MARKING SCHEME BSEH PRACTICE PAPER 1, 10TH MATHS(Standard), March2025 (ENGLISH MEDIUM)

	(ENGLISH MEDIUM)	1
Q. no.	Expected solutions	mar ks
	Section-A	
1	(b)500	1
2	(a) both positive	1
3	$(a)x^2-4x+3\sqrt{2}=0$	1
4	((b)1	1
5	$(c) \pm 4$	1
6	(c)7	1
7	(a)30°	1
8	$(a)^{\frac{5}{2}}$	1
9	(c) r ² sq. units	1
10	$(d)\sqrt{6}:\sqrt{\pi}$	1
11	(b) 8 [use mode= 3median-2mean]	1
12	(b) 14	1
13	a =3	1
14	diameter	1
15	1	1
16	$A+B=90^{\circ}$	1
17	r ² sq. units	1
18	10+15=25	1
19	(a)Both Assertion(A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion(A).	1
20	(d) Assertion(A) is false but Reason(R) is true.	1
	SECTION-B	
21.	From the above question, we have the linear equations as,	
(a)	2x + y = 23(i)	
	4x - y = 19(ii)	
	Adding the equation (i) and (ii),	
	6x = 42	1/2
	x = 7.	
	Substituting x value in (i), we get,	

	2/7) 22	
	2(7) + y = 23	
	14 + y = 23	
	y = 23 - 14	1/2
	y = 9	
	Substituting the values of yand yin Ev. 2yand y/y, 2, we get	
	Substituting the values of x and y in 5y - 2x and y/x - 2, we get, $5y - 2x = 5 \times 9 - 2 \times 7$	
	= 45 - 14	1/2
	= 31	
	y/x - 2 = 9/7 - 2	
	= -5/7.	1/2
	3, 7.	
21.	In the above equation a_1 = 4, a_2 = 2, b_1 = p and b_2 = 2.	
(b)	In the above equation $a_1 = 4$, $a_2 = 2$, $a_1 = \beta$ and $a_2 = 2$.	1/2
	If the solution of a pair of linear equations is unique, then	
	$a_1/a_2 \neq b_1/b_2$	1/2
	4/2 ≠ p/ 2	
	7	1/2
	4 ≠ p	
	Thus, the pair of linear equations has a unique solution for all values of p except 4	1/2
22.	Given, DE AB	
	We have to find the value of x.	
	From the figure,	
	CD = x+ 3	
	AD = 3x + 19	
	CE = x	
	BE = 3x + 4	
	 ∴ By Basic Proportionality Theorem 	1/2
	CD/DA = CE/EB	
	\Rightarrow (x+3)/(3x+19) = x/(3x+4)	1/2
	On cross multiplication,	'-

		ı
	(x+3)(3x+4) = x(3x+19)	
	By multiplicative and distributive property,	
	$3x^2 + 4x + 9x + 12 = 3x^2 + 19x$	1/2
	Cancelling out common terms,	-, -
	13x + 12 = 19x	
	By grouping,	
	13x - 19x = -12	
	-6x = -12	
	x = 12/6	1/2
	x = 2	
	Therefore, the value of x is 2.	
23.	The chord of the larger circle is a tangent to the smaller circle as shown in	
	the figure below.	
	5 cm P	
	13.	1/2
	$\frac{3c_m}{s}$	
	Q	

	PQ is a chord of a larger circle and a tangent of a smaller circle. Tangent PQ is perpendicular to the radius at the point of contact S. Therefore, \angle OSP = 90° In \triangle OSP (Right-angled triangle) By the Pythagoras Theorem, OP ² = OS ² + SP ² $5^2 = 3^2 + SP^2$ $5^2 = 3^2 + SP^2$ $SP^2 = 25 - 9$ $SP^2 = 16$ $SP = \pm 4$ SP is the length of the tangent and cannot be negative Hence, SP = 4 cm.	1
	QS = SP (Perpendicular from center bisects the chord considering QP to be the larger circle's chord) Therefore, QS = SP = 4cm Length of the chord PQ = QS + SP = 4 + 4 PQ = 8 cm Therefore, the length of the chord of the larger circle is 8 cm.	1/2
24. (a)	$sin(A - B) = 1/2 \Rightarrow Sin(A-B) = sin (30^{\circ}) \Rightarrow A - B = 30^{\circ}(1)$	1/2
	$cos (A + B) = 1/2 \Rightarrow cos(A + B) = cos (60^{\circ}) \Rightarrow A + B = 60^{\circ}(2)$	1/2
	On Adding Eq. (1) and (2), we get $2A = 90^{\circ} \Rightarrow A = 45^{\circ}$	1/2
	Now, Putting the value of A in Eq.(2), we get 45° + B = 60° \Rightarrow B = 15° Hence, A = 45° and B = 15°	1/2
24. (b)	We have , $a^2/x^2-b^2/y^2$	
	$=a^{2}/a^{2}\sin^{2}\theta-b^{2}/b^{2}\tan^{2}\theta \ [\text{`.'}x=a\sin\theta,y=b\tan\theta]$	1/2

		I
	$=1/\sin^2\theta-1/\tan^2\theta$	1/2
	$=\cos e^2\theta - \cot^2\theta$	1/2
	['.'1+cot²θ=cosec²θ-cosec²θ-cot²θ=1]	
	=1	1/2
25.	Given, rectangular field of dimension 20m × 16m A cow is tied with a rope of length 14 m at the corner of the rectangular	
	field.	
	We have to find the area of the field in which the cow can graze.	
	D C	
	G	
		1/2
	A F B	·
	20 m — D	
	Let ABCD be the rectangular field. From the figure,	
	We observe that the area that the cow can gaze is in the form of a sector	
	of a circle.	
	So, AGEF is a sector of a circle with radius 14 m.	1/2
	Area of sector = $\pi r^2 \theta / 360^\circ$ Here, $\theta = 90^\circ$	
	Area of sector = $(22/7)(14)^2(90^\circ/360^\circ)$	
	= (22)(2)(14)(1/4) = (22)(14)(1/2)	1/2
	= (22)(14)(1/2) = 11(14)	
		I

	= 154 m ²	1/2
	Therefore, the area in which the cow can gaze is 154 m ² .	
	SECTION-C	1
26.	Let us assume that	
	$3-2\sqrt{5}$ is rational.	1/2
	Hence it can be written in the form	
	$\frac{a}{b}$ where a and b are co-prime and $b \neq 0$	
	Hence $3-2\sqrt{5} = \frac{a}{b}$	1/2
	$\Rightarrow 2\sqrt{5} = 3 - \frac{a}{b} = \frac{3b - a}{b}$	1/2
	$\Rightarrow \sqrt{5} = \frac{3b-a}{2b}$	1/2
	where $\sqrt{5}$ is irrational and $\frac{3b-a}{2b}$ is rational.	
	because irrational number≠ rational number	1/2
	Therefore the above is a contradiction.	1/2
	So our assumption is wrong.	1/2
	Hence 3–2 $\sqrt{5}$ is irrational.	
27.	since α and β are the zeroes of the polynomial $f(x)=2x^2-7x+3$	
	$\therefore \alpha + \beta = -\left(\frac{-7}{2}\right) = \frac{7}{2} \text{ and } \alpha\beta = \frac{3}{2}$	1
	Now $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	1

	$= \left(\frac{7}{2}\right)^2 - 2 \times \frac{3}{2} = \frac{49 - 12}{4} = \frac{37}{4}$	1
28. (a)	Let ₹ x is the fixed charge for the first two days and ₹ y is the additional charge for each.	1/2
	From the first condition, Latika paid ₹ 22 for a book kept for six days x + 4y = 22(1)	1/2
	According to the second condition, Anand paid ₹16 for a book kept for four days x + 2y = 16(2)	1/2
	Now solve equations (1) and (2) Subtracting (2) from (1), we get, 2y = 6 y = 3.	1/2
	Substitute the value of y in (2), we get, x + 2 x 3 = 16 x = 16 - 6 = 10 x = 10. x = 10.	1/2
	Therefore, the fixed charge = ₹ 10 and the charge for each extra day = ₹ 3.	1/2
28. (b)	Let the digits at tens place and units place in the first number be x and y respectively. A number can be expressed in the expanded form as 10(x) + y. On reversing the digits x is the units digit and x is the tens digit. The	
	On reversing the digits, x is the units digit and y is the tens digit. The expanded notation for the second number be $10(y) + x$	1/2

As per the question,	
(10x + y) + (10y + x) = 66	
\Rightarrow 11(x + y) = 66	1/
\Rightarrow x + y = 6(1)	
Also, it is given that the difference between the two digits is 2. x - y = 2(2)	1/
or y - x = 2(3)	
When $x - y = 2$	1/
Subtracting equation (2) from equation (1).	
(x + y) - (x - y) = 6-2	
2y = 4	1/
y = 2 and $x = 4$.	'
The two digit number is $10x + y = 40 + 2 = 42$.	
When y - x = 2	
Subtracting equation (3) from equation (1).	
(x + y) - (y - x) = 6 - 2	
2x = 4	
x = 2 and $y = 4$	1/
The two digit number is $10y + x = 20 + 4 = 24$	

(a)		
	$\Rightarrow (\sin\theta + \cos\theta)^2 = 3$ $\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$	1
	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3$ $\Rightarrow 2\sin\theta\cos\theta = 2$	
	\Rightarrow sinθcosθ=1	1/2
	$\Rightarrow \sin\theta \cos\theta = \sin^2\theta + \cos^2\theta$ $\Rightarrow 1 = \frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta \cos^2\theta}$	1
	$\Rightarrow \tan\theta + \cot\theta = 1$	1/2
30. (b)	$LHS = \frac{\cot A - \cos A}{\cot A + \cos A}$ $= \frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$	1
	$= \frac{\cos A(\frac{1}{\sin A} - 1)}{\cos A(\frac{1}{\sin A} + 1)}$	1
	$= \frac{\text{cosecA} - 1}{\text{cosecA} + 1} = \text{RHS}$	1

	$9x + 90 = x^2$ $x^2 - 9x - 90 = 0$	1
	Given, $9(x + 10) = x^2$	1
(a)	Let the actual marks be x Total marks = 30	1/2
32.	We have to find the marks Sunita scored in the test.	
	SECTION-D	
	(ii)The probability of selecting a white ball = number of favourable outcomes / number of possible outcomes Probability = 8/24= 1/3	1
	Number of possible outcomes = 24 The probability of selecting a ball that is not red = number of favourable outcomes / number of possible outcomes Probability = 20/24= 10/12= 5/6	1
	(i)The probability of selecting a ball that is not red is given by Favourable outcomes = balls other than red = white balls + blue balls Number of favourable outcomes = 8 + 12 = 20	
	= 3(4) = 12	1/2
	Number of white balls = 2x = 2(4) = 8 Number of blue balls = 3x	
	Number of red balls = x = 4	
	x = 24/6 $x = 4$	1/2
	Given, $x + 2x + 3x = 24$ 6x = 24	
31.	Given, a bag contains 24 balls of which x are red, 2x are white and 3x are blue. A ball is selected at random.	

	On factoring, $x^2 - 15x + 6x - 90 = 0$ x(x - 15) + 6(x - 15) = 0 (x + 6)(x - 15) = 0 Now, $x + 6 = 0$ x = -6 Also, $x - 15 = 0$	1+1
	x = 15 Negative term $x = -6$ is neglected. So, $x = 15$	1/2
	Therefore, Sunita scored 15 marks in the examination.	
32. (b)	Let the first integer be x. The next consecutive positive integer will be x + 1. According to the given question, the sum of squares of x and x + 1 is 365.	1/2
	$x^{2} + (x + 1)^{2} = 365$ $x^{2} + (x^{2} + 2x + 1) = 365 [$	1
	$2x^{2} + 2x - 364 = 0$ $2(x^{2} + x - 182) = 0$ $x^{2} + x - 182 = 0$	1
	$x^{2} + 14x - 13x - 182 = 0$ x (x + 14) - 13 (x + 14) = 0 (x - 13) (x + 14) = 0 x - 13 = 0 and $x + 14 = 0x = 13$ and $x = -14$	1+1
	The value of x cannot be negative (because it is given that the integers are positive). Thus, we ignore $x = -14$. $\therefore x = 13$ and $x + 1 = 14$	1/2

33.	^	
(a)	1 2	
	STOT	
	M Q R N	1/2
	Given $\triangle NSQ \cong \triangle MTR$ and $\angle 1 = \angle 2$ To prove : $\triangle PTS \sim \triangle PRQ$	
	Proof : Since, Δ NSQ \cong Δ MTR	
	So, SQ = TR(i) Also, $\angle 1 = \angle 2 \Rightarrow PT = PS$ (ii) [since, sides opposite to equal angles are also equal]	$1\frac{1}{2}$
	From Eqs.(i) and (ii), PS/SQ=PT/TR \Rightarrow ST QR [by converse of basic proportionality theorem] $\therefore \angle 1 = \angle PQR$ [Corresponding angles] and $\angle 2 = \angle PRQ$	$1\frac{1}{2}$
	In \triangle PTS and \triangle PRQ, \angle P = \angle P [common angles] \angle 1 = \angle PQR \angle 2 = \angle PRQ \therefore \triangle PTS \sim \triangle PRQ [by AAA similarity criterion]	$1\frac{1}{2}$
33. (b)	Consider the trapezium ABCD as shown below.	
	X X X Y Y	
	D	1

	In trapezium ABCD, AB CD Also, AC and BD intersect at point O. Construct XY parallel to AB and CD (XY AB, XY CD) through point O	1
	In ΔABC OY AB (construction) According to Basic Proportionality Theorem BY/CY = AO/OC(1)	1
	In ΔBCD OY CD (construction) According to Basic Proportionality Theorem BY/CY = OB/OD(2)	1
	From equations (1) and (2) OA/OC = OB/OD	1/2
	⇒ OA/OB = OC/OD Hence proved.	1/2
34 (a)	The height and diameter of the base of the cone is 4 cm and 8 cm. We have to find the volume of the toy. We have to find the difference of the volumes of the cube and the toy and total surface area of the toy.	

	Class Intervals	Frequency	Cumulative Frequency	
	0-100	2	2	
	100-200	5	7	
	200-300	х	7+x	
	300-400	12	19+x	
	400-500	17	36+x	
	500-600	20	56+x	
-	600-700	У	56+x+y	
-	700-800	9	65+x+y	
-	800-900	7	72+x+y	
	900-1000	4	76+x+y	
-	So , 76 +x+y = 100 or x+y = 24(1) The median is 525 which lies in the class 500-600 So, I = 500, f= 20, cf = 36 +x, h= 100			
	Using the formula: Median = I + $\left(\frac{\frac{n}{2}-cf}{f}\right) \times h$			
ι	Using the formula: Media	$\gamma = 1 + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$		1,

	525-500= (14-x)× 5	5			1/2
	25=70- 5x				
	5x= 70-25=45 x=9				
	Therefore, from (1) y=15),we get 9+y =24			1/2
35. b)	Daily Wages(C.I.) 100-120	Class Mark (x _i) 110	No. of workers (f_i)	$f_i x_i$ 1320	
	120-140 140-160 160-180 180-200	130 150 170 190	$ \begin{array}{c c} & 14 \\ & 8 \\ & 6 \\ \hline & 10 \\ & \sum f_i = 50 \end{array} $	$ \begin{array}{r} 1820 \\ 1200 \\ \hline 1020 \\ \hline 1900 \\ \hline \sum f_i x_i = 7260 \end{array} $	$2\frac{1}{2}$
			27, 33		
	Mean daily wages	$= \frac{\sum f_i x_i}{\sum f_i}$			1
	$=\frac{7260}{50}$				1
	50				

		Ţ
	= ₹ 145.2	1/2
	SECTION-E	
36.		
	$a_n = a + (n-1)d$	1
	a ₁₅ =4 +(15-1)3 = 4 +42= 46	
	(ii)A.P.= 4,7,10,13, d = 7-4=3	
	$a_n = a + (n-1)d$ $136 = 4 + (n-1)3$	
	136= 4 + 3n - 3 136 - 1 = 3n	
		1
	$\frac{135}{3} = n$	
	n = 45	
	(''')() A B	
	(iii)(a)A.P.= 4,7,10,13, d = 7-4=3	1
	a = 4	
	n=30	
	$S_{30} = \frac{30}{2} [2 \times 4 + (30 - 1)3]$	
	$S_{30}=15[8+29\times3]$	1
	I.	

	$S_{30}=15\times 95=1425$	
	(iii)(b)A.P.= 4,7,10,13,	1
	d = 7-4=3	
	a=4	
	$a_n = a + (n-1)d$	1
	$a_{20} = 4 + (20-1)3 = 4 + 19 \times 3 = 4 + 57 = 61$	
	20 (3 ,3	
37.	(i)The coordinates of the vertices of $\triangle PQR$ are $P(4,6)$, $Q(3,2)$ and $R(6,5)$	
		4
		1
	(ii)(a) PQ= $\sqrt{(3-4)^2 + (2-6)^2} = \sqrt{(-1)^2 + (-4)^2} = \sqrt{17} \text{ m}$	
	$(1)(a) \cdot (2 - \sqrt{3} + \sqrt{3} + \sqrt{1}) \cdot (2 - \sqrt{3} + \sqrt{1}) \cdot (2 - \sqrt{3} + \sqrt{1}) \cdot (2 - \sqrt{3} + 3$	2
	$QR = \sqrt{(6-3)^2 + (5-2)^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{18} \text{ m} = 3\sqrt{2} \text{ m}$	
	(ii) (b) Let S(x,y) be the point which divides the line segment joining	1
	points $P(4,6)$ and $R(6,5)$	1
	In the ratio 2:1 internally.	
	By section formula $S(x,y)=S\left(\frac{2\times 6+1\times 4}{2+1},\frac{2\times 5+1\times 6}{2+1}\right)$	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
	$= S(\frac{12+4}{3}, \frac{10+6}{3}) =$	
	$=S(\frac{16}{3},\frac{16}{3})$	
	3 3 7	

....

(iii)PQ=
$$\sqrt{(3-4)^2 + (2-6)^2} = \sqrt{(-1)^2 + (-4)^2} = \sqrt{17} \text{ m}$$

QR=
$$\sqrt{(6-3)^2 + (5-2)^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{18} \text{ m} = 3\sqrt{2} \text{ m}$$

PR=
$$\sqrt{(6-4)^2 + (5-6)^2} = \sqrt{(2)^2 + (-1)^2} = \sqrt{5} \text{ m}$$

 $PQ \neq QR \neq PR$

 \therefore ΔPQR is not an isosceles triangle but a scalene triangle.

38. (i)

(ii)In right \triangle ADB, tan 45° = BD/AD

$$\therefore$$
 AD = BD/tan 45°

$$AD = BD = OB - OD = (10 - h) m$$

2

1

1/2

In right ΔADC tan 60° = CD/AD = (10 + h)/(10 – h)	
⇒ $(10 + h)/(10 - h) = \sqrt{3}$ ⇒ $10 + h = 10\sqrt{3} - \sqrt{3}h$ ⇒ $(\sqrt{3} + 1)h = 10(\sqrt{3} - 1)$	1/2
$h = 10 (\sqrt{3} - 1)/(\sqrt{3} + 1)$ $h = 10(\sqrt{3} - 1)(\sqrt{3} - 1)/(\sqrt{3} + 1)(\sqrt{3} - 1)$ $h = 10(\sqrt{3} - 1)^2/2$ $\Rightarrow h = 2.67 \text{ m}$ using $\sqrt{3} = 1.73$	1/2