7. PROBABILITY DISTIBUTIONS

I. MCQ (2 marks each)

(i) Let the p.m.f. of a random variable X be

$$P(x) = \frac{3-x}{10}$$
, for $x = -1,0,1,2$

= 0, otherwise

Then E(X) is

- (A) 1
- (B) 2
- (C) 0
- (D) -1

(ii) c.d.f of a discrete random variable X is

- (A) an identity function. (B) a step function.
- (B) an even function.
- (D) an odd function.

(iii) If X denotes the number on the uppermost face of cubic die when

it is tossed, then E(x) is

- (A) $\frac{2}{7}$ (B) $\frac{7}{2}$ (C) 1
- (D) $\frac{1}{2}$

(iv) A random variable X has the following probability distribution

X	2	3	4
P(x)	0.3	0.4	0.3

Then the variance of this distribution is

(A) 0.6

(v) For the random variable X, if V(X) = 4, E(X) = 3, then $E(X^2)$ is ...

(A)9

(B) 13

(c) 12

(D) 7

(vi) If a d.r.v. X takes values $0, 1, 2, 3, \ldots$ with probability

 $P(X = x) = k(x + 1) \times 5^{-x}$, where k is a constant then P(X = 0) = ...

- (A) $\frac{7}{25}$ (B) $\frac{16}{25}$ (C) $\frac{18}{25}$

(D) $\frac{19}{25}$

(vii) The p.m.f of a d.r.v. X is $P(X = x) = \begin{cases} \binom{5}{x}, & \text{for } x = 0, 1, 2, 3, 4, 5 \\ 0, & \text{otherwise} \end{cases}$

If $a = P(X \le 2)$ and $b = P(X \ge 3)$ then

- (A) a < b
- (B) a > b
- (C) a = b (D) a + b = 2

(viii) If the p.m.f of a d.r.v. X is $P(X = x) = \begin{cases} \frac{x}{n(n+1)}, & \text{for } x = 1, 2, 3, ..., n \\ 0, & \text{otherwise} \end{cases}$ then

 $E(X) = \cdots$

- (A) $n + \frac{1}{2}$ (B) $\frac{n}{3} + \frac{1}{6}$ (C) $\frac{n}{2} + \frac{1}{5}$ (D) $n + \frac{1}{3}$

(ix) If the p.m.f of a d.r.v. X is $P(X = x) = \begin{cases} \frac{c}{x^3} \text{, for } x = 1, 2, 3 \\ 0 \text{, otherwise} \end{cases}$

then $E(X) = \cdots$

- (A) $\frac{343}{297}$ (B) $\frac{294}{251}$ (C) $\frac{297}{294}$

(x) If a d.r.v. X has the following probability distribution:

X	-2	-1	0	1	2	3
P(X=x)	0.1	k	0.2	2k	0.3	k

then
$$P(X = -1)$$
 is ...

 $(A)\frac{1}{10}$ $(B)\frac{2}{10}$

 $(C)\frac{3}{10}$

(D) $\frac{4}{10}$

(xi) If a d.r.v. X has the following probability distribution:

X	1	2	3	4	5	6	7
P(X=x)	k	2k	2k	3k	k ²	2 k ²	7k ² +k

then $k = \dots$

(A) $\frac{1}{7}$ (B) $\frac{1}{8}$ (C) $\frac{1}{9}$ (D) $\frac{1}{10}$

xii) The p.d.f. of random variable X is $f(x) = \begin{cases} -kx & 0 < x < 2 \\ 0 & \text{otherwise} \end{cases}$, then k = x

(A)-2

(B) 2

 $(C) - \frac{1}{2}$

 $(D)^{\frac{1}{2}}$

If X is c.r.v. and F(x) denote c.d.f of X, then which of the following is not true?

$$(A)P(a < X < b) = F(b) - F(a)$$

(B)P(X < a) = F(a)

(C)P(X > a) = 1 - F(a)

 $(\mathbf{D})P(X > b) = F(b)$

If *X* is *c.r.v.* with *p.d.f.* $f(x) = \begin{cases} \frac{1}{16}(4-x), & -2 < x < 2 \\ 0, & \text{otherwise} \end{cases}$,

then $P\left(X < -\frac{1}{2} \text{ or } X > \frac{1}{2}\right) =$

 $(A)^{\frac{1}{4}}$

 $(B)^{\frac{3}{4}}$ $(C)^{\frac{1}{16}}$

If the cumulative distribution function of X is $F(x) = \frac{1}{2}(3x^2 - x^3)$, $0 \le$ xv) $x \le 1$ then P(X > 1) is

$$(A)^{\frac{1}{4}}$$
 $(B)^{\frac{1}{2}}$ (C) 1 (D) 0

xvi) The *p.d.f.* of random variable *X* is
$$f(x) = \begin{cases} \frac{1}{2}, & 0 < x < 2 \\ 0, & \text{otherwise} \end{cases}$$

If
$$a = P\left(X < \frac{1}{2}\right)$$
 and $b = P\left(X > \frac{3}{2}\right)$ then

(A) $a = b$ (B) $a = 3b$ (C) $a = 2b$ (D) $b = 2a$

II. Very Short Answers (1 mark)

- **1.** Let X represent the difference between number of heads and number of tails obtained when a coin is tossed 6 times. What are possible values of X?
- 2. An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?
- **3.** State which of the following are not probability mass function of random variable. Give reasons of your answers.

	X	0	1	2
(i)				
	P(X)	0.4	0.4	0.2

	X	0	1	2	3	4
(ii)	P (X)	0.1	0.5	0.2	-0.1	0.2

 \	X	0	1	2
(iii)	P (X)	0.1	0.6	0.3

(iv)	Y	-1	0	1
(11)	P (Y)	0.6	0.1	0.2

4. Find mean for the following probability distribution

X	0	1	2	3
P(X=4)	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

5. State

whether the following is not the probability mass function of random variable. Give reasons for your answer.

X	3	2	1	0	-1
P(X=x)	0.3	0.2	0.4	0	0.05

6. If *X* is

c.r.v. and F(x) denote c.d.f of X and $F(0) = 0 \cdot 3$, $F(3) = 0 \cdot 7$ then find $F(0 \le X \le 3)$

III. Short Answers (2 marks)

(1) Find the expected value and variance of r.v. X whose p.m.f. is given below.

X	1	2	3
P(X=x)	$\frac{1}{5}$	2 5	$\frac{2}{5}$

(2) Find the probability distribution of number of heads in two tosses of a coin .

(3) The probability distribution of X is as follows:

X	0	1	2	3	4
P(X=x)	0.1	k	2k	2k	k

Find k and P[X < 2].

(4) The following probability distribution of r.v. X

X	-3	-2	-1	0	1	2	3
P(<i>X</i> = <i>x</i>)	0.05	0.1	0.15	0.20	0.25	0.15	0.1

Find the probability that (i) X is positive. (ii) X is odd

(5) In the p.m.f. of r.v. X

X	1	2	3	4	5
P(X=x)	$\frac{1}{20}$	$\frac{3}{20}$	а	2 <i>a</i>	$\frac{1}{20}$

Find a and obtain c.d.f. of X.

IV. Short answers (3 Marks)

- (1) Find the probability distribution of the number of successes in tosses of a die, where a success is defined as number greater than 4 appears on at least one die.
- (2) A coin is biased so that the head is 3 times as likely to occur as a tail. If the coin is tossed twice, find the probability distribution of tails..

(3) A random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2k	3k	k ²	2 k ²	7k ² +k

- Determine: (i) k ii)P(X < 3) iii)P(X > 4)
- (4) Find the probability distribution of the number of doublets in three throws of a pair of dice.
- (5) Find the mean and variance of the number randomly selected from 1 to 15.
- (6) Let the p.m.f. of r.v. *X* be $f(x) = \begin{cases} \frac{3-x}{10}, & \text{for } x = -1, 0, 1, 2\\ 0, & \text{otherwise} \end{cases}$

Calculate E(X) and Var(X).

- (7) Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die.
- (8) If the p.d.f. of random variable X is $f(x) = \begin{cases} \frac{k}{\sqrt{x}} & 0 < x < 4 \\ 0 & \text{otherwise} \end{cases}$ then find the cumulative distribution function of a random variable X.
- (9) If the p.d.f. of random variable X is $f(x) = \begin{cases} \frac{k}{x^2 + 1}, & 0 < x < \infty \\ 0, & \text{otherwise} \end{cases}$ then find k and cumulative distribution function of a random variable X.
- (10) If X is c.r.v. with $p.d.f.f(x) = \begin{cases} 4x^3, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$, then find $P\left(X \le \frac{3}{4} / X > \frac{1}{4}\right)$

(11) Find k, if the p. d. f. of random variable X is $f(x) = \begin{cases} ke^{-3x}, & 0 \le x < \infty \\ 0, & \text{otherwise} \end{cases}$ and $P(0 < X < k) = \frac{1}{2}$.

(12) If *X* is *c.r.v.* with *p.d.f.*
$$f(x) = \begin{cases} kx, & 0 \le x < 1 \\ k, & 1 < x < 2 \\ (3-x), & 2 \le x \le 3 \\ 0, & \text{otherwise} \end{cases}$$
, then find *k*.

V. Long answers (4 Marks)

1.Let a pair of dice be thrown and the random variable *X* be the sum of the numbers that appear on the two dice. Find the mean or expectation of *X* and variance of *X*.

- 2. Two cards are drawn simultaneously (or successively without replacement) from a well shuffled of pack of 52 cards. Find the mean, variance and standard deviation of the number of kings drawn.
- 3. Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find E (X).
- 4. In a meeting,70% of the members favor and 30% oppose a certain proposal. A member is selected at random and we take X=0 if he opposed, and X=1 if he is in favor. Find E(X) and Var(X).

5. The following is the c.d.f. of r.v. *X*

X	-3	-2	-1	0	1	2	3	4
F(x)	0.1	0.3	0.5	0.65	0.75	0.85	0.9	1

Find p.m.f. of X. (i) $P(-1 \le X \le 2)$ (ii) $P(X \le 3/X > 0)$.

- 6. A player tosses two coins he wins Rs.10 if 2 heads appears, Rs. 5 if 1 head appears and Rs.2 if no head appears. Find the expected winning amount and variance of winning amount.
- **7.**From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
- **8.** Let X denote the sum of the number obtained when two fair dice are rolled. Find the standard deviation of X.