Notation and Conventions

- N denotes the set of natural numbers $\{0, 1, \ldots\}$, Z the set of integers, Q the set of rational numbers, $\mathbb R$ the set of real numbers, and $\mathbb C$ the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- \mathbb{R}^n denotes the Euclidean space of dimension n. Subsets of \mathbb{R}^n are viewed as metric spaces using the standard Euclidean distance on \mathbb{R}^n .
- $M_n(\mathbb{R})$ denotes the real vector space of $n \times n$ real matrices, and $M_n(\mathbb{C})$ the complex vector space of $n \times n$ complex matrices. $M_n(\mathbb{R})$ gets the topology transferred from any R-linear isomorphism $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$, and its subsets get the subspace topology.
- Id denotes the identity matrix in $M_n(\mathbb{R}) \subset M_n(\mathbb{C})$.
- A matrix $A \in M_n(\mathbb{R})$ is called idempotent if $A^2 = A$, and nilpotent if $A^m = 0$ for some positive integer m.
- All rings are associative, with a multiplicative identity.
- For a ring R, $R[x]$ denotes the polynomial ring in one variable over R, and R^{\times} denotes the multiplicative group of units of R.
- All logarithms are natural logarithms.
- If B is a subset of a set A, we write $A \setminus B$ for the set $\{a \in A \mid a \notin B\}$.
- An isometry from a metric space (X, d) to a metric space (X', d') is a (not necessarily surjective) map $f: X \to X'$ such that for all $a, b \in X$, we have $d'(f(a), f(b)) = d(a, b)$.

PART A

Answer the following multiple choice questions.

1. For each positive integer n , let

$$
s_n = \frac{1}{\sqrt{4n^2 - 1^2}} + \frac{1}{\sqrt{4n^2 - 2^2}} + \dots + \frac{1}{\sqrt{4n^2 - n^2}}.
$$

Then $\lim_{n\to\infty} s_n$ equals

- (a) $\pi/2$
- $\sqrt{}$ (b) $\pi/6$
	- (c) 1/2
	- (d) ∞
- 2. The number of bijective maps $g : \mathbb{N} \to \mathbb{N}$ such that

$$
\sum_{n=1}^\infty \frac{g(n)}{n^2}<\infty
$$

is

- \sqrt{a} 0
	- (b) 1
	- (c) 2
	- (d) ∞
- 3. The value of

$$
\lim_{n \to \infty} \prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right)
$$

is

 \checkmark (a) $1/2$

- (b) 1
- (c) 1/4
- (d) 0
- 4. The set

$$
S = \{x \in \mathbb{R} \mid x > 0 \text{ and } (1 + x^2) \tan(2x) = x\}
$$

is

- (a) empty
- (b) nonempty but finite
- $\sqrt{}$ (c) countably infinite

(d) uncountable

5. The dimension of the real vector space

 $V = \{f: (-1,1) \to \mathbb{R} \mid f \text{ is infinitely differentiable on } (-1,1) \text{ and } f^{(n)}(0) = 0 \text{ for all } n \geq 0\}$ is

- (a) 0
- (b) 1
- (c) greater than one, but finite
- \checkmark (d) infinite
- 6. For a positive integer n, let a_n denote the unique positive real root of $x^n + x^{n-1} + \cdots$ $x - 1 = 0$. Then
	- (a) the sequence ${a_n}_{n=1}^{\infty}$ is unbounded

(b)
$$
\lim_{n \to \infty} a_n = 0
$$

$$
\bigvee \text{(c)} \ \lim_{n \to \infty} a_n = 1/2
$$

- (d) $\lim_{n\to\infty} a_n$ does not exist
- 7. Let A be the set of all real numbers $\lambda \in [0,1]$ such that

$$
\lim_{p\to 0}\frac{\log(\lambda 2^p+(1-\lambda)3^p)}{p}=\lambda\log 2+(1-\lambda)\log 3.
$$

Then

(a)
$$
A = \{0, 1\}
$$

\n(b) $A = \{0, \frac{1}{2}, 1\}$
\n(c) $A = \{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\}$
\n(d) $A = [0, 1]$

- 8. Let $X \subseteq \mathbb{R}$ be a subset. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions $f_n : X \to \mathbb{R}$, that converges uniformly to a function $f : X \to \mathbb{R}$. For each positive integer n, let $D_n \subseteq X$ denote the set of points at which f_n is not continuous. Let $D \subseteq X$ denote the set of points at which f is not continuous. Which one of the following statements is correct?
	- (a) If each D_n is finite, then D is finite.
- (b) If each D_n has at most 7 elements, then D has at most 7 elements.
	- (c) If each D_n is uncountable, then D is uncountable.
	- (d) None of the other three statements is correct.
- 9. Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Consider the following assertions:
	- (I) f is continuous.

(II) The set

$$
Graph(f) = \{(x, f(x)) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}\
$$

is a connected subset of \mathbb{R}^2 .

Which one of the following statements is correct?

- \blacktriangleright (a) (I) implies (II) but (II) does not imply (I).
	- (b) (II) implies (I) but (I) does not imply (II).
	- (c) (I) implies (II) and (II) implies (I) .
	- (d) (I) does not imply (II), and (II) does not imply (I).
- 10. Let C denote the set of colorings of an 8×8 chessboard, where each square is colored either black or white. Let \sim denote the equivalence relation on C defined as follows: two colorings are equivalent if and only if one of them can be obtained from the other by a rotation of the chessboard. The cardinality of the set \mathcal{C}/\sim of equivalence classes of elements of $\mathcal C$ under \sim is

(a)
$$
2^{62}
$$

- (b) $2^{62} + 2^{30} + 2^{15}$
- (c) $2^{64} 2^{32} + 2^{16}$
- (d) $2^{63} 2^{31} + 2^{15}$
- 11. What is the number of surjective maps from the set $\{1, \ldots, 10\}$ to the set $\{1, 2\}$?
	- (a) 90

$\sqrt{(b)} 1022$

- (c) 98
- (d) 1024
- 12. Let V be a vector space over a field F . Consider the following assertions:
	- (I) V is finite dimensional.
	- (II) For every linear transformation $T: V \to V$, there exists a nonzero polynomial $p(x) \in F[x]$ such that $p(T) : V \to V$ is the zero map.

Which one of the following statements is correct?

- (a) (I) implies (II) but (II) does not imply (I) .
- (b) (II) implies (I) but (I) does not imply (II) .
- \checkmark (c) (I) implies (II) and (II) implies (I).
	- (d) (I) does not imply (II), and (II) does not imply (I).
- 13. $T : \mathbb{C}[x] \to \mathbb{C}[x]$ be the C-linear transformation defined on the complex vector space $\mathbb{C}[x]$ of one variable complex polynomials by $Tf(x) = f(x+1)$. How many eigenvalues does T have?

 \sqrt{a} 1

- (b) finite but more than 1
- (c) countably infinite
- (d) uncountable
- 14. Let $\mathbb{R}^{\mathbb{N}}$ denote the real vector space of sequences (x_0, x_1, x_2, \dots) of real numbers. Define a linear transformation $T: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ by

 $(x_0, x_1, \ldots) \mapsto (x_0 + x_1, x_1 + x_2, \ldots).$

Which one of the following statements is correct?

- (a) The kernel of T is infinite dimensional.
- \blacktriangleright (b) The image of T is infinite dimensional.
	- (c) The quotient vector space $\mathbb{R}^{\mathbb{N}}/T(\mathbb{R}^{\mathbb{N}})$ is infinite dimensional.
	- (d) None of the other three statements is correct.
- 15. Which one of the following statements is correct?
	- (a) There exists a $\mathbb{C}\text{-linear isomorphism } \mathbb{C}^2 \to \mathbb{C}.$
	- (b) There exists no C-linear isomorphism $\mathbb{C}^2 \to \mathbb{C}$, but there exists an R-linear isomorphism $\mathbb{C}^2 \to \mathbb{C}$.
- (c) There exists no R-linear isomorphism $\mathbb{C}^2 \to \mathbb{C}$, but there exists a Q-linear isomorphism $\mathbb{C}^2 \to \mathbb{C}$.
	- (d) None of the other three statements is correct.
- 16. The matrix

$$
\begin{pmatrix} 4 & -3 & -3 \ 3 & -2 & -3 \ -1 & 1 & 2 \end{pmatrix}
$$

is

 \checkmark (a) diagonalizable

- (b) nilpotent
- (c) idempotent
- (d) none of the other three options
- 17. Which of the following is a necessary and sufficient condition for two real 3×3 matrices A and B to be similar (i.e., $PAP^{-1} = B$ for an invertible real 3×3 matrix P)?
	- (a) They have the same characteristic polynomial.
	- (b) They have the same minimal polynomial.
- \checkmark (c) They have the same minimal and characteristic polynomials.
	- (d) None of the other three conditions.

18. Consider the following two subgroups A, B of the group $\mathbb{Q}[x]$ of one variable rational polynomials under addition:

 $A = \{p(x) \in \mathbb{Z}[x] \mid p \text{ has degree at most } 2\},\$ and

 $B = \{p(x) \in \mathbb{Q}[x] \mid p \text{ has degree at most } 2, \text{ and } p(\mathbb{Z}) \subseteq \mathbb{Z}\}.$

Then the index $[B : A]$ of A in B equals

(a) 1

 $\sqrt{\left(b\right) 2}$

- (c) 4
- (d) none of the other three options
- 19. Let G be any finite group of order 2021. For which of the following positive integers m is the map $G \to G$, given by $g \mapsto g^m$, a bijection?
	- (a) 43
- \sqrt{b} 45
	- (c) 47
	- (d) none of the other three options
- 20. How many subgroups does $(\mathbb{Z}/13\mathbb{Z}) \times (\mathbb{Z}/13\mathbb{Z})$ have?
	- (a) 13
- \checkmark (b) 16
	- (c) 4
	- (d) 25

PART B

Answer whether the following statements are True or False.

1. Let $f_n : [0,1] \to \mathbb{R}$ be a continuous function for each positive integer n. If **F**

$$
\lim_{n \to \infty} \int_0^1 f_n(x)^2 dx = 0,
$$

then

$$
\lim_{n \to \infty} f_n\left(\frac{1}{2}\right) = 0.
$$

- 2. Let (X, d) be an infinite compact metric space. Then there exists no function f: $X \to X$, continuous or otherwise, with the property that $d(f(x), f(y)) > d(x, y)$ for all $x \neq y$. **T**
- 3. Every infinite closed subset of \mathbb{R}^n is the closure of a countable set. **T**
- 4. If X is a compact metric space, there exists a surjective (not necessarily continuous) function $\mathbb{R} \to X$. **T**
- 5. If X is a compact metric space, then every isometry $f: X \to X$ is surjective. **T**
- 6. Define a metric on the set of finite subsets of $\mathbb Z$ as follows: **F**

 $d(A, B) =$ the cardinality of $(A \cup B \setminus (A \cap B)).$

The resulting metric space admits an isometry into \mathbb{R}^n , for some positive integer n.

7. There exists a continuous function **F**

$$
f : [0,1] \to \{ A \in M_2(\mathbb{R}) \mid A^2 = A \}
$$

such that $f(0) = 0$ and $f(1) = Id$.

- 8. Let $f : [0,1] \to \mathbb{R}$ be a monotone increasing (not necessarily continuous) function such that $f(0) > 0$ and $f(1) < 1$. Then there exists $x \in [0, 1]$ such that $f(x) = x$. **T**
- 9. The set **F**

$$
\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x^y \text{ divides } y^x, x \neq y, xy \neq 0, x \neq 1\}
$$

is finite.

- 10. Suppose a line segment of a fixed length L is given. It is possible to construct a triangle of perimeter L, whose angles are $105^{\circ}, 45^{\circ}$ and 30° , using only a straight edge and a compass. **T**
- 11. The real vector space $M_n(\mathbb{R})$ cannot be spanned by nilpotent matrices, for any positive integer n. **T**
- 12. Let $S \subseteq M_n(\mathbb{R})$ be a nonempty finite set closed under matrix multiplication. Then there exists $A \in S$ such that the trace of A is an integer. **T**
- 13. Given a linear transformation $T: \mathbb{Q}^4 \to \mathbb{Q}^4$, there exists a nonzero proper subspace V of \mathbb{Q}^4 such that $T(V) \subseteq V$. **F**
- 14. If G is a finite group such that the group $Aut(G)$ of automorphisms of G is cyclic, then G is abelian. **T**
- 15. There exists a countable group having uncountably many subgroups. **T**
- 16. There exists a nonzero ideal $I \subseteq \mathbb{Z}[i]$ such that the quotient ring $\mathbb{Z}[i]/I$ is infinite (here *i* is a square root of -1 in \mathbb{C}). **F**
- 17. There exists an injective ring homomorphism from the ring $\mathbb{Q}[x, y]/(x^2 y^2)$ into the ring $\mathbb{Q}[x, y]/(x - y^2)$. **F**
- 18. The set **F**

 ${n \in \mathbb{N} \mid n \text{ divides } a^3 - 1, \text{ for all integers } a \text{ such that } \gcd(a, n) = 1}$

is infinite.

19. The set of polynomials in the ring $\mathbb{Z}[x]$, the sum of whose coefficients is zero, forms an ideal of the ring $\mathbb{Z}[x]$. **T**

20. Let $c_1, c_2 > 0$, and let $f, g : \mathbb{R} \to \mathbb{R}$ be functions (not assumed to be continuous) such that for all $x\in\mathbb{R}$ **T**

$$
f(x + c_1) = f(x)
$$
 and $g(x + c_2) = g(x)$.

Further, assume that

$$
\lim_{x \to \infty} (f(x) - g(x)) = 0.
$$

Then $f = g$.