Subject: Business Mathematics Maximum Marks: 80

General Instructions:

1. This question paper contains four sections: A, B, C and D.

2. Section A - questions 1 to 10 - comprises of 10 multiple choice questions of 1 mark each.

3. Section B - questions 11 to 20 - comprises of 10 very short answer type questions of 2 marks each.

4. Section C - questions 21 to 28 - comprises of 8 short answer type questions of 4 marks each.

5. Section D - questions 29 to 31 - comprises of 3 long answer questions of 6 marks each.

SECTION A

Q1.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} =$$
(a) 0 (c) 2
(b) 1 (d) 3

Q2. Which of the following functions is not continuous at x = 2?

(a)
$$x^3$$
 (c) x (b) $\frac{1}{x-2}$ (d) 7

Q3. The order of the differential equation $\frac{d^3y}{dx^3} - 7\frac{d^2y}{dx^2} + 6\frac{dy}{dx} - 11 = 0$ is (c) 3

(a) 1
(b) 2
(c) 3
(d) 4
(d)
$$\frac{2}{3}$$

Q4. The degree of the differential equation $\left(\frac{d^3y}{dx^3} + y\right)^{\frac{2}{3}} = 1$ is

Q5. If the function f is such that f(-x) = -f(x), $\forall x \in \mathbb{R}$, then $\int_{-1}^{1} f(x) dx = \int_{-1}^{1} f(x) dx$

Q6.
$$\int_0^1 (x^3 + 1) dx =$$
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{4}{5}$
(d) $\frac{5}{4}$

Q7. If R(x) denotes the total revenue, then the marginal revenue is given by

(a)
$$R^2(x)$$
 (c) $\frac{dR(x)}{dx}$ (b) $R^3(x)$ (d) $\int R(x)dx$

Q8. If the cost function is given by $C(x) = 2x^2 + 6x + 3$, then the average cost is

(a)
$$xC(x) = 2x^3 + 6x^2 + 3x$$

(b)
$$x + C(x) = 2x^2 + 7x + 3$$

(c)
$$C(x) - x^2 = x^2 + 6x + 3$$

(d)
$$\frac{C(x)}{x} = 2x + 6 + \frac{3}{x}$$

- Q9. What is a computer incapable of doing?
 - (a) Performing complex calculations
 - (b) Processing large amounts of data
- Q10. What is a problem algorithm?
 - (a) A type of software
 - (b) A step-by-step solution

- (c) Displaying genuine emotions and creativity
- (d) Automating repetitive tasks
 - (c) A random process
 - (d) A hardware component

SECTION B

- Q11. Find the sum of matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.
- Q12. Evaluate $\lim_{x\to 0} \frac{\sin 7x}{\sin 5x}$.
- Q13. Give an example of a function that is not continuous.
- Q14. Using the fact that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, evaluate $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n$.
- Q15. Find the first derivative of $(x + 1)e^x$.
- Q16. Evaluate $\int (\cos x + \sin x) dx$.
- Q17. Check if $y = e^x$ a solution to the differential equation $\frac{dy}{dx} = \frac{d^2y}{dx^2}$.
- Q18. Integrate the function e^{7x+3} with respect to x.
- Q19. Define marginal cost.
- Q20. Give an example of an algorithm that you use in your day-to-day life.

SECTION C

Q21. Find
$$A^2$$
 if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Q22. Differentiate
$$\frac{13}{x-5}$$
.

Q23. Using a suitable substitution, evaluate
$$\int \frac{e^x}{e^{x+1}} dx$$
.

Q24. Solve the linear differential equation
$$\frac{dy}{dx} + \frac{y}{x} = 1$$
.

Q25. Solve the differential equation
$$\frac{dy}{dx} = \frac{x^3+1}{y^2+y}$$
 as a variable separable differential equation.

Q26. Show that
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$
.

Q27. The marginal cost function is
$$C_M = 2 + 5e^x$$
. Find C if $C(0) = 100$.

SECTION D

Q29. Solve the following system of linear equations by determinants or Cramer's rule:

$$x + y + z = 3$$

$$x - y + z = 1$$

$$x + y - z = 1$$

$$OR$$

If
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix}$$
, then show that $A^3 - 4A^2 - 3A + 11I = 0$.

Q30. Using the ab-initio rule (or the first principal), find $\frac{d \sin x}{dx}$.

OR

Differentiate log x from the first principal.

Q31. Evaluate $\int \frac{2x+3}{x^2-3x+2} dx$ using partial fraction.

OR

Integrate the function $\frac{2x+3}{\sqrt{x^2+6x+9}}$ with respect to x.

My