Notation and Conventions

- \bullet N denotes the set of natural numbers $\{0, 1, \ldots\}$, Z the set of integers, Q the set of rational numbers, $\mathbb R$ the set of real numbers, and $\mathbb C$ the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- \mathbb{R}^n denotes the Euclidean space of dimension n. Subsets of \mathbb{R}^n are viewed as metric spaces using the standard Euclidean distance on \mathbb{R}^n . For $x \in \mathbb{R}^n$, ||x|| denotes the standard Euclidean norm of x , i.e., the distance from x to 0.
- All rings are associative, with a multiplicative identity.
- For any ring R, $M_n(R)$ denotes the ring of $n \times n$ matrices with entries in R. The identity matrix in $M_n(R)$ will be denoted by Id.
- $M_n(\mathbb{R})$ will also be viewed as a real vector space, and $M_n(\mathbb{C})$ as a complex vector space. $M_n(\mathbb{R})$ is given the topology such that any \mathbb{R} -linear isomorphism $M_n(\mathbb{R}) \to \mathbb{R}^{n^2}$ is a homeomorphism. Subsets of $M_n(\mathbb{R})$ are given the subspace topology.
- For a ring R, $R[x_1, \ldots, x_n]$ denotes the polynomial ring in n variables x_1, \ldots, x_n over R.
- All logarithms are natural logarithms.
- If B is a subset of a set A, we write $A \setminus B$ for the set $\{a \in A \mid a \notin B\}$.
- Let G be a finite group, and let $S \subset G$. We say that S generates G if no proper subgroup of G contains S.
- If $f: X \to Y$ is a map of sets, and $X_1 \subset X$, then $f|_{X_1}$ denotes the restriction of f to X_1 .

PART A

Answer the following multiple choice questions.

- 1. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = (3x^2 + 1)/(x^2 + 3)$. Let $f^{\circ 1} = f$, and let $f^{\circ n} = f^{\circ (n-1)} \circ f$ for all integers $n \geq 2$. Which of the following statements is correct?
	- (a) $\lim_{n \to \infty} f^{\circ n}(1/2) = 1$, and $\lim_{n \to \infty} f^{\circ n}(2) = 1$.
	- (b) $\lim_{n \to \infty} f^{\circ n}(1/2) = 1$, but $\lim_{n \to \infty} f^{\circ n}(2)$ does not exist.
	- (c) $\lim_{n\to\infty} f^{\circ n}(1/2)$ does not exist, but $\lim_{n\to\infty} f^{\circ n}(2) = 1$.
	- (d) Neither $\lim_{n\to\infty} f^{\circ n}(1/2)$ nor $\lim_{n\to\infty} f^{\circ n}(2)$ exists.
- 2. Consider the following properties of a sequence $\{a_n\}_n$ of real numbers.
	- (I) $\lim_{n \to \infty} a_n = 0.$

(II) There exists a sequence
$$
\{i_n\}_n
$$
 of positive integers such that $\sum_{n=1}^{\infty} a_{i_n}$ converges.

Which of the following statements is correct?

- (a) (I) implies (II) , and (II) implies (I) .
- (b) (I) implies (II), but (II) does not imply (I).
- (c) (I) does not imply (II) , but (II) implies (I) .
- (d) (I) does not imply (II), and (II) does not imply (I).
- 3. Consider sequences $\{x_n\}_n$ of real numbers such that

$$
\lim_{n \to \infty} (x_{2n-1} + x_{2n}) = 2 \quad \text{and} \quad \lim_{n \to \infty} (x_{2n} + x_{2n+1}) = 3.
$$

Which of the following statements is correct?

- (a) For every such sequence $\{x_n\}_n$, $\lim_{n\to\infty}\frac{x_{2n+1}}{x_{2n}}$ $\frac{2n+1}{x_{2n}} = 1.$
- (b) For every such sequence $\{x_n\}_n$, $\lim_{n\to\infty}\frac{x_{2n+1}}{x_{2n}}$ $rac{2n+1}{x_{2n}} = -1.$
- (c) For every such sequence $\{x_n\}_n$, $\lim_{n\to\infty}\frac{x_{2n+1}}{x_{2n}}$ $\frac{2n+1}{x_{2n}} = 3/2.$
- (d) There exists such a sequence $\{x_n\}_n$, for which $\lim_{n\to\infty}\frac{x_{2n+1}}{x_{2n}}$ $\frac{2n+1}{x_{2n}}$ does not exist.
- 4. Consider the function $f : (0, \infty) \to (0, \infty)$ given by $f(x) = xe^x$. . Let $L: (0, \infty) \to (0, \infty)$ be its inverse function. Which of the following statements is correct?

(a)
$$
\lim_{x \to \infty} \frac{L(x)}{\log x} = 1.
$$

\n(b)
$$
\lim_{x \to \infty} \frac{L(x)}{(\log x)^2} = 1.
$$

\n(c)
$$
\lim_{x \to \infty} \frac{L(x)}{\sqrt{\log x}} = 1.
$$

(d) None of the remaining three options is correct.

5. Let $\{b_n\}_n$ be a monotonically increasing sequence of positive real numbers such that $\lim_{n\to\infty} b_n =$ ∞. Which of the following statements is true about

$$
\lim_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n \frac{b_k}{k^2}?
$$

- (a) The limit exists for all such sequences, and its value is always $+\infty$.
- (b) The limit exists for all such sequences, and its value is always 0.
- (c) The limit exists for all such sequences, and its value is always 1.
- (d) None of the remaining three options is correct.

6. For every positive integer n, define $f_n : [0,1] \to \mathbb{R}$ by $f_n(x) = \frac{\sin(n^2x) + \cos(e^n x)}{1 + n^2x^2}$. Then

$$
\lim_{n \to \infty} \int_0^{1 - \sin(1/n)} f_n(x) \, dx
$$

equals

- (a) 1.
- (b) 0.
- $(c) \infty$.
- (d) 1/2.
- 7. Consider the functions $f_1, f_2 : (0, \infty) \to \mathbb{R}$ defined by

$$
f_1(x) = \sqrt{x}
$$
, and $f_2(x) = \sqrt{x} \sin x$.

Which of the following statements is correct?

- (a) f_1 and f_2 are uniformly continuous.
- (b) f_1 is uniformly continuous, but f_2 is not.
- (c) f_2 is uniformly continuous, but f_1 is not.
- (d) Neither f_1 nor f_2 is uniformly continuous.
- 8. Let $x_1 \in \mathbb{R}^2 \setminus \{0\}$ be fixed, and inductively define $x_{n+1} = Ax_n$ for $n \ge 1$, where A is the 2×2 real matrix given by

$$
A:=\begin{pmatrix}\frac{\sqrt{3}}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{\sqrt{3}}{2}\end{pmatrix}.
$$

Which of the following statements is correct?

- (a) ${x_n}_n$ is a convergent sequence.
- (b) $\{x_n\}_n$ is not a convergent sequence, but it has a convergent subsequence.
- (c) $\lim_{n \to \infty} ||x_n|| = 0.$
- (d) None of the remaining three options is correct.

9. Let $T: M_3(\mathbb{R}) \to \mathbb{R}^3$ be the linear map defined by $T(A) = A$ $\sqrt{ }$ \mathcal{L} 1 $\overline{0}$ −1 \setminus . Then the dimension of the kernel of T equals

- (a) 2.
- (b) 8.
- (c) 1.

(d) None of the remaining three options.

10. Let $V = \{f(x) \in \mathbb{R}[x] \mid f(0) = 0\}$, viewed as a real vector space. Consider the following assertions:

- (I) V contains three linearly independent polynomials of degree 2.
- (II) V contains two linearly independent polynomials of degree 3.

Which of the following statements is correct?

- (a) Both (I) and (II) are true.
- (b) (I) is true, but (II) is false.
- (c) (I) is false, but (II) is true.
- (d) Neither (I) nor (II) is true.
- 11. Let $C([-1, 1], \mathbb{R})$ denote the real vector space of continuous functions from $[-1, 1]$ to \mathbb{R} , and consider the subspace

$$
V = \{ f \in C([-1, 1], \mathbb{R}) \mid f(-x) = f(x) \text{ for all } x \in [-1, 1] \}.
$$

Define an inner product on $C([-1, 1], \mathbb{R})$ by

$$
\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt.
$$

What is the orthogonal complement of V in $C([-1, 1], \mathbb{R})$?

- (a) $\{f \in C([-1, 1], \mathbb{R}) \mid f(-x) = -f(x) \text{ for all } x \in [-1, 1]\}.$
- (b) $\{f \in C([-1, 1], \mathbb{R}) \mid f(0) = 0\}.$
- (c) V does not have an orthogonal complement in $C([-1, 1], \mathbb{R})$.
- (d) None of the remaining three options.
- 12. Consider pairs (X, d) , where X is a set with 100 elements, and $d: X \times X \to \mathbb{R}$ is a function such that $d(x, y) = d(y, x) > 0$ if $x, y \in X$ are distinct, and $d(x, x) = 0$ for all $x \in X$. For $n < 100$, let A_n be the statement:

For every such pair (X, d) , there exists a subset X_1 of X, with n elements, such that $(X_1, d|_{X_1 \times X_1})$ is a metric space.

Which of the following statements is correct?

- (a) A_2 is true, but A_3 is not true.
- (b) A_3 is true, but A_4 is not true.
- (c) A_n is true for all $n \leq 10$, but not for all $n \leq 25$.
- (d) A_n is true for all $n \leq 25$.
- 13. Let $\{x_n\}_n$ be a sequence in a metric space (X, d) . Let $f : X \to \mathbb{R}$ be defined by

$$
f(x) = \inf \{ d(x, x_n) \mid n \in \mathbb{N} \}.
$$

Which of the following statements is correct?

 (a) f is uniformly continuous on X.

- (b) f is continuous on X , but not necessarily uniformly continuous.
- (c) f is continuous on X if and only if X is compact.
- (d) None of the remaining three options is correct.
- 14. The number of finite groups, up to isomorphism, with exactly two conjugacy classes, equals

 (a) 1.

- (b) 2.
- (c) Greater than 2, but finite.
- (d) Infinite.
- 15. Consider the following assertions about a commutative ring R with identity and elements $a, b \in R$:
	- (I) There exist $p, q \in R$ such that $ap + bq = 1$.
	- (II) There exist $p, q \in R$ such that $a^2p + b^2q = 1$.

Then:

- (a) (I) implies (II), and (II) implies (I).
- (b) (I) implies (II), but (II) does not imply (I).
- (c) (I) does not imply (II) , but (II) implies (I) .
- (d) (I) does not imply (II), and (II) does not imply (I).
- 16. The number of elements of finite order in the group

$$
\left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}
$$

is

 (a) 1.

- (b) Finite, but not 1.
- (c) Countably infinite.
- (d) Uncountably infinite.
- 17. The value of

$$
\max \left(\bigcup_{\substack{k \in \mathbb{N} \\ k \ge 1}} \{ x_1 x_2 \dots x_k \mid x_1, \dots, x_k \in \mathbb{N}, \text{ and } x_1 + \dots + x_k = 100 \} \right)
$$

equals

- (a) 4×3^{32} .
- (b) 2^{50} .
- (c) $2^{26} \times 3^{16}$.
- (d) None of the remaining three options.
- 18. Choose the option that completes the sentence correctly: There exists a 10×10 real symmetric matrix A, all of whose entries are nonnegative and all of whose diagonal entries are positive, such that A^{10} has
	- (a) exactly 67 positive entries.
	- (b) exactly 68 positive entries.
	- (c) exactly 69 positive entries.
	- (d) exactly 70 positive entries.
- 19. The number of (nondegenerate Euclidean) triangles with sides of integer length and perimeter 8, up to congruence, is

 $(a) 1.$

- (b) 2.
- (c) 3.
- (d) 4.

20. Let

$$
A = \{ (\alpha, \beta) \in \mathbb{Z}^2 \mid \text{ the roots } r_1, r_2, r_3 \text{ of the polynomial} \}
$$

$$
p(x) = x^3 - 2x^2 + \alpha x - \beta \text{ satisfy } r_1^3 + r_2^3 + r_3^3 = 0 \}.
$$

Which of the following statements is correct?

- (a) A is infinite.
- (b) A is empty.
- (c) A is singleton.
- (d) A is finite, but neither empty nor singleton.

PART B

Answer whether the following statements are True or False.

- 1. Let α be a positive real number, and let $f : (0,1) \to \mathbb{R}$ be a function such that $|f(x)-f(y)| \le$ $|x-y|^{\alpha}$ for all $x, y \in (0, 1)$. Then f can be extended to a continuous function $[0, 1] \to \mathbb{R}$. 2. Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions such that $f^2 + g^2$ is uniformly continuous. Then at least one of the two functions f and g is uniformly continuous. 3. Let $\{f_n\}_n$ be a sequence of (not necessarily continuous) functions from [0, 1] to R. Let $f : [0,1] \to \mathbb{R}$ be such that for any $x \in [0,1]$ and any sequence $\{x_n\}_n$ consisting of elements from [0, 1], if $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} f_n(x_n) = f(x)$. Then f is continuous. 4. Let $A, B \in M_2(\mathbb{Z}/2\mathbb{Z})$ be such that $tr(A) = tr(B)$ and $tr(A^2) = tr(B^2)$. Then A and B have the same eigenvalues. 5. Let v_1, v_2, w_1, w_2 be nonzero vectors in \mathbb{R}^2 . Then there exists a 2×2 real matrix A such that $Av_1 = v_2$ and $Aw_1 = w_2$. *True True False False False*
- 6. Let $A = (a_{ij}) \in M_n(\mathbb{R})$ be such that $a_{ij} \geq 0$ for all $1 \leq i, j \leq n$. Assume that $\lim_{m \to \infty} A^m$ exists, and denote it by $B = (b_{ij})$. Then, for all $1 \le i, j \le n$, we have $b_{ij} \in \{0, 1\}$. *False*
- 7. Given any monic polynomial $f(x) \in \mathbb{R}[x]$ of degree n, there exists a matrix $A \in M_n(\mathbb{R})$ such that its characteristic polynomial equals f . *True*
- 8. If $A \in M_4(\mathbb{Q})$ is such that its characteristic polynomial equals $x^4 + 1$, then A is diagonalizable in $M_4(\mathbb{C})$. *True*
- 9. If $A \in M_n(\mathbb{R})$ is such that $AB = BA$ for all invertible matrices $B \in M_n(\mathbb{R})$, then $A = \lambda \cdot \text{Id}$ for some $\lambda \in \mathbb{R}$. *True*
- 10. There exists a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ such that $f(2x) = 3f(x)$ for all $x \in \mathbb{R}$.
- 11. There exists a continuous bijection from $[0,1] \times [0,1]$ to $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$, which is not a homeomorphism. *False*

True

12. Let $f \in \mathbb{C}[z_1,\ldots,z_n]$ be a nonzero polynomial $(n \geq 1)$, and let

$$
X = \{ z \in \mathbb{C}^n \mid f(z) = 0 \}.
$$

Then $\mathbb{C}^n \setminus X$ is path connected.

True

True

False

False

- 15. A countably infinite complete metric space has infinitely many isolated points (an element x of a metric space X is said to be an isolated point if $\{x\}$ is an open subset of X). *True*
- 16. Suppose G and H are two countably infinite abelian groups such that every nontrivial element of $G \times H$ has order 7. Then G is isomorphic to H. *True*
- 17. There exists a nonabelian group G of order 26 such that every proper subgroup of G is abelian. *True*
- 18. Let G be a group generated by two elements x and y, each of order 2. Then G is finite.
- 19. $\mathbb{R}[x]/(x^4 + x^2 + 2023)$ is an integral domain.
- 20. Every finite group is isomorphic to a subgroup of a finite group generated by two elements. *True*