4. Geometric Constructions

Question 1) (A) choose the correct alternative answer for each of the following sub question. Write the correct alphabet.

- 1) number of tangents can be drawn to a circle from the point on the circle.
 - A) 3 B) 2 C) 1 D) 0
- 2) The tangents drawn at the end of a diameter of a circle are......
 - A) Perpendicular B) parallel C) congruent D) can't say
- 3) Δ LMN $\sim \Delta$ HIJ and $\frac{LM}{HI} = \frac{2}{3}$ then
 - A) Δ LMN is a smaller triangle.
 - B) ΔHIJ is a smaller triangle.
 - C) Both triangles are congruent.
 - D) Can't say.
 - 4)number of tangents can be drawn to a circle from the point outside the circle.
 - A) 2 B) 1 C) one and only one D) 0

5)

In the figure Δ ABC $\sim\Delta$ ADE then the ratio of their corresponding sides is

$$A)\frac{3}{1}$$

B)
$$\frac{1}{3}$$

C)
$$\frac{3}{4}$$
 D) $\frac{4}{3}$

$$D)\frac{4}{3}$$

- 6) Which theorem is used while constructing a tangent the circle by using center of a circle?
 - A) tangent radius theorem.
 - B) Converse of tangent radius theorem.
 - C) Pythagoras theorem
 - D) Converse of Pythagoras theorem.
 - 7) Δ PQR $\sim \Delta$ ABC, $\frac{PR}{AC} = \frac{5}{7}$ then
 - A) \triangle ABC is greater.
 - B) Δ PQR is greater.
 - C) Both triangles are congruent.

- D) Can't say.
- 8) $\triangle ABC \sim \triangle AQR$. $\frac{AB}{AQ} = \frac{7}{5}$ then which of the following option is true.
- A) A-Q-B B) A-B-Q C) A-C-B D) A-R-B

Question 1 (B) solve the following examples (1 mark each)

- 1) Construct ∠ABC =60 o and bisect it.
- 2) Construct $\angle PQR = 115^{\circ}$ and divide it into two equal parts.
- Draw Seg AB of lenght 9.7cm. Take point P on it such that AP =
 cm and A-P-B. Construct perpendicular to seg AB from point P.
- 4) Draw seg AB of length 4.5 cm and draw its perpendicular bisector.
- 5) Draw seg AB of length 9 cm and divide it in the ratio 3:2.
- 6) Draw a circle of radius 3 cm and draw a tangent to the circle from point P on the circle.

Question 2) (A) Solve the following examples as per the instructions given in the activity. (2 marks each)

1) Draw a circle and take any point P on the circle. Draw ray OP

Draw perpendicular to ray OP from point P.

Construct perpendicular to Ray OB from point B

Question 2) (B) Solve the following examples (2 marks each)

- 1) Draw a circle of radius 3.4 cm take any point P on it. Draw tangent to the circle from point P.
- 2) Draw a circle of radius 4.2 cm take any point M on it. Draw tangent to the circle from point M.
- 3) Draw a circle of radius 3 cm. Take any point K on it. Draw a tangent to the circle from point K without using center of the circle.
- 4) Draw a circle of radius 3.4 cm. Draw a chord MN 5.7 cm long in a circle. Draw a tangent to the circle from point M and point N.
- 5) Draw a circle of 4.2 cm. Draw a tangent to the point P on the circle without using the center of the circle.
- 6) Draw a circle with a diameter AB of length 6 cm. Draw a tangent to the circle from the endpoints of the diameter.
- 7) Draw seg AB = 6.8 cm. Draw a circle with diameter AB. Draw points C on the circle apart from A and B. Draw line AC and line CB Write the measure of angle ACB.

Question 3) (A) Do the activity as per the given instructions. (3 marks each)

- 1) Complete the following activity to draw tangents to the circle.
- a) Draw a circle with radius 3.3 cm and center O. Draw chord PQ of length 6.6cm.. Draw ray OP and ray OQ.
- b) Draw a line perpendicular to the ray OP from P.

- c) Draw a line perpendicular to the ray OQ from Q.
- 2) Draw a circle with center O. Draw an arc AB of 100⁰ measure.
 Perform the following steps to draw tangents to the circle from point A and B.
 - a) Draw a circle with any radius and center P.
 - b) Take any point A on the circle.
 - c) Draw ray PB such \angle APB = 100°.
 - d) Draw perpendicular to ray PA from point A.
 - e) Draw perpendicular to ray PB from point B.
- 3) Do the following activity to draw tangents to the circle without using center of the circle.
 - a) Draw a circle with radius 3.5 cm and take any point C on it.
 - b) Draw chord CB and an inscribed angle CAB
 - c) With the center A and any convenient radius draw an arc intersecting the sides of angle BAC in points M and N.
 - d) Using the same radius draw and center C, draw an arc intersecting the chord CB at point R.
 - e) Taking the radius equal to d(MN) and center R, draw an arc intersecting the arc drawn in the previous step. Let D be the point of intersection of these arcs. Draw line CD. Line CD is the required tangent to the circle.

Question 3 B) Solve the following examples (3 marks each):

- 1) \triangle ABC $^{\sim}$ \triangle PBQ, In \triangle ABC, AB = 3 cm, \angle B = 90^{0,} BC = 4 cm. Ratio of the corresponding sides of two triangles is 7:4. Then construct \triangle ABC and \triangle PBQ
- 2) \triangle RHP \sim \triangle NED,In \triangle NED,NE=7 cm , \angle D=30 0 , \angle N=20 0 and $\frac{HP}{ED}=\frac{4}{5}$. Then construct \triangle RHP and \triangle NED.
- 3) Δ PQR \sim Δ ABC, In Δ PQR PQ=3.6cm, QR=4 cm, PR=4.2 cm ratio of the corresponding sides of triangle is 3:4 then construct Δ PQR and Δ ABC.
 - 4) Construct an equilateral \triangle ABC with side 5cm. \triangle ABC $^{\sim}$ \triangle LMN, ratio the corresponding sides of triangle is 6:7 then construct \triangle LMN and \triangle ABC
 - 5) Draw a circle with center O and radius 3.4. Draw a chord MN of length 5.7 cm in a circle. Draw a tangent to the circle from point M and N.
 - 6) Draw a circle with center O and radius 3.6 cm. draw a tangent to the circle from point B at a distance of 7.2 cm from the center of the circle.
 - 7) Draw a circle with center C and radius 3.2 cm. Draw a tangent to the circle from point P at a distance of 7.5 cm from the center of the circle.

- 8) Draw a circle with a radius of 3.5 cm. Take the point K anywhere on the circle. Draw a tangent to the circle from K (without using the center of the circle).
- 9) Draw a circle of radius 4.2 cm. Draw arc PQ measuring 120⁰ Draw a tangent to the circle from point P and point Q.
- 10) Draw a circle of radius 4.2 cm. Draw a tangent to the circle from a point 7 cm away from the center of the circle.
- 11) Draw a circle of radius 3 cm and draw chord XY 5 cm long. Draw the tangent of the circle passing through point X and point Y (without using the center of the circle).

Question 4) solve the following examples. (4 marks each)

- 1) Δ AMT ~ Δ AHE, In Δ AMT, AM =6.3 cm Δ MAT= 120 $^{\circ}$, AT = 4.9 cm, $\frac{AM}{HA} = \frac{7}{5}$ then construct Δ AMT and Δ AHE .
- 2) \triangle RHP \sim \triangle NED, In \triangle NED, NE=7 cm. \angle D=30 $^{\circ}$, \angle N=20 $^{\circ}$, $\frac{HP}{ED} = \frac{4}{5}$ then construct \triangle RHP and \triangle NED.
- 3) \triangle ABC. \sim \triangle PBR, BC=8 cm, AC=10 cm , \angle B=90 0 , $\frac{BC}{RP} = \frac{5}{4}$ then construct \triangle ABC and \triangle PBR

- 4) \triangle AMT. \sim \triangle AHE, In \triangle AMT AM=6.3 cm, \angle TAM=50 0 , AT=5.6cm, $\frac{AM}{AH} = \frac{7}{5}$, then construct \triangle AMT and \triangle AHE.
- 5) Draw a circle with radius 3.3cm. Draw a chord PQ of length 6.6cm.
 Draw tangents to the circle at points P and Q. Write your observation about the tangents.
- 6) Draw a circle with center O and radius 3 cm. Take the point P and the point Q at a distance of 7 cm from the center of the circle on the opposite side of the circle at the intersection passing through the center of the circle Draw a tangent to the circle from the point P and the point Q.

Question 5) Solve the following examples (3 marks each)

- 1) Draw a circle with radius 4cm and construct two tangents to a circle such that when those two tangents intersect each other outside the circle they make an angle of 60° with each other.
- 2) AB = 6 cm, \angle BAQ = 50 $^{\circ}$. Draw a circle passing through A and B so that AQ is the tangent to the circle.
- 3) Draw a circle with radius 3 cm. Construct a square such that each of its side will touch the circle from outside.
- 4) Take points P and Q on the same side of line AB Draw a circle passing through point P and point Q so that it touches line AB.

- 5) Draw any circle with radius greater than 1.8 cm and less than 3 cm.

 Draw a chord AB 3.6 cm long in this circle. Tangent to the circle passing through A and B without using the center of the circle
- 6) Draw a circle with center O and radius 3 cm. Take point P outside the circle such that d (O, P) = 4.5 cm. Draw tangents to the circle from point P.
- 7) Draw a circle with center O and radius 2.8 cm. Take point P in the exterior of a circle such that tangents PA and PB drawn from point P make an angle ∠APB of measure 70 °.
- 8) Point P is at a distance of 6 cm from line AB. Draw a circle of radius 4cm passing through point P so that line AB is the tangent to the circle.

•••