GS2024 Exam, School of Mathematics, TIFR

NOTATION AND CONVENTIONS

- N denotes the set of natural numbers $\{0, 1, \ldots\}$, Z the set of integers, Q the set of rational numbers, $\mathbb R$ the set of real numbers, and $\mathbb C$ the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- \mathbb{R}^n denotes the Euclidean space of dimension n. Subsets of \mathbb{R}^n are viewed as metric spaces using the standard Euclidean distance on \mathbb{R}^n .
- All rings are associative, with a multiplicative identity.
- For any ring R, $M_n(R)$ denotes the ring of $n \times n$ matrices with entries in R. The identity matrix in $M_n(R)$ will be denoted by Id or by Id_n.
- $M_n(\mathbb{R})$ will also be viewed as a real vector space, and $M_n(\mathbb{C})$ as a complex vector space.
- For a ring R, $R[x_1, \ldots, x_n]$ denotes the polynomial ring in n variables x_1, \ldots, x_n over R.
- If A is a set, $#A$ stands for the cardinality of A, and equals ∞ if A is infinite.
- If B is a subset of a set A, we write $A \setminus B$ for the set $\{a \in A \mid a \notin B\}$.
- Let G be a finite group, and let $S \subset G$. We say that S generates G if no proper subgroup of G contains S .
- (1) What is the number of even positive integers n such that every group of order n is abelian?
- (a) 1
- $\sqrt{(b)}$ 2
	- (c) Greater than 2, but finite
	- (d) Infinite
- (2) Let *n* be a positive integer, and let

 $S = \{ g \in \mathbb{R}[x] \mid g \text{ is a polynomial of degree at most } n \}.$

For $g \in S$, let $A_g = \{x \in \mathbb{R} \mid e^x = g(x)\} \subset \mathbb{R}$. Let

$$
m = \min\{\#A_g \mid g \in S\},
$$
 and $M = \max\{\#A_g \mid g \in S\}.$

Then

- (a) $m = 0, M = n$
- $\vert \sqrt{\vert}$ (b) $m = 0, M = n + 1$
	- (c) $m = 1, M = n$
	- (d) $m = 1, M = n + 1$
- (3) Let V, W be nonzero finite dimensional vector spaces over \mathbb{C} . Let m be the dimension of the space of C-linear transformations $V \to W$, viewed as a real vector space. Let n be the dimension of the space of R-linear transformations $V \to W$, viewed as a real vector space. Then
	- (a) $n = m$
	- (b) $2n = m$
- $\vert \sqrt{\vert c \vert} \; n = 2m$
	- (d) $4n = m$
- (4) Consider the real vector space of infinite sequences of real numbers

 $S = \{(a_0, a_1, a_2, \ldots) \mid a_k \in \mathbb{R}, k = 0, 1, 2, \ldots\}.$

Let W be the subspace of S consisting of all sequences (a_0, a_1, a_2, \ldots) which satisfy the relation

$$
a_{k+2} = 2a_{k+1} + a_k, \quad k = 0, 1, 2, \dots
$$

What is the dimension of W ?

(a) 1

 $\sqrt{(b)}$ 2

(c) 3

(d) ∞

(5) Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function. If

$$
\lim_{n \to \infty} \int_0^1 f(x+n) \, dx = 2,
$$

then which of the following statements about the limit

$$
\lim_{n \to \infty} \int_0^1 f(nx) \, dx
$$

is correct?

(a) The limit exists and equals 0

- (b) The limit exists and equals $\frac{1}{2}$
- $\sqrt{(c)}$ The limit exists and equals 2
- (d) None of the remaining three options is correct
- (6) Let $f : \mathbb{R} \to [0, \infty)$ be a function such that for any finite set $E \subset \mathbb{R}$ we have

$$
\sum_{x \in E} f(x) \le 1.
$$

Let

$$
C_f = \{ x \in \mathbb{R} \mid f(x) > 0 \} \subset \mathbb{R}.
$$

Then

- (a) C_f is finite
- (b) C_f is a bounded subset of $\mathbb R$
- (c) C_f has at most one limit point
- $\vert \sqrt{\vert}$ (d) C_f is a countable set
- (7) Let p be a prime. Which of the following statements is true?
	- (a) There exists a noncommutative ring with exactly p elements
	- (b) There exists a noncommutative ring with exactly p^2 elements
- $\sqrt{(c)}$ There exists a noncommutative ring with exactly p^3 elements
- (d) None of the remaining three statements is correct
- (8) Consider the sequence $\{a_n\}$ for $n \geq 1$ defined by

$$
a_n = \lim_{N \to \infty} \sum_{k=n}^{N} \frac{1}{k^2}.
$$

Which of the following statements about this sequence is true?

- (a) $\lim_{n\to\infty} na_n$ does not exist
- (b) $\lim_{n\to\infty} na_n$ exists and equals 2
- $\sqrt{(c)} \lim_{n\to\infty} na_n$ exists and equals 1
	- (d) $\lim_{n\to\infty} n^2 a_n$ exists and equals 1
- (9) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function that is a solution to the ordinary differential equation

$$
f'(t) = \sin^2(f(t)) \quad (\forall \ t \in \mathbb{R}), \quad f(0) = 1.
$$

Which of the following statements is true?

- (a) f is neither bounded nor periodic
- (b) f is bounded and periodic
- $\vert \sqrt{\vert c \vert} f$ is bounded, but not periodic
	- (d) None of the remaining three statements is correct
- (10) Let B denote the set of invertible upper triangular 2×2 matrices with entries in \mathbb{C} , viewed as a group under matrix multiplication. Which of the following subgroups of B is the normalizer of itself in B?

$$
\begin{aligned}\n\boxed{\checkmark} & \text{(a)} \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{C} \setminus \{0\} \right\} \\
\text{(b)} \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \middle| a \in \mathbb{C} \setminus \{0\} \right\} \\
\text{(c)} \left\{ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \middle| c \in \mathbb{C} \right\}\n\end{aligned}
$$

(d)
$$
\left\{ \begin{pmatrix} a & c \\ 0 & a \end{pmatrix} \middle| a \in \mathbb{C} \setminus \{0\}, c \in \mathbb{C} \right\}
$$

- (11) What is the least positive integer $n > 1$ such that x^n and x are conjugate, for every $x \in S_{11}$? Here, S_{11} denotes the symmetric group on 11 letters.
	- (a) 10
	- (b) 11
	- (c) 12
	- $\sqrt{|d|}$ 13
- (12) Consider the following statements:
	- (A) Let G be a group and let $H \subset G$ be a subgroup of index 2. Then $[G, G] \subset H$.

(B) Let G be a group and let $H \subset G$ be a subgroup that contains the commutator subgroup $[G, G]$ of G. Then H is a normal subgroup of G.

Which of the following statements is correct?

- $\vert \sqrt{\vert}$ (a) (A) and (B) are both true
	- (b) (A) and (B) are both false
	- (c) (A) is true and (B) is false
	- (d) (A) is false and (B) is true
- (13) For any symmetric real matrix A, let $\lambda(A)$ denote the largest eigenvalue of A. Let S be the set of positive definite symmetric 3×3 real matrices. Which of the following assertions is correct?
	- (a) There exist $A, B \in S$ such that $\lambda(A + B) < \max(\lambda(A), \lambda(B))$
	- $\check{g}(\mathbf{x})$ For all $A, B \in S$, $\lambda(A + B) > \max(\lambda(A), \lambda(B))$
		- (c) There exist $A, B \in S$ such that $\lambda(A + B) = \max(\lambda(A), \lambda(B))$
		- (d) None of the remaining three assertions is correct
- (14) Let $\theta \in (0, \pi/2)$. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map which sends a vector v to its reflection with respect to the line through $(0, 0)$ and $(\cos \theta, \sin \theta)$. Then the matrix of T with respect to the standard basis of \mathbb{R}^2 is given by

$$
\begin{array}{c|c}\n\hline\n\checkmark(a) & \begin{pmatrix}\n\cos 2\theta & \sin 2\theta \\
\sin 2\theta & -\cos 2\theta\n\end{pmatrix} \\
\hline\n\begin{pmatrix}\n\cos 2\theta & \sin 2\theta \\
-\sin 2\theta & \cos 2\theta\n\end{pmatrix} \\
\hline\n\begin{pmatrix}\n\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta\n\end{pmatrix} \\
\hline\n\begin{pmatrix}\n\cos \theta & \sin \theta\n\end{pmatrix}\n\end{array}
$$

(d)
$$
\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}
$$

- (15) For a polynomial $f(x, y) \in \mathbb{R}[x, y]$, let $X_f = \{(a, b) \in \mathbb{R}^2 \mid f(a, b) = 1\} \subset \mathbb{R}^2$. Which of the following statements is correct?
	- (a) If $f(x, y) = x^2 + 4xy + 3y^2$, then X_f is compact
	- $\sqrt{(b)}$ If $f(x,y) = x^2 3xy + 3y^2$, then X_f is compact
		- (c) If $f(x, y) = x^2 4xy y^2$, then X_f is compact
	- (d) None of the remaining three statements is correct
- (d) None of the remaining three statements is correct
(16) What is the number of distinct subfields of $\mathbb C$ isomorphic to $\mathbb Q[\sqrt[3]{2}]$?
	- (a) 1
	- (b) 2
	- $\vert \sqrt{\vert c \vert}$ 3
		- (d) Infinite
- (17) Let \mathbb{F}_3 denote the finite field with 3 elements. What is the number of one dimensional vector subspaces of the vector space \mathbb{F}_3^5 over \mathbb{F}_3 ?
	- (a) 5
	- \checkmark (b) 121
		- (c) 81
		- (d) None of the remaining three options
- (18) For a positive integer n, let a_n, b_n, c_n, d_n be the real numbers such that

$$
\begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} a_n & b_n \ c_n & d_n \end{pmatrix}.
$$

Which of the following numbers equals $\lim_{n\to\infty} a_n/b_n$?

- (a) 1
- (b) e
- (c) 3/2
- \sqrt{d} (d) None of the remaining three options
- (19) Consider the complex vector space

$$
V = \{ f \in \mathbb{C}[x] \mid f \text{ has degree at most } 50, \text{ and } f(ix) = -f(x) \text{ for all } x \in \mathbb{C} \}.
$$

- Then the dimension of V equals
- (a) 50
- (b) 25
- \checkmark (c) 13
- (d) 47
- (20) Let S denote the set of sequences $a = (a_1, a_2, \dots)$ of real numbers such that a_k equals 0 or 1 for each k. Then the function $f : S \to \mathbb{R}$ defined by

$$
f((a_1, a_2, \dots)) = \frac{a_1}{10} + \frac{a_2}{10^2} + \dots
$$

is

- $\sqrt{\langle a \rangle}$ injective but not surjective
	- (b) surjective but not injective
	- (c) bijective
	- (d) neither injective nor surjective

PART B — TRUE/FALSE QUESTIONS

- (1) If G is a group of order 361, then G has a normal subgroup H such that $H \cong G/H$.
- \overline{F} (2) There exists a metric space X such that the number of open subsets of X is exactly 2024.
- F (3) The function $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $d(x, y) = |e^x e^y|$ defines a metric on R, and (\mathbb{R}, d) is a complete metric space.
- F (4) Let *n* be a positive integer, and *A* an $n \times n$ matrix over R such that $A^3 =$ Id. Then A is diagonalizable in $M_n(\mathbb{R})$, i.e., there exists $P \in M_n(\mathbb{R})$ such that P is invertible and PAP^{-1} is a diagonal matrix.
- $\lvert T \rvert$ (5) If $A \in M_n(\mathbb{Q})$ is such that the characteristic polynomial of A is irreducible over \mathbb{Q} , then A is diagonalizable in $M_n(\mathbb{C})$, i.e., there exists $P \in M_n(\mathbb{C})$ such that P is invertible and PAP^{-1} is a diagonal matrix.
- \overline{T} (6) The complement of any countable union of lines in \mathbb{R}^3 is path connected.

- 6
- T (7) The subsets $\{(x, y) \in \mathbb{R}^2 \mid (y^2 x)(y^2 x 1) = 0\}$ and $\{(x, y) \in \mathbb{R}^2 \mid y^2 x^2 = 1\}$ of \mathbb{R}^2 (with the induced metric) are homeomorphic.
- (8) Q \cap [0, 1] is a compact subset of Q.
- \boxed{T} (9) Suppose $f: X \rightarrow Y$ is a function between metric spaces, such that whenever a sequence $\{x_n\}$ converges to x in X, the sequence $\{f(x_n)\}\$ converges in Y (but it is not given that the limit of $\{f(x_n)\}\$ is $f(x)$). Then f is continuous.
- $\overline{T}(10)$ Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable, and assume that $|f'(x)| \geq 1$ for all $x \in \mathbb{R}$. Then for each compact set $C \subset \mathbb{R}$, the set $f^{-1}(C)$ is compact.
- $\boxed{\mathrm{F}}(11)$ There exists a function $f : [0, 1] \to \mathbb{R}$, which is not Riemann integrable and satisfies

$$
\sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|^2 < 1,
$$

for every choice of a positive integer n and of $0 \le t_0 < t_1 < t_2 < \cdots < t_n \le 1$.

- $\mathbb{F} \setminus (12)$ Let $E \subset [0,1]$ be the subset consisting of numbers that have a decimal expansion which does not contain the digit 8. Then E is dense in [0, 1].
- $\lceil T \rceil (13)$ Let G be a proper subgroup of $(\mathbb{R}, +)$ which is closed as a subset of \mathbb{R} . Then G is generated by a single element.
- $T(14)$ There exists a unique function $f : \mathbb{R} \to \mathbb{R}$ such that f is continuous at $x = 0$, and such that for all $x \in \mathbb{R}$

$$
f(x) + f\left(\frac{x}{2}\right) = x.
$$

- $\left| \Gamma \right| (15)$ A map $f: V \to W$ between finite dimensional vector spaces over $\mathbb Q$ is a linear transformation if and only if $f(x) = f(x - a) + f(x - b) - f(x - a - b)$, for all $x, a, b \in V$.
- $\overline{F}(16)$ Let R be the ring $\mathbb{C}[x]/(x^2)$ obtained as the quotient of the polynomial ring $\mathbb{C}[x]$ by its ideal generated by x^2 . Let R^{\times} be the multiplicative group of units of this ring. Then there is an injective group homomorphism from $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ into R^{\times} .
- $T|(17)$ Let $A \in M_2(\mathbb{Z})$ be such that $|A_{ij}(n)| \leq 50$ for all $1 \leq n \leq 10^{50}$ and all $1 \leq i, j \leq 2$, where $A_{ij}(n)$ denotes the (i, j) -th entry of the 2×2 matrix A^n . Then $|A_{ij}(n)| \leq 50$ for all positive integers n .
- $\mathbb{F} \setminus (18)$ Let A, B be subsets of $\{0, \ldots, 9\}$. It is given that, on choosing elements $a \in A$ and $b \in B$ at random, $a + b$ takes each of the values $0, \ldots, 9$ with equal probability. Then one of A or B is singleton.
- $\lceil T \rceil (19)$ If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then there exists $M > 0$ such that for all $x \in \mathbb{R} \setminus [-M, M]$, we have $f(x) < x^{100}$.
- $\vert T \vert (20)$ If a sequence $\{f_n\}$ of continuous functions from [0, 1] to R converges uniformly on $(0, 1)$ to a continuous function $f : [0, 1] \to \mathbb{R}$, then $\{f_n\}$ converges uniformly on $[0, 1]$ to f.