Institute of Actuaries of India

ACET October 2024 Indicative Solutions

Mathematics

1. C For a given y, x is not unique, e.g. if y = 0, x can be 1 But for any given x, a unique y exists, namely $(1 - x)^2$. 2. B $f(g(x)) = e^{x^2}$ and $g(f(x)) = e^{2x}$. So required controls						
	$x^{2024})^{\frac{1}{1947}}$. So v is a function of x.					
2. B $f(g(x)) = e^{x^2}$ and $g(f(x)) = e^{2x}$. So required co	, , , , , , , , , , , , , , , , , , , ,					
	ndition is satisfied when $x^2 < 2x$ which					
happens when x lies in (0,2).						
3. A The expression $\sin^2 x + \cos^2 x + \tan^2 x + \csc^2 x$	$+\sec^2 x + \cot^2 x$ simplifies to					
$3+2^*(\tan^2 x + \cot^2 x)$. For any positive t, the minim	num value of t + $1/t$ is 2. So, the minimum					
value of the overall expression is $3+2*2 = 7$.						
This value is attained when $x = \pi/4$.						
4. A Note that $\alpha = \int_{20}^{24} \frac{1}{x} dx = \ln\left(\frac{24}{20}\right) = \ln(1.2)$. So e^{α}	= 1.2.					
5. B The second quadratic is obtained by replacing x with						
6. D $\lim_{\theta \to \frac{\pi}{4}} \frac{\cos(2\theta)}{\cos(\theta) - \sin(\theta)} = \lim_{\theta \to \frac{\pi}{4}} \frac{\cos^2(\theta) - \sin^2(\theta)}{\cos(\theta) - \sin(\theta)}$	$\frac{1}{(\theta)} = \lim_{\theta \to \frac{\pi}{4}} \cos(\theta) + \sin(\theta) = \sqrt{2}$					
7. A Let $a_i = 1^* r^{i-1}$. Then, $r^{2023} = 2$. So, $4 = r^{4046} = a_{4047}$.						
8. D If magnitude of \vec{a} and \vec{b} is r and angle between the	rm is θ , then $r^2 + r^2 + 2r^{2*}\cos\theta = r^2$,					
implying $\cos\theta = -1/2$ and $\theta = 2\pi/3$.						
9. C Dot product = 20*2+2*0+4*24 = 136 = 8*17.						
10. C If A is n x n matrix, $ 2A = 2^n A $						
11. A If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $adj(M) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and $adj(adj)$	$(M)\big) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = M.$					
11. A If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $adj(M) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and $adj(adj(x)) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. B $\int_{0}^{1} e^{x}(x+1)dx = \begin{bmatrix} x \\ y \end{bmatrix}$	$xe^{x}]_{0}^{1} = e - 0 = e$					
13. B Since $e^x = \tan y$, it follows that $e^x dx = (\sec^2 y) dy$	y, so $\frac{dy}{dx} = \frac{e^x}{1+e^{2x}}$ which is ½ at x=0.					
14. A Let a and d be first term and common difference. So	o, (23/2)*(2a+22d) = 2024. So, a+11d = 88					
= 12 th term, i.e. 12 th term is exactly known.						
15. D Given that each term in the expansion will have an	exponent of x which is divisible by 3, x^{20}					
won't appear in it, leading to its coefficient being 0.						
16. C We simplify: $\sum_{n=2}^{\infty} \frac{2024}{n^2 - 1} = 1012 \sum_{n=2}^{\infty} (\frac{2}{n-1} - \frac{2}{n+1}) =$	$= 1012 * \left(1 + \frac{1}{2}\right) = 1518$					
17. A True value: $\int_0^2 x^3 dx = \left[\frac{x^4}{4}\right]_0^2 = 4$. Approximated val	lue = $\frac{0.5}{2}(0^4 + 2 * 0.5^4 + 2 * 1^4 + 2 *$					
$1.5^4 + 2^4) = 4.25$. So error = 4.25 - 4 = 0.25.						
18. A We have $f(x) = e^x - 20x$, and $f'(x) = e^x - 20$.						
For $x_0=1$, $f(1) = -17.28$, $f'(1) = -17.28$. So $x_1 = 1 - f(1)$	/f'(1) = 0.					
For $x_1=0$, $f(0) = 1$, $f'(x) = -19$. So, $x_2 = 0 - 1/(-19) = 0$.						
19. B $\omega^{3}-1 = 0 \Rightarrow (\omega-1)^{*}(\omega^{2}+\omega+1)=0$. But $\omega\neq 1$, so $\omega^{2}+\omega+1$						
20. C We simplify as: $z = \frac{i-3}{2} = $	$\frac{5i}{2} = i - 1$. So $z^2 = (i - 1)^2 = i^2 + 1 - 1$					
20. C We simplify as: $z = \frac{i-3}{i+2} = \frac{i-3}{i+2} * \frac{i-2}{i-2} = \frac{i^2-5i+6}{i^2-2^2} = \frac{5-5}{-5}$ $2i = -2i$. Further, $z^8 = (-2i)^4 = 16 = 2^4$. So, z^{20}						

Statistics

	1	
21.	С	Note that the CDF is $F(n) = n^2 / 36$; it crosses $\frac{1}{2}$ at $n = 5$ since $F(4) < \frac{1}{2} < F(5)$.
22.	В	Since mode is unique, n must be one of 2 or 3. If n=2, mode=2 and median=2.5 are unequal.
		If n=3, median=mode=3.
23.	А	Total possibilities = 7!. Favourable possibilities = 2*6!. Probability = 2/7.
24.	С	Depending on the ratio of boys to girls, the average can lie anywhere between 52 and 60,
		but cannot fall outside that range.
25.	В	$P(Y X)=P(X \cap Y)/P(X) = P(X Y)*P(Y)/P(X) = (1/3)(3/10)/(2/7) = 7/20$
26.	В	There are 7 ways to choose actuaries {A, B, C, A&B, A&C, B&C, all three} and likewise 7 to
		choose data scientists, leading to a total of 49 ways.
27.	А	20X+24 follows a U[24,44] distribution with $Q_1 = 29$ and $Q_3 = 39$. So IQR = 39-29 = 10.
28.	В	For P, equally likely possibilities are BG, GB and BB, so $p = 1/3$. For Q, similarly, there are two
		possibilities – BG and BB, so $q = \frac{1}{2}$.
29.	D	2N only takes even integer values, so it doesn't follow a Poisson distribution. 2X, however,
		does follow an exponential distribution with mean 2μ , as can be checked from its PDF/CDF.
30.	А	Let B follow Bin(n,p). Then np = 12 and npq = 2^2 = 4. So q = 1/3, p = 2/3 and n = 18, which is
		the maximum value for a Binomial distribution.
31.	С	We compute probability mass functions as: p(2) = 0.1, p(3) = 0.2, p(5) = 0.1. Then, the
		required probability = $p(2) / (p(2)+p(3)+p(5)) = 0.25 = \frac{1}{4}$.
32.	D	Firstly, all probabilities must sum up to 1, so p must equal 0.25.
		E(X) = 0.45*0+0.3*1+0.2*2+0.05*3 = 0.85, E(Y) = 0.5*0+0.5*1 = 0.5,
		E(XY) = 0.75*0+0.15*1+0.1*2 = 0.35. So, cov(X,Y) = E(XY)-E(X)E(Y) = -0.0725
33.	D	Given that $s_y = 4s_x$, $b_{yx}/b_{xy} = (rs_y/s_x)/(rs_x/s_y) = (s_y/s_x)^2 = 16$.
34.	В	$Cov(X^{2024}, X^{1947}) = E(X^{2024*}X^{1947})-E(X^{2024})E(X^{1947})$. Since X is symmetric about 0, so are X ¹⁹⁴⁷ and
		X ³⁹⁷² , implying E(X ¹⁹⁴⁷) and E(X ³⁹⁷²) are both zero. Hence, the covariance (and hence the
		correlation coefficient) will be zero.
35.	С	Expected area = $(1^2+2^2++6^2)*1/6 = 91/6$
36.	С	Let the probability of increase and decrease be u and d respectively. Since u=1.5d and
		u+d=1, u=0.6 and d = 0.4. After 2 months, the possible stock prices are:
		 100*(1.1)² = 121 with a probability of (0.6)² = 0.36
		 100*(1.1)(0.9) = 99 with a probability of 2*0.6*0.4 = 0.48
		 100*(0.9)² = 81 with a probability of (0.4)² = 0.16
		The probability of stock being less than 100 is 0.48+0.16 = 0.64
37.	Α	The given distribution is exponential, which has the memorylessness property. So the
		conditional probability is same as the unconditional one, which is 1/e. (Alternatively, the
		conditional probability can be computed from first principles.)
38.	D	Since A and B are disjoint, $P(A B) = 0 < P(A)$. So they are definitely not independent.
39.	A	This will follow a binomial distribution with $n = 100$ and $p = 0.2$. So mean = $np = 20$. Standard
		deviation = $\sqrt{(np(1-p))} = 4$
40.	В	No. of handshakes by each participant = 10. But each handshake will be counted twice. So
40.	В	No. of handshakes by each participant = 10. But each handshake will be counted twice. So total handshakes = $10*20/2 = 100$.
40.	В	No. of handshakes by each participant = 10. But each handshake will be counted twice. So total handshakes = 10*20/2 = 100. No. of hugs by each participant = 9. Again, each hug will be counted twice. So total hugs =

Data Interpretation

41.	A	Total MF inves	stment = Rs.	1.2 crore = 60	% of to	tal. So, tot	tal investment = Rs. 2 crore.
		Fixed income investments are 20%+5% = 25%, so in monetary terms it is Rs. 50 lakh.			etary terms it is Rs. 50 lakh.		
42							
42. B For total MF to reduce to 50%, equity MF should become 30% and dire			30% and direct stocks should				
		become 20% v	which is sam	e as real estat	e.		
43.	C	Equity investments of Rs. 1 crore will become Rs. 1.15 crore.					
		Real estate of Rs. 40 lakh will become Rs. 45 lakh.					
Gold of Rs. 10 lakh will become R					ne Rs. 11 lakh.		
		Fixed income investment of Rs. 50 lakh will remain unchanged.					nged.
So, total value = Rs. 2.21 crore.							
44.	В				citivo ca	- 58 ⁻	713k – 29680k = 29033k; ratio =
44.				turns with po	SILIVE SC	alal y – 56.	13k – 29080k – 29035k, fatto –
		0.17%					
45.	C	For returns > 1 cr, total salary income = 110594cr; ratio = 110594cr/2004069cr = 5.5%					
46.	А	For returns > 25 cr, sum of salary income = 3505+2276+1154 cr = 6935 crore.					
		Count of retur	ns = 106+35	+9 = 150. Ave	rage = 6	935 crore	e / 150 = 46.2 crore
47.	D	Since more than half the returns have filed a zero salary income, the median is zero.					
48.	В	The given information can be analysed to produce the following table:					
49.	A,B,C,D	Year \ Unit	А	В	C	Total	
49.		2021	(500+x)/2	(700-x)/2	600	1200	
50.	A,D	2022	750	х	450	1200+x	
51.	В	2023	700-x	x	700	1400	
		Total	1700-x/2	(700+3x)/2	1750	3800+x	
		Here, x can be any even integer between 0 and 700.					
		For Q48, the proportion is 50% in 2021 and 2023 and definitely less than 50% in 2022.					
		For Q49, the information is insufficient for a unique answer. It could be any of the options					
		depending on		s incufficient f	or a un	iaua anau	ver It could be A or D, but not B or
		C (as the corre				•	ver. It could be A or D, but not B or
		•				•	ntingent on x can take is 700 (this
				-			A in 2022 is 750 which is clearly the
	highest.			,			

English

-		
52.	D	
53.	В	
54.	В	
55.	С	
56.	А	The judges disposed of
57.	D	
58.	D	'Astonished' means 'surprised'; others mean 'happy'.
59.	В	
60.	С	"Political strife and violent conflicts while attracting little focus in others."
61.	D	
62.	D	

Logical Reasoning

63.	D	2024 being a leap year, if the birthday was in January or February, it'll be Monday; else it'll be
		Tuesday.
64.	А	The gap between each consecutive overlap is 12/11 hours. So there are 11 such intervals over
		a 12 hour period, leading to 10 overlap points (excluding the two ends).
65.	В	Of the 12 edged, 8 of them have red on either side, leading to 8 times 5 = 40 cubes. However,
		4 of the cubes (which have red on 3 sides) have been counted thrice, so we subtract 4 times 2
		= 8. The final count is 40-8 = 32.
66.	С	X's mother and Y are siblings.
67.	D	2,4,5,1,3 is a valid sequence where A, B and C are false.
68.	В	B is the contrapositive of "All alphas are betas."
69.	В	Min. no. of boys studying Sanskrit = 20+24-40 = 4.
70.	С	Other three are increasingly bigger.