2. PYTHAGORAS THEOREM

Que. 1 (A). Choose the correct alternative from those given below (1 mark each)

(1 mark tacm)							
1. Out of given tr	iplets, which is a	Pythagoras trip	let?				
(A) (1,5,10)	(B) $(3,4,5)$	(C) (2,2,2)	(D) (5,5,2)				
2. Out of given triplets, which is not a Pythagoras triplet?							
(A) (5,12,13)	(B) (8,15,17)	(C)(7,8,15)	(D) (24,25,7)				
3. Out of given triplets, which is not a Pythagoras triplet?							
(A) (9,40,41)	(B) (11,60,61)	(C) (6,14,15)	(D) (6,8,10)				
4. In right angled triangle, if sum of square of sides of right angle is 169 then what is the length of hypotenuse?							
(A) 15	(B) 13	(C) 5	(D) 12				
5. A rectangle having length of a side is 12 and length of diagonal is							
20 then what is length of other side?							
(A)2	(B) 13	(C) 5	(D) 16				
6. If the length of	diagonal of squa	are is $\sqrt{2}$ then w	hat is the length of				
each side?							
(A)2	$(B)\sqrt{3}$	(C) 1	(D) 4				
7. If length of bot	h diagonals of rh	nombus are 60 ar	nd 80 then what is				
the length of side	?						

1	٨	`	1	Λ	ſ
(,	Η	()	1	0	U

(B)50

(C) 200

(D) 400

8. If length of sides of triangle are a ,b, c and $a^2 + b^2 = c^2$ then which type of triangle it is?

(A)Obtuse angled triangle (B) Acute angled triangle

(C) Equilateral triangle

(D)Right angled triangle

9. In $\triangle ABC$, $AB = 6\sqrt{3}$ cm, AC = 12 cm, and BC = 6 cm then m $\angle A$ =?

 $(A)30^0$

(B) 60°

(C) 90^0

(D) 45^0

10. The diagonal of a square is $10\sqrt{2}$ cm then its perimeter is

(A)10 cm.

(B) $40\sqrt{2}$ cm. (C) 20 cm.

(D) 40 cm.

11. Out of all numbers from given dates, which is a Pythagoras triplet ?

(A)15/8/17

(B)16/8/16 (C) 3/5/17

(D) 4/9/15

Que. 1 (B). Solve the following questions: (1 mark each)

1. Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenus?

2. From given figure, In \triangle ABC, AB \perp BC, AB=BC then m \angle A = ?

3. From given figure, In \triangle ABC, AB \perp BC, AB=BC, AC = $2\sqrt{2}$ then

$$l(AB) = ?$$

4. From given figure, In \triangle ABC, AB \perp BC, AB =BC, AC = $5\sqrt{2}$ then what is the height of \triangle ABC?

- 5. Find the height of an equilateral triangle having side 4 cm. ?
- 6. From given figure, In \triangle ABQ, If AQ = 8 cm. then AB = ?

- 7. In right angled triangle, if length of hypotenuse is 25 cm. and height is 7 cm. then what is the length of its base ?
- 8. If a triangle having sides 50 cm., 14 cm, and 48 cm., then state wheather given triangle is right angled triangle or not.
- 9. If a triangle having sides 8 cm., 15 cm., and 17 cm., then state wheather given triangle is right angled triangle or not.
- 10. A rectangle having dimensions 35 m X 12 m, then what is the length of its diagonal?

Que. 2 (A). Complete the following activities (2 marks each) * (Write complete answers, don't just fill the boxes)

1. From given figure, In \triangle ABC, If AC = 12 cm. then AB = ?

Activity : From given figure, In \triangle ABC, \angle ABC = 90°, \angle ACB = 30°

- ∴ ∠ **BAC** =
- ∴ \triangle ABC is 30^{0} – 60^{0} – 90^{0} \triangle .
- ∴ In \triangle ABC by Property of 30^{0} – 60^{0} – 90^{0} \triangle .

$$\therefore AB = \frac{1}{2}AC$$
 and $= \frac{\sqrt{3}}{2}AC$.

$$\therefore \boxed{ = \frac{1}{2} \times 12 \text{ And BC} = \frac{\sqrt{3}}{2} \times 12}$$

- \therefore = 6 $= 6 \sqrt{3}$.
- 2. From given figure, In $\triangle ABC$, AD $\perp BC$, then prove that $AB^2+CD^2=BD^2+AC^2$ by completing activity.

Activity : From given figure, In \triangle ABC, By pythagoras theorem

$$AC^2 = AD^2 + \square$$

$$\therefore AD^2 = AC^2 - CD^2 \dots (I)$$

Also, In ΔABD, by pythagoras theorem,

$$\therefore AD^2 = AB^2 - BD^2 \dots (II)$$

$$\therefore \qquad \boxed{ -BD^2 = AC^2 - \boxed{} }$$

$$\therefore$$
 AB²+CD² =AC²+ BD²

3. From given figure, In \triangle ABC, If \angle ABC = 90° \angle CAB= 30° , AC = 14 then for finding value of AB and BC, complete the following activity.

Activity : In \triangle ABC, If \angle ABC = 90° \angle CAB= 30°

By theorem of 30^{0} – 60^{0} – 90^{0} Δ^{1e} ,

$$\therefore$$
 and $=\frac{1}{2}AC$ and $=\frac{\sqrt{3}}{2}AC$

$$\therefore BC = \frac{1}{2} \times \boxed{ } & AB = \frac{\sqrt{3}}{2} \times 14$$

$$\therefore BC = 7 \quad \& \quad AB = 7\sqrt{3}.$$

4. From given figure, In \triangle MNK, If \angle MNK = $90^{\circ} \angle$ M= 45° , MK = 6 then for finding value of MK and KN, complete the following activity.

Activity: In \triangle MNK, If \angle MNK = $90^{\circ} \angle$ M= 45° ...(given)

$$\therefore \angle K = \square$$
 (remaining angles of \triangle MNK)

By theorem of 45^{0} – 45^{0} – 90^{0} Δ^{le} ,

$$\therefore$$
 $=$ $\frac{1}{\sqrt{2}}$ MK and $=$ $\frac{1}{\sqrt{2}}$ MK

$$\therefore MN = \frac{1}{\sqrt{2}} \times \boxed{\qquad} & & KN = \frac{1}{\sqrt{2}} \times 6$$

$$\therefore MN = 3\sqrt{2}. \& KN = 3\sqrt{2}.$$

5. A ladder 10 m long reaches a window 8m above the ground. Find the distance of the foot of the ladder from the base of wall. Complete the given activity.

Activity: as shown in fig. suppose

PR is the length of ladder = 10 m

At P - window, At Q - base of wall, At R - foot of ladder

$$\therefore$$
 PQ = 6 m

$$\therefore$$
 QR = ?

In
$$\triangle PQR$$
, m $\angle PQR = 90^{\circ}$

By Pythagoras Theorem,

Here,
$$PR = 10$$
, $PQ = \square$

From equation (I)

$$8^2 + QR^2 = 10^2$$

$$QR^2 = 10^2 - 8^2$$

$$QR^2 = 100 - 64$$

$$QR^2 = \square$$

$$QR = 6$$

- ∴ The distance of foot of the ladder from the base of wall is 6 m.
- 6. From the given figure, In \triangle ABC, If AD \perp BC, \angle C = 45 $^{\circ}$, AC =
- $8\sqrt{2}$, BD = 5 then for finding value of AD and BC, complete the following activity.

Activity : In \triangle ADC, If \angle ADC = $90^{\circ} \angle$ C= 45° ... (given)

$$\therefore$$
 \angle DAC = \square (remaining angles of \triangle ADC)

By theorem of 45^{0} – 45^{0} – 90^{0} Δ^{le} ,

$$\therefore$$
 $=$ $\frac{1}{\sqrt{2}}$ AC and $=$ $=$ $\frac{1}{\sqrt{2}}$ AC

$$\therefore AD = \frac{1}{\sqrt{2}} \times \boxed{\qquad} \& DC = \frac{1}{\sqrt{2}} \times 8\sqrt{2}$$

$$\therefore AD = 8 \& DC = 8$$

$$\therefore$$
BC =BD +DC = 5 + 8 = 13

7. Complete the following activity to find the length of hypotenuse of right angled triangle, if sides of right angle are 9 cm and 12 cm.

Activity: In $\triangle PQR$, m $\angle PQR = 90^{\circ}$

By Pythagoras Theorem,

$$\therefore PQ^2 + \boxed{} = PR^2.....(I)$$

$$\therefore PR^2 = 9^2 + 12^2$$

$$\therefore PR^2 = \boxed{ + 144}$$

$$\therefore PR^2 = \square$$

- : Length hypotenuse of triangle PQR is ____ cm.
- 8. From given figure, In \triangle PQR, If \angle QPR = 90°, PM \perp QR, PM = 10, QM = 8 then for finding the value of QR, complete the following activity.

Activity: In \triangle PQR, If \angle QPR = 90°, PM \perp QR, ...,.. (given)

In \triangle PMQ, By Pythagoras Theorem,

$$\therefore PM^2 + \boxed{} = PQ^2.....(I)$$

$$PQ^2 = 10^2 + 8^2$$

$$\therefore PQ^2 = \boxed{ + 64}$$

$$\therefore PQ^2 = \boxed{}$$

$$\therefore PQ = \sqrt{164}$$

Here, $\triangle QPR \sim \triangle QMP \sim \triangle PMR$

∴ ΔQMP ~ΔPMR

$$\therefore \frac{PM}{RM} = \frac{QM}{PM}$$

$$\therefore 10^2 = RM \times 8$$

$$RM = \frac{100}{8} =$$

And,

$$QR = QM + MR$$

$$QR = \frac{25}{2} = \frac{41}{2}$$

9. Find the diagonal of a rectangle whose length is 16 cm and area is 192sq.cm. Complete the following activity.

Activity:

As shown in fig.

LMNT is rectangle

- \therefore Area of rectangle = length X breadth
- ∴ Area of rectangle = X breadth
- \therefore 192 = X breadth
- \therefore Breadth = 12 cm.

Also, \angle TLM = 90⁰ (each angle of rectangle is right angle)

In ΔTLM, By Pythagoras theorem

$$\therefore TM^2 = TL^2 + \square$$

$$\therefore TM^2 = 12^2 + \Box$$

$$\therefore TM^2 = 144 + \Box$$

$$\therefore TM^2 = 400$$

$$\therefore$$
 TM = 20

10. In Δ LMN, l = 5, m = 13, n = 12 then complete the activity to show that wheather given traingle is right angled traingle or not.

* (1, m, n are opposite sides of $\angle L$, $\angle M$, $\angle N$ respectively)

Activity:

In ΔLMN मध्ये, 1 = 5, m = 13, n =

$$1^2 =$$
 ; $m^2 = 169$; $n^2 = 144$.

$$\therefore 1^2 + n^2 = 25 + 144 = \boxed{}$$

$$\therefore$$
 $+1^2 = m^2$

∴By Converse of Pythagoras theorem, ΔLMN is right angled triangle.

Que. 3 (B). Solve the following questions: (3 marks each)

1. As shwon in figure, \angle DFE = 90°, FG \perp ED, If GD = 8, FG = 12, then (1) EG = ? (2) FD = ? (3) EF = ?

2. A congruent side of an isosceles right angled triangle is 7 cm ,Find its perimetre .

Que. 4. Solve the following questions : (Challenging question 4 marks each)

1. As shwon in figure, LK = $6\sqrt{2}$ then 1) MK = ? 2) ML = ? 3) MN = ?

