of a gradually applied load is
- [A] 1/2

[B] 1

JCF 2

- [D] More than 2
- 84. Castigliano's first theorm is applicable
- [A] for statistically determinate structures only
- [B] when the system behaves elastically
- [C] only when principle of superposition is valid
- [D] none of the above
- 85. The factor of safety for
- [A] steel and concrete are same
- (B) steel is lower than concrete
- [C] steel is higher than concrete
- [D] none of the above

PAPER CODE: 31

PAPER SET: 3113CE11

- 86. Lap length in compression shall not be less than
- [A] 15 F
- [B] 20 F
- [C] 24 F
- [D] 30 F
- Minimum pitch of transverse reinforcement in a column is
- [A] the least lateral dimension of the member
- IBI 16 times the smallest diameter of longitudinal reinforcement bar to be tied
- [C] 48 times the diameter of transverse reinforcement
- JDJ lesser of the above
- 88. A metallic tape is made of
- (A) steel
- B) invar
- [C] linen
- DE cloth and wires
- The correction for sag is
- [A] always additive
- HB always subtractive
- [C] always zero
- [D] sometimes additive and sometimes subtractive
- 90. Local attraction in compass surveying may exist due to
- [A] incorrect leveling of the magnetic needle
- [B] loss of magnetism of the needle
- [C] friction of the needle at the pivot
- presence of magnetic substances near the instrument
- 91. The following sights are taken on a turning point
- [A] foresight only
- [B] backsight only
- 19 foresight and backsight
- [D] foresight and intermediate sight

- 92. The type of valve, which is provided on the suction pipe in a tube well is
- [A] air relief valve
- (B) reflux valve
- [C] pressure relief valve [D] sluice valve
- 93. The most common cause of acidity in water
- JAI carbon dioxide
- [B] Oxygen
- [C] hydrogen
- [D] Nitrogen
- 94. The dissolved oxygen level in natural unpolluted water at normal temperature is found to be the order of
- [A] 1 mg/l
- 4B) 10 mg/l
- [C] 100 mg/l ·
- [D] 1000 mg/l
- 95. For country like India, where rainfall is mainly confined to one season, the suitable sewerage system will be
- [A] separate system
- [B] combined system
- [C] partially
- [D] partially separate
- combined system
- system
- 96. A soil has a bulk density of 22 kN/m³ and water content 10 %. The dry density of the soil is
- [A] 18.6 kN/m
- LBF 20 kN/m
- [C] 22 kN/m³
- [D] 23.2 kN/m³
- 97. According to IS classification, the range of silt size particle is
- [A] 4.75 mm to 2.00 mm
- [B] 2.00 mm to 0.425 mm
- [C] 0.425 mm to 0.075 mm
- 0.075 mm to 0.002 mm
- 98. The process by which the mass of saturated soil is caused by external forces to suddenly

PAPER SET: 3113CE11

Page 11 of 13

PAPER CODE: 31

CEII	PAPER
lose its shear strength and to behave as a	105. The minimum pitch of the rivets shall not
fluid is called	105. The minimum pitch of
[A] wining	De less than
(D) slide	[D] 3.0 d
[C] quick condition [D] liquifaction	106. If the permeability of the soil is 0.08
99. A soil having partitions	to the permeability of the son
99. A soil having particles of nearly same size is known as	lose the type of son
[A] well graded met	cm/sec, the type of send [A] gravel [D] clay
[A] well graded [B] uniformly graded [C] poorly graded [D] gap graded	The state of the s
[C] poorly graded [D] gap graded	[C] silt 107. The maximum permissible limit for fluoride
100 Fish plate in the second	107 The maximum permissible inflat
100. Fish plate is in contact with rail at	in drinking
A web of rail I fishing plane	[A] -0.1 mg/L [D] 10 mg/L
[C] head of rail [D] foot of rail	ICI 5 mg/L
101 The annual of	and used for
101. The compensation for curvature on gradient	108. Theodolite is an insulanche added nuts of
for meter gauge is given by	[A] tightening the sap
[A] 70/R (B) 52.5/R	level tube
[C] 35/R [D] 105/R	(B) measurement of horizontal al-g
Where R is the radius of the curve	[B] measurement of horizontal angles [C] measurement of horizontal and vertical
	[C] measurement of vertical angles [D] measurement of horizontal and vertical
102. An ideal fluid has	angles
[A] zero surface tension and is incompressible	
[B] zero shear stress and behaves as a perfect	109. Different grades are joined together by a
gas	
[C] constant density and viscosity	[A] comp
[D] zero viscosity and is incompressible	
	110. When the path travelled along the road
103. Local atmospheric pressure is measured by	surface is more than the circumferential
[A] hydrometer [B] barometer	surface is more than the electron then it
(D) altimeter	movement of wheels due to rotation, then it
[C] hygrometer [D] altimeter	results in
a significant of	[A] Skipping [B] skidding
104. The total head in a flow is the sum of	(D) muslying
[A] piezometric head and datum head	[C] turning [D] revolving
[B] piezometric head and pressure head	
[C] piezometric head and velocity head	Questions 111 – 130 carry 2 marks each:
[D] piezometric head, velocity head and	
	111. If the length of a simply supported beam
datum head	
	carrying a concentrated load at the center is

PAPER SET: 3113CE11

PAPER CODE: 31

doubled, the deflection at the center will become

[A] two times

[B] four times

eight times

[D] sixteen times

112 Method of joints is applicable only when the number of unknown forces at the joint under consideration is not more than

[A] one

[B] two

[C] three

[D] four

113. Strain energy stored in a member is given by

[A] 0.5 x stress x volume

[B] 0.5 x strain x volume

[C] 0.5 x stress x strain x volume

[D] 0.5 x stress x strain

114 If a beam fails in bond, then its bond strength can be increased most economically by

[A] increasing the depth of beam

[B] using thinner bars but more in number

[C] using thicker bars but less in number

[D] providing vertical stirrups

115. Maximum percentage of reinforcement in case of slabs is limited to

JB1 4

[C] 6

[D] 8

116. According to Indian Standards, minimum 7 days compressive strengths of ordinary portland cement and portland pozzolana cement in N/mm²

[A] 15.5 and 15.5

[B] 21.5 and 15.5

[C] 15.5 and 21.5

[D] 21.5 and 21.5

117. If the forebearing of the line AB is 35° and that of the line BC is 150, then the included angle between the lines is

 $[A] 20^{0}$

[B] 50°

[C] 160°

[D] 230°

118. The sensitivity of a bubble tube can be increased by

(A) increasing the diameter of the tube

[B] decreasing the length of the tube

increasing the viscosity of the liquid

[D] decreasing the radius of curvature of the tube

119. The following consecutive readings were taken with dumpy level and a 3 m staff on a continuously sloping ground. 0.425, 1.035, 1.950, 2.360, 2.950, 0.750, 1.565, 2.450, 0.320, 1.025, 2.165, 2.955.

Which of the following readings are backsights?

[A] 0.425, 2.950, 0.750, 0.320

[B] 0.425, 0.750, 0.320, 2.955

₩ 0.425, 0,750, 0.320

[D] 0.425, 2.360, 0.750, 0.320

120. The self-cleaning velocity for all sewers in India is usually

[A] less than 1.0 m/s

[B]+1.0 m/s to 1.2 m/s

[C] 1.5 m/s to 2 m/s

[D] 3.0 m/s to 3.5 m/s

121. A city supply 0f 1500 cubic meters of water per day is treated with a chlorine dose of 0.5 ppm. For this purpose, the requirement of 25 % bleaching powder per day would be

[A] 300 kg

[B] 75 kg

[C] 30 kg

[D] 7.5 kg

- 122. Under natural conditions of flow, an unpolluted river would contain
- [A] more dissolved oxygen in summer than in winter
- [B] less dissolved oxygen in summer than in
- [C] more or less the same amount of dissolved oxygen in summer than in winter
- [D] the least amount of dissolved oxygen during floods
- 123 For a given soil sample C is the coefficient of gradation, Cu coefficient of uniformity, D₁₀ is the effective size and D₃₀ is the diameter through which 30 % of the total soil mass is passing. If Co=1.0 Cu=4.0 then the value of D₃₀/D₁₀ would be
- (A) 2.0
- [B] 1.75
- [C] 1.50
- [D] 1.25
- 124. For a broad gauge route with M+7 sleeper censity, number of sleeper per rail length is
- [A] 18

[B] 19

- [C] 20
- [D] 21
- 125. The maximum width of the vehicle as recommended by IRC is
- [A] 1.85 m
- [B] 2.44 m
- [C] 3.81 m
- [D] 4.72 m

- 126. The standard sea level atmospheric pressure in kilopascals is
- [A] 133.105
- [B] 103.305
- [C] 101.425
- [D] 760
- 127. Slenderless ratio of a 5 m long column hinged at both ends and having a circular cross section with diameter 16 cm is [B] 62.5
- [A] 31.25
- [C] 100
- [D] 125
- 128. A 6 h unit hydrograph of a catchment is triangular in shape with base width of 75 h and a peak discharge of 12 m³/s. The unit hydrograph refers to a catchment of area, in km^2
- [A] 65
- [B] 162
- [C] 320
- [D] 1800
- 129. Size of a right angled fillet weld is given by
- [A] 0.707 times throat thickness
- [B] 1.414 times throat thickness (0,414)
- [C] 2.0 times throat thickness
- [D] throat thickness
- 130. The coefficient of active earth pressure for a loose sand having an angle of internal friction of 30° is
- VAT 1/3

[B] 3

[C] 1

[D] 1/2

[D] Ammeter

C

Potentiometer

	4	
	The kilo-calorie is a unit of [A] Temperature. [C] Power.	[B] Heat. [D] Pressure.
	At a given temperature, velocity of sound [A] 4:1 [C] 1:1	in oxygen and hydrogen has the ratio [B] 1:4 [D] 2:1
	A uniform magnetic field acts at right any this, the electron describes a circular path radius of circular path will become [A] 4 cm	gle to the direction of motion of electron. As a result of of radius 2 cm. If the speed of electron is doubled, the [B] 2 cm [D] 8 cm
	1 J is equal to [A] A V s [C] AV s	[B] AV s ⁻¹ [D] AV s
	In an eye piece, field lens and eye lens spherical aberration, distance between the [A] 0.2 cm [C] 0.1 cm	s have focal length 7.5 cm and 7.3 cm. To eliminate em should be [B] 0.4 cm [D] 0.5 cm
	1 Tesla is equal to [A] NA-1m [C] Nam	[B] NA ⁻¹ m ⁻¹ [D] Nam ⁻¹
6.	The ratio of the speed of a body to the s [A] Refractive index [C] Mach number	peed of sound is called [B] Sonic index [D] Doppler ratio
7.	Which of the following rays can pass the [A] γ-rays [C] α-particles	[B] x-rays [D] ultra-violet rays
8.	An ideal voltmeter has [A] Zero resistance [C] Variable resistance	[B] Finite resistance [D] Infinite resistance
10	A wheel is rotating at 900 rpm about min. The angular retardation in rad s ⁻¹ [A] $\pi/2$ [C] $\pi/4$	the axis. When the power is cut off it comes to rest in is $[B] \pi/6$ $[D] \pi/8$

27.

An electronic equipment operating at 240 V has a resistance $R = 120 \Omega$. Then the power $P = 120 \Omega$ 20. [B] 2 W [A] 400 W [D] 240 W [C] 480 W An object attached to one end of a spring makes 20 complete oscillations in 10 s. Its time period 21. (T) is: [B] 5 s [A] 10 s [D] 0.5 s [C] 2 s 22. Two thin lenses of focal lengths f_1 and f_2 are in contact with each other. Then their equivalent focal length is: [B] $f_1f_2/(f_1-f_2)$ [A] 1/fi - 1/f: [C] f: f: The reverse saturation current in a p-n junction is due to flow of. [B] Both majority and minority carriers [A] Majority carriers [D] Impurity ions [C] Minority carriers An ice skater with rotational inertia I_0 is spinning with angular speed ω_0 . When ice skater pulls 241 her arms in, thereby increasing her angular speed to $4\omega_0$ then the rotational inertia is: [A] I₀/2 [B] 2I₀ [C] 10 [D] I₀/4 In simple harmonic motion, the magnitude of the acceleration is: [A] Inversely proportional to the [B] Proportional to the displacement displacement [C] Greatest when the velocity is greatest [D] Constant SECTION - B (CHEMISTRY) [Section B is compulsory for all the candidates] Question numbers 26-50 carry 1 mark each: How should the conditions be changed to prevent the volume of a given gas from expanding [A] Temperature is lowered and pressure is [B] Temperature is increased and pressure is [C] Temperature and pressure both are [D] Temperature and pressure both are increased. Which of the following pairs of expressions of concentration term is independent of temperature? [A] Normality and Molarity [C] Molality and Mole fraction [B] Molarity and Molality [D] Normality and Formality

26.

27.

20.	[A] 400 W [C] 480 W	[B]	Sistance $R = 120 \Omega$. Then the power $P = 2 W$ 240 W
21.	(1) 18:		omplete oscillations in 10 s. Its time period
	[A] 10 s [C] 2 s	1	0.5 s
22.	Two thin lenses of focal lengths focal length is:	f_1 and f_2 are in con	tact with each other. Then their equivalent
	$[A] Lf_1 + Lf_2$ $[C] f_1 = f_2$	[B]	$f_0 f_2 / (f_1 - f_2)$ $f_1 - f_2$
25	The reverse saturation current in a [A] Majority carriers [C] Minority carriers	[B]	to flow of. Both majority and minority carriers Impurity ions
24/	An ice skater with rotational inerther arms in, thereby increasing her $[A] = I_0/2$ $[C] = I_0$		210
25.	In simple harmonic motion, the ma [A] Inversely proportional to the displacement [C] Greatest when the velocity is	[B]	leration is: Proportional to the displacement Constant
(SECT [Section B is Question numbers 26–50 carry 1 n	TION – B (CHE compulsory for a mark each :	EMISTRY) all the candidates]
H	How should the conditions be chan when its mass is increased?	ged to prevent the	e volume of a given gas from expanding
	Temperature is lowered and p increased. Temperature and pressure lowered	ressure is [B]	Temperature is increased and pressure is lowered.
WI	ered.		Temperature and pressure both are ncreased.
ten [A]	nich of the following pairs of perature? Normality and Molarity	expressions of	concentration term is independent of
[C]		[B] 1	Molarity and Molality Normality and Formality

	3.	Page 5 of	1 48
28.	The equilibrium will be sh [A] PCl ₃ is added. [C] Catalyst is added.	nifted in opposite direction in $PCl_{3(g)} + Cl_{2(g)} \leftrightarrow PCl_{5(g)}$ if [B] Helium gas is added. [D] Pressure is reduced.	
.9.	If α is the degree of dissipantial indication constant, then to A if $\alpha^2 = \sqrt{(K_a/C)}$ if $\alpha = \sqrt{(K_a/C)}$	sociation, C the concentration of a weak electrolyte and K_a the acidathe correct relationship between α , C and K_a is $[B] \alpha^2 = (\sqrt{C/K_a})$ $[D] \alpha = \sqrt{(C/K_a)}$	d
30.	Which type of hybridizat [A] SP ³ [C] SP ³ d ²	ion leads to octahedron shape? [B] SP ³ d [D] SP ³ d ³	
\$ 1	For the reation $2A + B \leftarrow$ (i) $A + B \leftarrow$ (ii) $A + C \leftarrow$ The rate law expression [A] Rate = k [A] ² [B] [C] Rate = k [A] [C]	E (fast)	
32.	Magnetic quantum num [A] Size of atomic orb [C] Nuclear stability The relative lowering of		
3,5	known as [A] Henry's law [C] Van't Hoff's law	[B] Raoult's law	
34	An alum is a [A] Double salt. [C] Amphoteric salt.	[B] Mixed salt. [D] Common salt.	
3.5	[A] White precipitate [C] Deep blue precip		
3	6 Which of the followin [A] Red phosphorus [C] Black phosphorus	FWS X X X 11 Y 1	
3	Which of the followin [A] Cuprite [C] Haematite	[B] Bauxite [D] Chalcocite	,

	Page 6 of Page 8 of All is always negative?
3	8. For which of the following, enthalpy change (\(\Delta H\)) is an interpolation [B] Enthalpy of solution [D] Enthalpy of formation
39	Which of the following compounds gives a ketolic [B] Ethyl cyanide [A] Formaldehyde [D] Methyl iodide [C] Fthyl alcohol
40.	A dilute alkaline KMnO ₄ Solution is known as [A] Schiff's reagent [C] Grignard reagent [D] Baeyer's reagent
41.	Number of atoms in a fee unit cell will be [B] 2 [A] 1 [C] 3
42.	Of the following which is a step growth polymer? [A] Bakelite [B] Polyethylene [D] PVC [C] Teflon
43.	The process of heating iron pyrite in air to remove sulphur is known as [B] Calcination [A] Roasting [D] Fluxing
44.	Which of the following pollutants causes depletion of stratospheric ozone layer? [A] Sulphur dioxide [C] Carbon monoxide [D] Freons
45.	Calgon is a trade name given to [A] Sodium Phosphate [C] Calcium phosphate [B] Sodium hexametaphosphate [D] Sodium zeolite
46.	Which of the following is not an organo-metallic compound? [A] C_3 H_7 Mg I [B] C_2 H_5 ONa [C] $(C_2H_5)_3$ Al [D] Tetra ethyl lead (TEL)
47.	Which of the following compounds is obtained on heating a mixture of sodium benzoate an soda lime? [A] Toluene [B] Phenol [C] Benzene [D] Benzoic acid
48.	The gas, which is produced by the reaction between aluminium carbide and water, is [A] Ethyne [B] Ethene [C] Methane [D] Ethane

Sin't da (4) + dan't of

48.

Page 7 of 48

- 49 $F_2C = CF_2$ is a monomer of
 - [A] Teflon
 - C Dacron

- [B] Orlon
- [D] Rayon 50 Which of the following compounds, on reaction with hot concentrated sulphuric acid, loses a molecule of water?
 - [A] CH₃CO CH₃
 - [C] CH3CHO

- [B] CH₃COOH
- [D] CH₃CH₂OH

SECTION - C (MATHEMATICS)

[Section C is compulsory for all the candidates]

Question numbers 51-80 carry 1 mark each:

- The interior angles of a polygon are in A.P. If the smallest angle is 120° and the common difference is 5°, then the number of sides is
 - [A] 5 [C] 9

- [B] 7
- [D] 15
- If z be any complex number $(z \neq 0)$, and amp $\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$, then the z is
 - [A] Straight line

[B] Circle

[C] Parabola

- [D] The single point
- The number of ways of selecting 4 cards of an ordinary pack of playing cards so that exactly 3 of 53. जिक ही संप्रदाय are of the same denomination is
 - [A] 2496

[B] ${}^{13}C_3 \times {}^4C_3 \times 48$

[C] 52C, × 48

- [D] 2346
- If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$, then the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is

 - [C] $\frac{1}{20} \tan u$

- [B] 0
- [D] 2u
- Sum of the last 20 coefficients in the expansion of $(1+x)^{39}$, when expanded in ascending powers of x, is

 - [C] ${}^{40}C_{20} 2^{19}$

(Space for rough works) = [5.0+K-1)] = (2-1) 390 240 - TN = 5 = 15t - 7 W

- The value of $div\left(\frac{\vec{r}}{r^3}\right)$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $|\vec{r}| = r$, is
 - [A] 0 [C] 2

- The value of $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$, Curve C is the rectangle in the xy-plane
- bounded by y = 0, x = a; y = b, x = 0 is
 - [A] ab

[B] $-ab^2$

[C] a^2b

- $[D] -2ab^2$
- The unit normal to the surface $x^4 3xyz + z^2 + 1 = 0$ at the point (1, 1, 4) is

$$|A| = j + j - 3k$$

[B]
$$\frac{1}{\sqrt{11}} \left(\hat{i} - 3\hat{j} - \hat{k} \right)$$

[C]
$$\frac{1}{3} \left(-\hat{i} + 2\hat{j} + 2\hat{k} \right)$$

[D]
$$\frac{1}{3}(2\hat{i}+\hat{j}-2\hat{k})$$

- The radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is

- (B) $\frac{3}{2}$ (D) $\frac{1}{\sqrt{2}}$
- The focus of the parabola $4y^2 + 12x 20y + 67 = 0$ is 60.
 - [A] $\left(-\frac{7}{2},\frac{5}{2}\right)$

 $[B] \left(-\frac{3}{4}, \frac{5}{2}\right)$

 $\begin{bmatrix} C \end{bmatrix} \left(-\frac{17}{4}, \frac{5}{2} \right)$

- [D] $\left(\frac{5}{2}, -\frac{3}{4}\right)$
- If three positive real numbers a,b,c are in A.P. such that abc = 4, then the minimum possible of b is
 - [A]

[D]

Page 9 of 48

If
$$A = \tan^{-1} \left(\frac{1}{7} \right)$$
. $B = \tan^{-1} \left(\frac{1}{3} \right)$, then

$$\begin{bmatrix} A \end{bmatrix} \quad \cos 2A = \sin 2A$$

[C]
$$\cos 2B = \sin 2A$$

[B]
$$\cos 2A = \sin 2B$$

[D]
$$\cos 2A = \sin 4B$$

If the pairs of lines $x^2 + 2xy + ay^2 = 0$ and $ax^2 + 2xy + y^2 = 0$ have exactly one line in common then the joint equation of the other two lines is given by

[A]
$$3x^2 + 8xy - 3y^2 = 0$$

[B]
$$3x^2 + 10xy + 3y^2 = 0$$

[C]
$$y^2 + 2xy - 3x^2 = 0$$

[D]
$$x^2 + 2xy - 3y^2 = 0$$

. 64.

If e. and e, are eccentricities of the two hyperbolas $\frac{x^2}{a^2} - \frac{v^2}{b^2} = 1$ and $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$ then

$$|A| e_1 = e_2$$

[B]
$$e_1e_2 = 1$$

[C]
$$e_1 = -e_2$$

[D]
$$\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$$

165.

A committee of five is to be chosen from a group of 9 people. The probability that a certain married couple will either served together or not at all is

$$\begin{bmatrix} A \end{bmatrix} = \frac{1}{2}$$

$$\begin{bmatrix} C \end{bmatrix} = \frac{4}{9}$$

[B]
$$\frac{5}{9}$$

[D]
$$\frac{2}{3}$$

If $\int \sqrt{1 + \sec x} \, dx = k \sin^{-1}(f(x)) + C$ then

[A]
$$f(x) = \sqrt{2}\sin\left(\frac{x}{2}\right), k = 2$$

[C]
$$f(x) = \sqrt{2} \tan\left(\frac{x}{2}\right), k = 2$$

[B]
$$f(x) = \sqrt{2}\cos\left(\frac{x}{2}\right), k = 2$$

[D]
$$f(x) = \sqrt{2}\sin\left(\frac{x}{2}\right), k = \sqrt{2}$$

67.

The value of $\int \left(\cos^{-1} x + \frac{x^7 - 3x^5 + 7x^3 - x}{\cos^2 x}\right) dx$ is

$$[A] \frac{\pi}{2}$$

The area of the figure bounded by the lines x = 0, $x = \frac{\pi}{2}$, $f(x) = \sin x$ and $g(x) = \cos x$ is 68.

[A]
$$2(\sqrt{2}+1)$$

[B]
$$\sqrt{3}-1$$

[C]
$$2(\sqrt{3}-1)$$

[D]
$$2(\sqrt{2}+1)$$

Algebraic sum of the intercepts made by the plane x + 3y - 4z + 6 = 0 on the axes is 69.

$$-\frac{13}{2}$$

[B]
$$\frac{19}{2}$$

[C]
$$\frac{2}{3}$$

[D]
$$\frac{26}{3}$$

J 70. The planes bx - ay = n, cy - bz = 1, az - cx = m intersect in a line if .

$$|A| \quad a' - hm + c\eta = 1$$

[B]
$$a + bm + cn = 0$$

$$[C]$$
 at $-bm-cn+1=0$

[D]
$$at + bm + cn = 1$$

7 71. The distance between the origin and the normal to the curve $y = e^{2x} + x^2$ at the point whose abscissa is

$$[A] \frac{1}{\sqrt{5}}$$

$$\begin{bmatrix} C \end{bmatrix} \quad \frac{3}{\sqrt{5}}$$

[B]
$$\frac{2}{\sqrt{5}}$$
 [D] $\frac{2}{\sqrt{3}}$

The difference between the greatest and least values of the function $f(x) = \cos x + \frac{1}{2}\cos 2x - \frac{1}{3}\cos 3x$

is

$$\begin{bmatrix} A \end{bmatrix} = \frac{3}{8}$$

[B]
$$\frac{2}{3}$$
 [D] $\frac{9}{4}$

73. If A and B are matrices of the same order, then $(A+B)^2 = A^2 + 2AB + B^2$ is possible if

$$[A]$$
 $AB = I$

$$[B]$$
 $BA = I$

[C]
$$AB = BA$$

[D]
$$A = AB$$

74. If the 4th term in the expansion of $\left(ax + \frac{1}{n}\right)^n$ is $\frac{5}{2}$, then the values of a and n are

[A]
$$\frac{1}{2}.6$$

[A]
$$\frac{1}{2}.6$$
 [C] $\frac{1}{2}.3$

[D]
$$\frac{5}{2}, \frac{7}{3}$$

- 75. Fifteen coupons are numbered 1, 2, 3,15, respectively. Three coupons are selected at random without replacement. The probability that maximum number on the selected coupon is 9
 - [A]

[C]

[D] $\frac{4}{65}$

- 76. The exponent of 7 in ${}^{100}C_{50}$ is
 - [A] 0

[B] 2

101 4

- [D] 8
- The particular integral of the differential equation $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = e^{x} \text{ is}$ [A] $\frac{e^{3x}}{2}$ [B] $\frac{xe^{3x}}{2}$ [C] $\frac{x^2e^{3x}}{2}$ [D] $\frac{x^3e^{3x}}{2}$

- The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$, and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if 78

101 k = 2

- If square matrix A is such that $3A^3 + 2A^2 + 5A + I = 0$, then A^{-1} is equal to 79.
 - [A] $3A^2 + 2A + 5I$

[B] $-(3A^2+2A+51)$

 $|C| 3A^2 - 2A + 5I$

[D] $3A^2 - 2A - 51$

- 80. The value of $\int_{1}^{\frac{\pi}{2}} \frac{dx}{1 + \tan^3 x}$ is

[CANDIDATES HAVE TO ATTEMPT QUESTION NUMBERS 81 - 130 FROM SECTION (D) OF THEIR APPROPRIATE BRACH AS OPTED IN THE NEE2015 ONLINE FORM

SECTION - D (CIVIL ENGINEERING)

[Candidate who has opted for CE (Code -31) in the NEE 2015]

Cac	stion numbers 81-110 carry 1 mark each:	
81.	Limit of proportionality depends upon [A] Area of the cross-section	B] Type of loading D] Shape of the cross section
82.	Effective length of the column fixed at one end at $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} C \end{bmatrix}$ $\begin{bmatrix} 2 \times t \end{bmatrix}$	and hinged at other end is $ B = \frac{1}{\sqrt{2}}$ $ D = \sqrt{l}$
83.	If a material has identical properties in all directi [A] Homogeneous [C] Elastic	[B] Isomophi
84.	[C] Elastic The number of independent equations to be satis [A] 1 [C] 3	[B] 2 [D] 6
85.	Creep is the Longitudinal movement of rail Vertical movement of rail	[B] Lateral movement of rail [D Difference in level of two rails
86.	Workability is inversely proportional to [A] Time of transit [C] Air in the mix	[B] Water cement ratio [D Size of aggregate
87.	The maximum percentage of reinforcement in c [A] 2 [C] 5	[D] 8
88.	The main reason for providing number of reinbeam is to resist in that zone	nforcing bars at a support in a simply supported
	[A] Compressive stress [C] Bond stress	[B] Shear stress [D] Tensile stress
89.	Modulus of rigidity is defined as the ratio of Al Longitudinal stress to longitudinal strain Stress to strain	[B] Shear stress to shear strain [D] Stress to volumetric strain

PAPER SET: 15/III/30-35/A

A simply supported beam carries uniformly d	istribute	ed load of W over the entire span of length
L. The maximum bending moment at the mid-	span is	
[A] WL	[B]	WL
2		4
[C] WL	[D]	WL
12		8
Activated carbon is used for		
[A] Disinfection	[B]	Removing hardness
[C] Removing odours	[D]	Removing corrosiveness
Standard BOD is measured at		
[A] 20°C - 1 day	[B]	25°C – 3 day
Cl 20°C - 5 day	[D]	30°C - 5 day
Average rate of water consumption per head d	av ac n	er Indian Standard is
[A] 100 litres		135 litres
[C] 165 litres	[D]	200 litres
103 11103	[17]	200 litres
- Sewerage system is usually designed for		
[A] 10 years	(B)	25 years
[C] 50 years	[D]	75 years
A fully saturated soil is said to be		
[A] One face system	[B]	Two phase system with soil and air
Two phase system with soil and water	[D]	Three phase system
and phase system with son that water	[D]	Tiffee phase system
When the plastic limit of a soil is greater than t	he liqu	id limit, then plasticity index is reported as
[A] Negative:	(B)	Zero
[C] Non-plastic	[D]	1
Coefficient of consolidation of a soil is affected	d by	
[A] Compressibility	[B]	Permeability
[C] Both compressibility and permeability	[D]	None
A soil having particles of nearly the same size	is knov	wn as
[A] Well graded	JB1	Uniformly graded
[C] Poorly graded	[D]	Gap graded
The background colour of the informatory sign	board	is
[A] Red	[B]	Yellow
[C] Green	[D]	White
	1-1	

				Page 20 of 48
100.	The [A]	rail is designated by its Length Cross-section	[B]	Weight
	. ,		D	Weight per unit length
101.	[A]	Runoff and time Ground water flow and time	[B]	Precipitation and time Soil moisture and time
102.	If in [A]	tensity of rainfall is more than the infiltration Equal to rate of the rainfall More than rate of rainfall	n capa	
103.		Near the building In an open space	[B] [D]	Under the tree In a closed space
104.	Cro [A]	Measuring approximate horizontal angles	BY	Setting out right angles
	[C]	Measuring bearings of the lines	[D]	None of these
105.	The [A]	e rise and fall method of levelling provides a Backsight Foresight	B	Intermediate sight All of the above
106.	[A]	mber of links in a 30 m metric chain is	[B]	150 200
107.	The [A]	Always additive Always zero	[B]	
108.	The	prismatic and the surveyor's compass Give whole circle bearing (WCB) and quadrantal bearing (QB) of a line, respectively		Both give WCB and QB of a line
	[C]	Both give QB of a line	[D	Both give WCB of a line
TAG.	15.1	rains between 2 P.M. and 3 P.M. and the	entire	e basin area just starts contributing water at
	D M	to the outlet, then time of concentration v	will b	e odsin area just starts contributing water at
		15 minutes	[B	
	15	30 minutes + ·	[D	07 60 minutes

[A] 20, 25, 40, 50

[C] 15, 25, 40, 75

[A] A characteristic of plant [C] A characteristic of soil modified plant	(B) A characteristic of soil by [D] Depends on soil water plant fertilizer interaction
Question numbers 111-130 carry 2 marks each:	
increased by 10°C. If the coefficient of the modulus is $2 \times 10^5 MPa$. The stress in the ba	[B] 12 Mpa
[C] 24 Mpa	- [D] 2400 Mpa
stress on a plane carrying the maximum shear [A] $\sqrt{p_1^2 + p_2^2}$ [C] $\sqrt{(p_1^2 - p_2^2)/2}$	d body are p_1 and p_2 ($p_1 > p_2$) then the resultant restress is equal to [B] $\sqrt{(p_1^2 + p_2^2)/2}$ [D] $(\sqrt{p_1^2 + p_2^2})/2$ rably be used at a places where torsion occurs [B] Channel section
[C] Box	[D] Any type of the section
The compressive strength of 100 mm cube as [A] Less [C] Equal	compared to 150 mm cube is always [B] More [D] None of the above
The factor of the safety for	
A] Steel and concrete are same C] Steel is higher than that for concrete	[B] Steel is lower than that for the concrete [D] None of the above
ortland cement is manufactured by burning in	a kiln the following materials
A] Limestone and alumina	[B] Limestone and clay
Limestone and sand	[D] Lime and clay

Which one of the following set of values given the minimum clear cover (in mm) for the main

[B] 5, 15. 25, 50

[D] None

reinforcement in the slab, bean, column and footing respectively, according to IS: 456-2000?

PAPER SET: 15/111/30-35/A

PAI	PER SET. 1		
	is caperally used when		When number of columns is two and they
118.	A combined footing is generally used when [A] When number of columns is more than	[B]	are spaced close to each
	two and they are spaced far apart	[D]	There is only one column
	[C] When number of columns is		
	Average daily consumption of water of city is	100.00	0 m ³ . The maximum daily consumption on
119.	Average daily consumption of water of city is	100,00	
	peak hourry demand will be	TR1	$1.50.000 m^3$
	[A] $1.00,000 m^3$ [C] $1.80,000 m^3$	[D}	$2,70,000 m^3$
		vears t	was 5000, 7000 and 8400, respectively. The
120.	The population of a town in three consecutive population of town in fourth consecutive year	accord	ing to geometrical increase method will be
	[A] 9500	.[D]	7600
	[C] 10100	[D]	10920
121.	A city supply of 15000 cubic meters of water	r per d	ay is treated with a chlorine dosage of 0.5
	ppm. For this purpose, the requirement of ble	eachin	g powder per day (assuming the bleaching
	powder contains 25% chlorine), would be		
	[A] 300 kg	[D]	75 kg 7.5 kg
1	[C] 30 kg	[12]	7.3 Kg
22.	When the degree of consolidation is 50%, tim	e facto	or is about
	A/ 0.2	[B]	0.5
I	C] 1.0	[D]	2.0
23. 11	f two springs of stiffness K ₁ and K ₂ are co	nnect	ed in series, the stiffness of the combined
SI	prings is		
W.	$\frac{K_1 \times K_2}{K_1 + K_2}$	[B]	$\frac{K_1 + K_2}{K_1 \times K_2}$
			$K_1 \times K_2$ $K_1 \times K_2$
10	$K_1 + K_2$		$N_1 \sim N_2$
4. Fo	or a given soil sample, C_c =coefficient	l of	gradation, C_u =coefficient of uniformity,
D_1	$_{0}$ =effective size, D_{30} = diameter through w	hich 3	0% of the total soil mass is passing if C_c =
	and $C_u = 4.0$ then value of D_{30}/D_{10} would		
[A			1.75
[C]	1.50	[D]	
It s	was noted that an a caption of road the frac		d was 80 kmph and the ism density was 70
	and the second s		d was 80 kmph and the jam density was 70 expected on this road is
(A)	solvehicles per hour		1400 vehicles per hour
ICI			the state of the s
100	zono remetes per mour	1	5600 vehicles per hour

p	PAPER SET: 15/III/30-35/A	.455 m. If
126.	PAPER SET: 15/III/30–35/A The R.L. of point A which is on the floor is 100 m and the backsight reading on A is 2 the foresight reading on point B which is on the ceiling is 2.745 m, the R.L. of point B [B] 99.71 m [A] 94.8 m [C] 100.29 m Which one of the following instrument is used in plane table surveying for the meas beginning and vertical distances directly [B] Telescopic alidade	
127	[A] Plain alidade [C] Tacheometer [D] Clinometer [D] the banks of a river, the following the banks of a river of a river.	
.2%	Level Position Staff reading A Staff reading D A 1.5 1 B 1.35 0.85	
	If the R. L. of A is 100 m, then the R. L. of B [A] Is less than 100 m [B] Is more than 100 m [D] Cannot be determined by given	en data

A fluid jet is discharging from a 4 cm diameter orifice with 3 cm diameter at its vena contracta. 129. If the coefficient of velocity is 0.98, the coefficient of discharge for the orifice will be $(0.75)^2$ [B]

 $A = 0.98 \times (0.75)^2$

0.98

 $0.98 \times (1.33)^2$ [C]

0.98 [D] $(1.33)^2$

The length of the pipe is 1 km and its diameter is 20 cm. If the diameter of an equivalent pipe is 130. 40 cm then its length is 20 km

[A] 32 km /

[B]

[C] 8 km [D] 4 km

---- CE (CODE 31) ENDS ----

PAPER CODES: 30 to 35

SECTION - A (PHYSICS)

[Section A is compulsory for all the candidates]

Question numbers 1-25 carry 1 m	ark	each	
---------------------------------	-----	------	--

	Question numbers 1-25 carry 1 may		- in air is
	Potential energy of two equal and opposite poir	nt char	ges 2µC each held 1 m apart in an 15
!:	Potential energy of two equal and opposite p	[B]	2 eV
	[A] 2J	[D]	0.036 J
	[C] 4 J		
	The average number of neutron released by the	fission	n of the Uranium atom is
		[B]	
	[A] 1 [C] 3	[D]	4
	Work done in isothermal expansion of a gas de-	pends	upon
	[A] Temperature	[D]	Expansion ratio
	[C] Both [A] & [B]	[D]	Neither [A] nor [B]
	To convert a galvanometer into a volt meter	rp]	a low resistance is connected in series
[A] a high resistance is connected in parallel	[B]	a high resistance is connected in series
[C] a low resistance is connected in parallel	[D]	a liight resistance is considered
		ancad	the product of resistivity and conductivity
A	As the temperature of a metallic resistor is incre	rp]	decreases
[]	A] increases	[B]	
[(may increase or decrease	[D]	Temams constant
	7	^	T what is the value of the scalar products
T	he two vectors are given as $A = \hat{i} + \hat{j}$ and $B = \hat{i} + \hat{j}$	= 1 -	\hat{k} . What is the value of the scalar products
of	vectors A and B?		
ſΑ	1 1	[B]	2_
[C		[D]	$\sqrt{3}$
٨	conductor is moving in the magnetic field B.	the i	nduced current is I. If the magnetic field is
A	ubled the induced current will	,	
		[B]	become half
[A]		-	be four times
[C]	be doubled		be four times
	N. Maria		on di di Carrago proggura incida
Tw	o soap bubbles have radii in the ratio of 2	2:1. \	What is the ratio of excess pressure inside
the			
[A]	2:1 *	[B]	1:4
[C]	2:1	[D]	4:1
- 10		-	

	NEE	-III/30-35/A	Page 3 o		
	(A E-s-	- shanomanon the	t requires transverse nature	of lig	ght is
9			it requires in		polarisation
	IA			[D]	dispersion
	10			the me	reporties of any substance is the
11	D. Th	e temperature scal	e, which is independent of	the pr	roperties of any substance is the Reaumer scale
	[A]	Celsius scale			Kelvin scale
	[C]	Fahrenheit scal		(10)	
			Constant of the second	observ	ver with the velocity equal to that of sound
11	W	en a source is go	ng away from stationary	l be	VOI 171111 1372
	in a	ir, then the freque	ncy heard by observer wil	[B]	one third
	[A]			[D]	
	[C]	doubled		[10]	Suite
10	A	alasteia dinala is I	cept in a uniform electric f	ield. I	It experiences
12.		a force and a to	cone	[B]	a torque but no rere
	[A]	a force but no to	orque	[D]	and the second s
	[C]				
12	Tree	marature of a ho	blackbody is raised by 5	%. he	eat energy radiated would increase by
13.		25.7%	t blackbody to total by	[B]	21.6%
	[A]	15.6%			12.5%
	[C]	13.070		1, 3	
14.	The	kinetic energy of	a body rotating with angu	ılar sp	peed ω, depends on
14.	[A]	distribution of n	nass	[B]	angular speed
	ICI	both distribution	n of mass and angular	[D]	none of these
	[0]	speed			
					1.0
15.	What	will be the watta	ge of a 50 W, 200 V lam	p whe	en used on 160 V power supply?
	IAK	120 W		[B]	96 W
	IC1	64 W		[D]	32 W
	1-3				
16.	When	a force is applie	ed at one end of an elasti	c wire	e, it produces strain l in the wire. If Y is the
101	Young	es' modulus of th	ne material of the wire, t	hen th	he amount of energy stored per unit volume
		wire is given by			
		Yl		[B]	0.5 Y l
				IDI	0.5 Y l $0.5 Y l^2$
	[C]	$Y l^2$		[2]	0.5 1 0
17	16	iva namaaability	of iron is 2000 its abso	Inte n	permeability in S.I. units is
17.			01 11011 Is 2000, its aeso	(D)	$8\pi \times 10^{-3}$
	The same of the same of	$8\pi \times 10^{-4}$		[B]	
	[C]	800		[D]	5×10^9
		π			π
		1			
18.	It is po	ssible to observe	total internal reflection	when	
		Glass into water		[B]	***
		Air into water	1	[D]	Air into glass
	1-10.				

19.	Three resistors of 4 Ω , 6 Ω and 12 Ω are con The battery current is	onnected in	parallel across a 4 volt battery.
	[A] 0.5 A	[B]	1 A
	[C] 2 A	[D]	10A
20.	The focal length of convex lens is 30 cm a object distance is	and the size	e of image is quarter of the object, then the
	[A], 90 cm	[B]	60 cm
	[C] 30 cm	[D]	40 cm
21.	A projectile has a minimum range of 200 r	n. The max	imum height attained by it is
	[A] 2.5 m	[B]	50 m
	[C] 75 m	[D]	100m
22.	A pair of physical quantity having same di	imensional	formula is
	[A] energy and power	[B]	power and angular momentum
	[C] angular momentum and torque	[D]	torque and energy
23.	When two semiconductors of p-type and which acts like	n-type are	brought in contact, they form a p-n junction
	[A] amplifier	[B]	oscillator
	[C] rectifier	[D]	transistor
24.	The energy of the visible light is of the or	der of	
	[A] few eV	[B]	few MeV
	[C] few keV	[D	0.0001eV
25.	A simple harmonic motion is given by meters. The amplitude of the motion is	the equation	$x = 3\sin\pi t + 4\cos 3\pi t, \text{ where } x \text{ is in}$
	[A] 3 m	[B	4 m
	[C] 5 m	[D	7 m
	SECTION	N – B (CI	HEMISTRY)
	[Section B is con	npulsory f	or all the candidates]
	Overtion numbers 26 50 corm: 1 mark	each .	
	Question numbers 26-50 carry 1 mark		
26.	Body centered cubic lattice has coordinate	tion number	er of
	[A] 8		3] 4
	[C] 12		0} 6

 $[A] \quad Cu_2S$ $[C] \quad Cu_2O$

[B] CuCO₃ Cu(OH)₂

[D] CuFeS2

SET/16/NEE-III/30-35/A	Page 6 of 56
38. Red-Lead is [A] Pb ₂ O ₃ [C] PbO	[3] Pb ₃ O ₄ [D] Pb ₂ O
39. In qualitative analysis of Pb ⁺² , Ag ⁺ ,Cu [A] HCl and H ₂ S	and Cd and Cd the common ions are furnished by
[C] Na ₂ SO ₄ and H ₂ S	D] NH ₄ OH and (NH ₄) ₂ CO ₃
40. Polymerization of chloroethylene give [A] Polyethene	s rise to the polymer
[A] Polyethene [C] Teflon	[B] PVC [D] Nylon
	exchange resin containing RCOOH group becomes free
[A] Mg ²⁺ [C] Cl	[B] Ca ²⁺ [D] H ₃ O*
42. Stains of iron rust on clothes can be rer	moved by
[A] Petrol [C] H ₂ O ₂	[B] Oxalic acid [D] Alcohol
43. The components present in the produce [A] CO ₂ + N ₂ [C] CO ₂ + H ₂	r gas are mainly $[B] CO + H_2 + N_2$ $[D] CO + NO_2$
14. The alkene which on ozonolysis yield a	cetone is
[A] $CH_2 = CH_2$ [C] $(CH_3)_2 C = C(CH_3)_2$	[B] $CH_3 - CH = CH - CH_3$ [D] $CH_3 - CH = CH_2$
5. General formula (RCO) ₂ O represents	
[A] A ketone [C] An acid anhydride	[B] An ester [D] A carboxylic acid
Pierie acid is	acid
[A] Tri nitroaniline	[B] Tri nitrotoluene
[C] A volatile liquid	[D] 2,4,6-trinitrophenol
Which one is the method for converting a [A] Aldol condensation	
	[B] RiemerTiemann reaction
[C] Wolf- Kishner reduction	[B] RiemerTiemann reaction [D] Cannizzaro reaction

47.

NEE-III/30-35/A

Page 7 of 56

- When aniline is treated with chloroform in alcoholic KOH, the product is 48.
 - [A] Benzene diazonium chloride

[B] Benzanilide

[C] A Schiff's base

[D] Phenyl isocyanide

- Tollen's reagent is 49.
 - [A] Ammonical cuprous chloride [C] Ammonical silver bromide

[B] Ammonical cuprous oxide

- [D] Ammonical silver nitrate
- Rosenmund reduction would convert 50.
 - Benzoyl chloride to benzaldehyde
- [B] Acetone to propane
- Acetaldehyde to ethyl alcohol
- [D] Acetylene to acetaldehyde

SECTION - C (MATHEMATICS)

[Section C is **compulsory** for all the candidates]

Question numbers 51-80 carry 1 mark each:

- A student is allowed to select at most n books from a collection of (2n + 1) books. If the total number of ways in which he can select atleast one book is 255, then the value of n is
 - [A] . 3

B1 4

[C] 5

[D] 6

- If A and B are two matrices such that AB = B and BA = A, then
 - $[A] \vee A B$ is idempotent

[B] A + B is idempotent

[C] $(A^5 - B^5)^3 = A^3 - B^3$

 $\{D\}$ A - B is nilpotent

- An integrating factor of the differential equation $(1 + y + x^2y)dx + (x + x^3)dy = 0$ is 53. [B] e^x
 - A X

1 [C] x

[D] $\log x$

- The equation of the plane through the intersection of the planes x + y + z = 1, 2x + 3y + 4z = 5 and perpendicular to the plane x - y + z = 0 is \checkmark
 - [A] 2x + 3z + 4 = 0

[B] x + 31z - 68 = 0

|Q|/x-z+2=0

[D] x - 7y + 21z - 41 = 0

- If $\sin v = \frac{x + 2y + 3z}{\sqrt{x^8 + y^8 + z^8}}$, then $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} + z \frac{\partial v}{\partial z}$ is equal to $\sqrt{\frac{\partial v}{\partial x}}$ 55.
 - [A] $-3\sin v$

[B] $-3\cos v$

 $[C] -3 \cot v$

 $[D] -3 \tan v$

SET 16 NEE-III 30-35/A

Page 8 of 56 If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, then the value of $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is

[D] 3

57. If $3 \tan^{-1} \left(\frac{1}{2 + \sqrt{3}} \right) - \tan^{-1} \left(\frac{1}{x} \right) = \tan^{-1} \left(\frac{1}{2} \right)$, then x is equal to

[CV 1/3

 $[D] \frac{1}{\sqrt{2}}$

58. Two bags contain 3 white, 2 black and 2 white, 4 black balls respectively. A ball is chosen at random then the probability of its being black is

A

15

[C]

[B] $\frac{2}{3}$ [D] None of these

A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre of the circle is ~

[A] A hyperbola

[B] A parabola

[C] An ellipse

D] A circle

The value of a so that the vector $\vec{F} = (axy-z^3)i + (a-2)x^2\hat{j} + (1-a)xz^2\hat{k}$ is irrotational is

The straight lines 3x + 4y - 5 = 0 and 4x = 3y + 15 intersects at the point P. On these lines 61. the points Q and R are chosen so that PQ = PR. The possible slopes of the line QR passing through (1, 2) are

 $[A] -7, \frac{1}{7}$

[B] $7, \frac{1}{7}$

[C] $7, -\frac{1}{7}$

[D] $3, -\frac{1}{3}$

The lines $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-3}{0}$ and $\frac{x-2}{0} = \frac{y-3}{0} = \frac{z-4}{1}$ are

[A] parallel

B coincident

[C] skew

D perpendicular If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum values at p and q respectively such that $p^2 = q$, then a is equal to \checkmark

[B] 3

[CV 2

[D] 1

If Rolle's theorem holds for $f(x) = x^3 - 6x^2 + Kx + 5$ on [1, 3], with $c = 2 + \frac{1}{\sqrt{3}}$, then the value of K is \checkmark

[A] -3

[B] 3 [D] 11-/

ICN 7

If S is any closed surface enclosing a volume V and $\vec{F} = x\hat{\imath} + 2y\hat{\jmath} + 3z\hat{k}$. The value of $\iint_{S} \vec{F} \cdot \hat{n} ds$

[A] 2V

[C] 4V

66. If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = |\vec{r}|$, then the value of $curl(r^n \vec{r})$ is

[A] 2î

[C] $\vec{0}$

[B] $3\hat{i} + 2\hat{j}$ [D] $x^2 + y^2 + z^2$

The shortest distance between the lines $\frac{x-1}{1} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is 67.

t distance between the $\frac{1}{1}$ $\frac{1}{\sqrt{6}}$ $\frac{(b_1 \times b_2) \cdot (a_2 - a_1)}{|b_1 \times b_2|}$ [B] $\frac{1}{\sqrt{6}}$ [D] $\frac{1}{3}$

The radius of curvature at the origin for the curve $x^3 + y^3 - 2x^2 + 6y = 0$ is 68.

 $\begin{bmatrix} A \end{bmatrix} \quad \frac{3}{2}$

[D] 1

69. The value of the determinant -S + 8+5-2+ to

 $\begin{vmatrix}
0 & a-b & a-c \\
b-a & 0 & b-c \\
c-a & c-b & 0
\end{vmatrix}$ is

[A] abc

B

[C] 0

[D] (a-b)(b-c)(c-a)

- If X is a Poisson variate such that P(2) = 9P(4) + 90P(6), then the mean of X is 70.
 - $[A] \pm 1$ [C] ±3

- [B] ±2 [D] None of these
- The value of line integral $\int_c [(x^2 y^2)dx + 2xy dy]$ where c is the boundary of the rectangle 71. formed by lines x = 0, x = 2, y = 0, y = 1 is
 - [A] 1 ICV 3

- If $\log_3 2$, $\log_3(2^x 5)$ and $\log_3(2^x \frac{7}{2})$ are in A.P., then x is equal to
- [A] 1 [C] 2

- [D] None of these
- 73. If third term of an H. P. is $\frac{1}{13}$ and the fifth term is $\frac{1}{19}$, then its 15th term is \checkmark

- [D] $\frac{1}{59}$
- The radius of curvature at the point (x, y) on the curve $x^2 = 4ay$ is 74.
 - [A] $2\sqrt{a}(y+a)^{3/2}$

 $\frac{2}{\sqrt{a}}(y+a)^{3/2}$

[C] $\frac{1}{\sqrt{2}}(1+x^2)^{3/2}$

- [D] $\frac{1}{\sqrt{3}}(x-a)^{3/2}$
- The coefficients of the $(2r+4)^{th}$ and $(r-2)^{th}$ terms in $(1+x)^{18}$ are equal, then r is equal to 75.
 - [A] 10

[C] 5

- [B] 8 [D] 6
- If $f(x) = \begin{vmatrix} \sin x & \sec x & x^2 1 \\ \csc x & x \sin x & \cos x \\ \tan x & x \tan x & x^2 + 1 \end{vmatrix}$, then $\int_{-\pi/3}^{\pi/3} f(x) dx$ is equal to

[A], 0

[B] $\frac{\pi}{3} + 1$

[C] $\frac{\pi}{2} - 1$

[D] 1

77. The equation of the bisectors of the angle between the lines represented by the equation $x^2 + 2xy \csc \theta - y^2 = 0$ is

$$[A] \quad x^2 - 2xy \sec \theta - y^2 = 0$$

$$[B] \quad x^2 - 2xy \cos \theta - y^2 = 0$$

$$[C] \quad x^2 - 2xy \sin \theta - y^2 = 0$$

[D] None of these

78. The focus of the parabola $x^2 - 8x + 2y - 10 = 0$ is [A] (4, 13) $\left(4, \frac{27}{2}\right)$

[C]
$$\left(1, \frac{13}{2}\right)$$

[D]
$$\left(4, \frac{25}{2}\right)$$

79. The area bounded by $y = x^2$ and $y = 1 - x^2$ is

$$[A] \frac{16}{3}$$

[B] $\frac{32}{3}$

[C]
$$\sqrt{8}$$

[D] $\frac{64}{3}$

80. The greatest rate of increase of $u = x^2 + yz^2$ at the point (1, -1, 3) is

[B] $4\sqrt{2}$

[C] √3

[D] None of these

[CANDIDATE HAS TO ATTEMPT QUESTION NUMBERS 81 – 130 OF SECTION D FROM APPROPRIATE ENGINEERING BRANCH AS SHOWN IN THE ADMIT CARD OF NEE – 2016]

SECTION - C (MATHEMATICS)

[Section C is Compulsory for all al the andidates]

Question numbers 51-80 carry 1 mark each:

The number of solution of the equation
$$tan^{-1}(x-1) + tan^{-1}x + tan^{-1}(x+1) = tan^{-1}3x \text{ is}$$

The foci of the ellipse
$$\frac{x^2}{16} + \frac{y^2}{b^2} = 1$$
 and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide, then the value of b^2 is

[A] $\frac{1}{[C]}$ [B] $\frac{5}{2}$ [D] $\frac{1}{2}$ $\frac{1}{25}$ coincide, then the value of b^2 is

[B] $\frac{5}{2}$ [B] $\frac{1}{25}$ [C] $\frac{1}{25}$ [B] $\frac{1}{25}$ [C] $\frac{1}{25}$ $\frac{1}{25}$ coincide, then the value of b^2 is

[B] $\frac{1}{25}$ [B] $\frac{1}{25}$ [C] $\frac{1}{25}$ coincide, then the value of b^2 is

[B] $\frac{1}{25}$ [C] $\frac{1}{25}$ coincide, then the value of b^2 is

[B] $\frac{1}{25}$ [C] $\frac{1}{25}$ [D] $\frac{1}{25}$

> 3/4/5

53. If
$$F = xy^2i + 2x^2yzj - 3yz^2k$$
, then curl F at $(1, -1, 1)$ is

[A]
$$i+2k$$

$$[C]$$
 $-i-2k$

[B]
$$-i + 2k$$

$$[D] - i - 2j$$

[A]
$$\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$$

[B]
$$\frac{-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$$

$$\begin{bmatrix} C \end{bmatrix} \quad \frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{0}$$

The events A and B are such that
$$P(A) = 1/4$$
, $P(A B) = 1/2$ and $P(B | A) = 2/3$. Then $P(B)$ is

Page 12 of 64 Exam-III/17/30-35/A $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} =$ [B] $\overline{\wedge} a^2 b^2$ 31 $x^2 + 2x$ [D], $\frac{\overline{\wedge}}{2ab}$ [A] 2 x ab [C] $\bar{\Lambda}$ If $z = \tan(y + ax) + (y - ax)^{\frac{2}{2}}$, then $\frac{\partial^2}{\partial x^2} - a^2 \left(\frac{\partial^2 z}{\partial y^2}\right)$ is equal to 58. The function $u = 3x^2 - y^2 + x^3$ is maximum at [B] (0, 2) [D] (3, 5) [A] (-5, -3) [C] (-2, 0) The distance between the point(-1, -5, -10) and the point of intersection of the line 60. $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ with the plane x-y+z = 5 is

[A] 13 [C] 16

1012 3-6

If a, b, c and x are real numbers and

$$\Delta = \begin{vmatrix} 1+a & 1+ax & 1+ax^2 \\ 1+b & 1+bx & 1+bx^2 \\ 1+c & 1+cx & 1+cx^2 \end{vmatrix}$$
. Then the value of Δ is

abc

- Abcx

- [A] 1
- [C]2

- [B] -1
- [D] -2

Page 13 of 64

2 17. 1995 - 1+109x 1+1092

63. If
$$x > 1, y > 1, z > 1$$
 are in G.P. then $\frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z}$ are in

- [A] A.P.
- [C] G.P.

- [D] I one of these

64. The greatest rate of increase of
$$u = xyz^2$$
 at the point $(1, 0, 3)$

[A] 19.

The linear system of equations
$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + \alpha z = \beta$ has unique solution if

- [A] $\beta \neq 10$, α may have any value
- [C] $\alpha = 3$, $\beta = 10$

- [B] $\alpha = 3$, $\beta \neq 10$
- [DV $\alpha \neq 3$, β may have any value

66. The value of an integral is
$$\int \frac{x^2+1}{x^4+1} dx$$
 is

- [A] $(1/\sqrt{2}) \tan^{-1}[(x^2-1)/x\sqrt{2})$
- [C] $(1/\sqrt{2}) \sin^{-1}[(x^2-1)/x\sqrt{2})$
- [B] $(1/\sqrt{2}) log[(x^2-1)/x\sqrt{2})]$

[D]
$$(1/\sqrt{2}) log[(x^2+1)/x\sqrt{2})]$$

If S is any closed surface, then
$$\iint_{S} curl \overrightarrow{F} \cdot \hat{n} dS$$

- [A] -2
- [C] 1

68. The lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-\alpha}$$
 and $\frac{x-1}{\alpha} = \frac{y-4}{2} = \frac{z-5}{1}$ are oplanar if

- [A] $\alpha = 1$ or -1
- [C] $\alpha = 3 \text{ or } -3$

[B] $\alpha = 0 \text{ or } -3$

$$[D]/\alpha = 0 \text{ or } -1$$

69. For a binomial variable X if
$$n = 5$$
 and $P(X = 1) = 8P(X = 3)$. Then p is given by

- [C] 1/5
- 5c, pq" = 8x 5c3 p2

Exam-HI/17/30-35/A

Page 14 of 64

441

PAPER CODE: 30 to 35

The area bounded by the curves $y^2 = 4x$ and $y^2 = 4y$ is

[A] 32/3 [C] 8/3

[B] 16/3 [D] 0

71. Two linearly independent solutions of the differential equation $4\left(\frac{d^2y}{dx^2}\right) + 4\left(\frac{dy}{dx}\right) + 5y = 0$

[B] $e^{x/2} \cos x$, $e^{x/2} \sin x$ [D] $e^{-x/2} \cos x$, $e^{x/2} \sin x$

If a is a real number and if the middle term of $\left(\frac{a}{3}+3\right)^8$ is 1120, then value of a is

[C] $\pm\sqrt{3}$

The point on the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$, the normal at which is parallel to the X-axis is

[A] (0,0)

[B]/(0, a)

[C] (a, 0)

[D] (a, a)

The number of diagonals in a octagon is 74.

> 20 [A]

[B] 28

[C] 10

[D]16

If the lines 3x + y + 2 = 0, 2x - y + 3 = 0 and x + my - 3 = 0 are concurrent, then the value of m is

[A] 1

[C] 3

If A be an 4×4 matrix such that determinant of A is 2. Then the determinant of adj A 76,

A 8

[C] 2

[B] $\frac{3(3-3m)-1(-6-3)+2(2m)}{9-9m+6+3+4m+2}$

111/17/30-35/A

The value of line integral $\int_C (3x-5y)dx + (x-6y)dy$, v here C is the ellipse $\frac{x^2}{4} + y^2 = 1$ [B] 10π [D] 12π Which is the solution of the differential equation:

[A]
$$0$$
 [C] -12π

Which is the solution of the differential equation: $(x + 2y^3) \left(\frac{dy}{dx}\right) = y$

$$[A] \quad y/x = x^2 + c$$

[C]
$$x/y = y^2 + c$$

[B]
$$cy = (1/2)y^4 + c$$

79. If $\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$, then the value of x is

*00=6 (±00,0) In an ellipse, the distance between its foci is 6 and minor axis is 8, then its eccentricity is

[B]
$$1/\sqrt{5}$$
 [D]/ $3/5$

----xxx---Mathematics Paper End----xxx-

CANDIDATE HAS TO ATTEMPT QUESTION NUMBERS 81-130 SECTION-D FROM APPROPRIATE ENGINEERING BRANCH AS SHOWN IN THE ADMIT CARD OF NEE-2017

2 = 36

SECTION - D (Civil Engineering) [Candidate who has opted for CE (Code-31) in NEE - 2017]

Question numbers 81-110 carry 1 mark each:

- An element is subjected to two equal and like stresses o, on two mutually perpendicula planes. The shape of the Mohr's circle wil be
 - A circle of radius 20

[B] A circle of radius σ

A circle of radius σ/2

[D] A point

The difference between bending moment values at any two sections will be equal to 82.

The area of shear force diagram bet veen

The difference in slopes of shea [B] force diagram at the same sections

those two sections The area of loading diagram bet veen the two sections

The moment of area of diagrar [D] between the two sections taken abou mid-point between the two sections

The neutral axis of the cross-section a beam is that axis at which the bending stress is 83.

Maximum

[B] Average

Minimum

[D]/zero

The maximum deflection of a fixed beam carrying a central point load lies at 84.

[A] Fixed ends

[B] 1/3 from fixed ends

[C] Centre of beam

[D] None of these

The ratio of compressive strength to tensi > strength of concrete 85.

[A] Increases with age

[B] Decreases with age

Remains constant

[D] None of these

The relation between modulus of rupture fcr and characteristics strength of concrete fck i given by (where f_{cr} and f_{ck} are in N/mm²)

[A] $f_{cr} = 0.35 \sqrt{f_{ck}}$

[B] $f_{cr} = 0.5 \sqrt{f_{ck}}$ [D] $f_{cr} = 1.2 \sqrt{f_{ck}}$

[G] $f_{cr} = 0.7\sqrt{f_{ck}}$

he	111/17/3	30-35/A	Page 25 of 64		
1					PAPER CODE: 31
87.	Irrig	ation canal is gene	erally aligned along		
	[A] [C]	Ridge line Valley line		[B] [D]	Contour line Straight line
88.	Reyn	nolds number is th	ne ratio of inertial force	and	
	[A] [C]	Elasticity Surface tension		[B] [D]	Gravitational force Viscous force
89.	Hyd	rostatic pressure o	on dam depends upon,	its	
	[A] [C]	Length Material	a Guilia O 5 mais		Depth All of these ecific gravity is 0.5, then the kinematic
90.	If th	e dynamic viscosi osity of that fluid	in stokes is	c and of	
	[C]	0.25	9	[B]	0.50 None of these
91.	The	ratio of the volume	e of voids to the volun	ne of so	l solids in a given soil mass, is known
	as			ID.	Weid ratio
	[A]/ [C]	Porosity Specific gravity		[B]	Void ratio None of these
02.	A ver	tical triangular ar urface of a liquid.	ea with vertex down The centre of pressur	ward and ebelow	d altitude 'h' has its base lying on the the free surface is at a distance of
		h/4		[B	h/3
,	L 3	1/2		[D	2h/3
3. [Under-	reamed piles are	generally		
[.	A] D	Priven pile recast pile		[B	Bored pile All of these
T	he uni	t weight of a soil	at zero air voids dep	ends c	1
	y Sp	pecific gravity nit weight of wat		[B	Water content All of these

	· · · · · · · · · · · · · · · · · · ·						
For a given soil sample, C_c = coefficient of gradation, C_u = coefficient of uniformity, D_c effective size, D_{30} = diameter through which 30 per cent of the total soil mass is passin C_c = 1.0 and C_u = 4.0, then the value of D_3 / D_{10} would be							
[A] 2.00 [C] 1.50	[B] 1.75 [D] 1.25						
96. Shearing strength of a cohesionless soil depends upon							
[A] Dry density [C] Confining pressure	[B] Loading rate [D] Nature of loading						
97. In water bound macadam (WBM) roads, binding materials to hold the stones is							
[A] Stone dust [C] Brick dust	[B] Sand [D] Cement						
98. The convexity provided to the carriageway bis known as	between the crown and edge of the pavement						
[A] Super-elevation [C] Height of the pavement	[B] Camber [D] None of these						
99. If the stopping distance and average length o then the theoretical maximum capacity of a rain	f a vehicle are 18 m and 6 m, respectively, ffic lane at a speed of 10 m/sec is						
[A] 3000 vehicles per hour [C] 2500 vehicles per hour	[B] 2000 vehicles per hour [D] 1500 vehicles per hour						
100. The boundary of water of a still lake, represent	S						
[A] Contour line [C] Contour gradient	[B] Level line [D] Contour surface						
101. The compensation for curvature on gradient for	Meter Gauge is given by						
[A] 70/R [C] 35/R	[B] 52.5/R [D] 105/R						
102. In a metric leveling staff, value of subdivision i	S						
[A] 3 mm [C] 5 mm	[B] 4 mm [D] 10 mm						

JE-11	1/1//-			PAPER CODE: 31			
103.							
		On its outer spindle without a relative motion between the vernier and graduated scale of lower plate On its inner spindle with a relative motion between the vernier and graduated scale of lower plate	[B]	On its outer spindle with a relative notion between the vernier and raduated scale of lower plate On its inner spindle without a relative motion between the vernier and graduated scale of lower plate			
104.	104. For steel structure, the most economical section for coh mn is						
	[A] [C]	Rectangular Tubular section	[B] [D]	Solid circular			
105. The detention period in coagulation tanks is usually ket t as							
	[A]	1.0 to 1.5 hours	[B] [D]	2 0 to 6.0 hours / E to 12 hours /			
106.	TF +1	ne focal length of the object glass is 25 cm, the additive constant is	m and	nd the distance from object glass to the			
	[A] [C]	0.1 0.4	[B]	0] 133			
107.	The	population of a town in three consecutive population of the town in the fourth consecutive and is	e year	rs is 5000, 7000 and 8400, respectively. We year according to geometrical increase			
	[A] [C]	9500 10100	[B	3] 9300 D] 10920			
108.	The type of valve which is provided on the suction pipe in a tube-well is						
~	[A]/ [C]	Reflux valve Pressure relief valve	[B	B] A r-relief valve D] S uice valve			
109.	For controlling the growth of algae, the chemical genera ly used is						
		Alum Bleaching powder	[E	B] L me D] Copper sulphate			

Exam-III/17/30-35/A

Page 28 of 64

PAPER CODE: 31

:

110.	Self-cleansing	ve	locity	is

- The minimum velocity of flow required [A] to maintain a certain amount of soli is in the flow
- Such flow velocity as would be [C] sufficient to flush out any deposited solids in the sewer
- The maximum velocity of flov required to maintain a certain amount of solids in the flow
- Such flow velocity as would be sufficient to ensure that sewage doe not remain in the sewer

Question numbers 111-130 carry 2 marks each:

- One simply supported beam 'A' carries a point load at its mid span. Another identical bean 'B' carries same load uniformly distribu ed over the entire span. The ratio of maximum deflection of the beams A and B will be
 - [A] 5/8

- [B] 8/5
- [D] None of the these
- The slope of the elastic curve at the free end of a cantilever beam of span L and flexura [C] 3/5 rigidity EI, subjected to uniformly distributed load of intensity W is
 - [A] $WL^3/6EI$ [C] $WL^4/8EI$

- [B] WL³/3EI [D] WL³/2EI
- 113. A drainage basin has axial length and a ea 100 km and 225 km², respectively. The form factor of the same basin is
 - [A] 0.15

[B] 0.20

[C] 0.25

- [D] 0.30
- The reduction coefficient of a reinforced oncrete column with an effective length of 4.8 r and size 250x300 mm is
 - [A] 0.80

[B] 0.95

[C] 0.90

- [D] 0.85
- If the velocities of flow of a stream of 1(m depth recorded by a current meter at depths c 2 m and 8 m are 0.7 m and 0.3 m, respect vely, the discharge per unit width of the stream i cubic metres, is
 - 2.5

[B] 5.0

[C] 10.0

[D] None of these

A coarse grained soil sample has void ratio 0.75 and specific gravity 2.75. The critical gradient at which quick sand condition occurs, is

[A] 1.00 [C] 0.75 [B] 0.50

[D] 0.25

If one wants to be 90% sure that the design flood in a dam project will not occur during the design life period of 100 years, the recurrence interval for such a flood would be

[A] About 90 years

[B] Equal to 100 years

About 110 years [C]

[D] Roughly 1000 years

The intensity of active earth pressure at a depth of 10 m in a dry cohesionless sand with an 118. angle internal friction 30° and weight 18 kN/m3, is

[A] 40 kN/m^2 [C] 60 kN/m² [B] 50 kN/m^2

[D] 80 kN/m²

A fluid jet discharging from a 4 cm diameter orifice has a diameter 3 cm at its vena contracta. If the coefficient of velocity is 0.98, the coefficient of discharge for the orifice 119. will be

[A] $\sqrt{0.98 \times (0.75)^2}$ [C] $0.98 \times (1.33)^2$

[B] $(0.75)^2 / 0.98$ [D] $0.98 / (1.33)^2$

A clay strata of 2 m thickness consolidates 80% in 10 years. For 80% consolidation of 8 m 120. thick of same clay layer, required time is

100 years A

[B] 160 years

140 years [C]

[D] 120 years

A vehicle is travelling at a speed of 80 km/hour on corcrete pavement. For the coefficient 121. of friction between tyre and pavement surface being 0.35, stopping distance for the vehicle

[A] 44.44 m

[B] 75.99 m

116.43 m C

[D] 232.86 m

Given that Plasticity Index (PI) of local so il = 15 and PI of sand = zero, then for a desired 122. PI of 6, the percentage of sand in the mix : nould be

DE:

70 [A]

60

40 [C]

[D] 30

A soil has a discharge velocity of $6x10^{-7}$ m s and a void ratio of 0.5. Find its seepage 123. velocity

18x10⁻⁷ m/s [A]

[B] 12x10⁻⁷ m/s

6x10⁻⁷ m/s [C]

[D] $3x10^{-7}$ m/s

A summit curve is formed at the intersection of a 3% up gradient and 5% down gradient. To provide a stopping distance of 128 m, the length of summit curve needed will be

3 and

K fli

and

s in

271 m A

[B] 340 m

[C] 322 m [D] 298 m

An old short column 20 cm x 20 cm in section is reinforced with 4 bars whose area of cross sectional area is 20 sq. cm. If permissible compressive stresses in concrete and steel are 4.0 MPa and 130 MPa, the safe load on the colunn, should not exceed

41.2 kN [A]

[B] 412 kN

[C] 4120 kN

[D] None of these

For a sleeper density of (n+5), the number o 'sleepers required for constructing a broad 126. gauge railway track of length 650 m is

900

918 [B]

975 [C]

[D] 880

The following consecutive readings were taken with a dumpy level and a 3 m staff on a continuously sloping ground.

0.425, 1.035, 1.950, 2.360, 2.950, 0.750, .565, 2.450, 0.320, 1.025, 2.165, 2.955.Which of the following reading are backsight?

[A] 0.425, 2.950, 0.750, 0.320

[B] 0.425, 0.750, 0.320, 2.955

 $[C] \sim 0.425, 0.750, 0.320$

[D] 0.425, 2.360, 0.750, 0.320

The back staff reading on a bench mark (B. M.) of R. L. 300 m is 2.685 m and fore sight reading on a point is 1.345 m. The reduced level of that point is

[A] 302.685 m

[C] 304.030 m

[B] 30 .345 m

[D] 30 .340 m

129. A city supply of 15000 cubic metres of water per day is treated with a chlorine dosage of 0.5 ppm. For this purpose, the requirement of 25% bleacling powder per day would be

[A] 300 kg

[C]/ 30 kg

[B] 75 kg

[D] 7.: kg

130. In a BOD test, 1.0 ml of raw sewage was diluted to 00 ml and the dissolved oxygen concentration of diluted sample was 6.0 ppm. On incubating the diluted sample for 5 day at 20°C, its BOD was 4.0 ppm. The BOD of raw sewage was

[A] 100 ppm

[C] 300 ppm

[B] 200 ppm

[D] None of these

-----xxxx..... Civil Engineering (Code - 31) Paper Ends------xxxx----