## Amrita VISHWA VIDYAPEETHAM

(University established u/s 3 of UGC Act 1956)

# **Amrita Entrance Examination – Engineering**

## PHYSICS, CHEMISTRY & MATHEMATICS

| Question booklet Version Code | Question booklet no. |     | Time : 3 hrs    |
|-------------------------------|----------------------|-----|-----------------|
| Number of pages               | Number of questions  | 120 | Max. Marks: 360 |
| Registration number           |                      |     |                 |
| Name of the candidate         |                      |     |                 |
| Signature of the candidate    |                      |     |                 |

### INSTRUCTIONS TO THE CANDIDATES

### **GENERAL**

- 1. Any malpractice or attempt to commit malpractice in the examination hall will lead to disqualification of the candidate.
- 2. Candidates are not allowed to carry any textual material, printed or written bits of papers, Mathematical and Physical Tables, electronic gadgets like calculator, cell phone, etc. into the examination hall.
- 3. Candidates shall possess the University Hall Ticket which should be produced on demand.
- 4. Candidates shall occupy the respective seats bearing their registration numbers on time.
- 5. Candidates shall sign the attendance sheet available with the invigilator.
- 6. Candidates are not permitted to leave the hall before the end of the examination.
- 7. Candidates are required to handover the ANSWER SHEET and the QUESTION BOOKLET to the invigilator before leaving the hall.
- 8. After submitting the answer sheet, candidates shall affix their left thumb impression on the attendance sheet.

### **QUESTION BOOKLET**

- 9. DO NOT OPEN THE SEALED QUESTION BOOKLET UNTIL THE INVIGILATOR ANNOUNCES TO DO SO.
- 10. **Before opening the Question Booklet,** write the Registration Number, Name and Signature using ball pen in the space provided at the top of this page.
- 11. **Immediately after opening the booklet,** the candidate should examine whether it contains all the 120 questions in serial order and ---- pages as mentioned at the top of this page. In case of unprinted, torn or missing pages in the booklet, the matter should be reported to the invigilator immediately.
- 12. Rough work may be done on the space provided in this booklet.

(Continued on the last page of this question booklet)

| Rough Work |  |
|------------|--|
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |

ı

# **MODEL QUESTIONS**

## PHYSICS (S.No.1 to 35) 35 Questions

| Ch         | ta: celeration due to gravity = arge of electron = 1.6 x 10 V = 1.6 x 10 <sup>-19</sup> J                                                                                                                                            | = 10m/s <sup>2</sup> , Mass of elector of C, Velocity of ligh | tron = $9.1 \times 10^{-31}$ kg<br>t, c = $3 \times 10^{8}$ m/s  |                                   |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--|--|
| 1.         | Which of the following has $A^2s^4kg^{-1}m^{-2}$                                                                                                                                                                                     | •                                                             | of farad?<br>c) kg m <sup>2</sup> A <sup>-1</sup> s <sup>2</sup> | d) kg $m^3$ $A^{-2}s^2$           |  |  |
| 2.         | a) Earth (29.8); Saturn(9.65); Venus(35.0); Mars(24.2)<br>b) Earth (9.65); Saturn(29.8); Venus(35.0); Mars(24.2)<br>c) Earth (24.2); Saturn(9.65); Venus(35.0); Mars(29.8)<br>d) Earth (29.8); Saturn(9.65); Venus(24.2); Mars(35.0) |                                                               |                                                                  |                                   |  |  |
| 3.         | At a point 3200 km vert of earth in SI units is                                                                                                                                                                                      | •                                                             |                                                                  |                                   |  |  |
|            | a) 6.66                                                                                                                                                                                                                              | b) 3.33                                                       | c) 5.55                                                          | d) 4.44                           |  |  |
| 4.         | Two laser beams one of photons. Their powers as a) 64:40                                                                                                                                                                             | _                                                             | nd the other 400 nm ha                                           | eve same unit flux of<br>d) 25:64 |  |  |
| 5.         | The relation, Work Done                                                                                                                                                                                                              | a – Change in internal                                        | energy holds for                                                 |                                   |  |  |
| <i>J</i> . | a) isothermal process                                                                                                                                                                                                                | . – Change in internal (                                      | b) adiabatic process                                             |                                   |  |  |
|            | c) isobaric process                                                                                                                                                                                                                  |                                                               | d) isochoric process                                             |                                   |  |  |
| 6.         | The rate of flow of volume length L due to pressure used and $\Delta P$ is doubled                                                                                                                                                   | e difference $\Delta P$ is $(\Delta V/$                       | $\Delta t$ ). If a pipe of radius                                |                                   |  |  |
|            | a) 2                                                                                                                                                                                                                                 | b) 4                                                          | c) 8                                                             | d) 16                             |  |  |
| 7.         | If the charge Q in a capa                                                                                                                                                                                                            | citor is doubled, electri                                     | ic field energy stored in                                        | nside                             |  |  |
|            | a) doubles                                                                                                                                                                                                                           |                                                               | b) increases by factor                                           |                                   |  |  |
|            | c) remains unchanged                                                                                                                                                                                                                 |                                                               | d) increases by factor                                           | : 8                               |  |  |
| 8.         | . A capacitor with C =0.144 $\mu$ F having charge Q is made to discharge through a resistance of 1.0 $\Omega$ . What is the time taken for the discharge of 50% of the initial charge?                                               |                                                               |                                                                  |                                   |  |  |
|            | a) 10 <sup>-7</sup> s                                                                                                                                                                                                                | b) 0.144 x10 <sup>-6</sup> s                                  | c) $2.1 \times 10^{-7} \text{s}$                                 | d) 0.144 x 10 <sup>-7</sup> s     |  |  |
| Ro         | ough Work                                                                                                                                                                                                                            |                                                               |                                                                  |                                   |  |  |

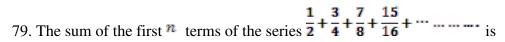
| 9.  | A slab having dielectric constant $\kappa = 3$ is placed in a region having constant electric field $E = 10 \text{ V m}^{-1}$ . The electric field inside the slab volume is                                                                                                          |                          |                          |                          |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--|--|
|     | a) 1.1 V m <sup>-1</sup>                                                                                                                                                                                                                                                              | b) 30 V m <sup>-1</sup>  | c) zero                  | d) 3.33V m <sup>-1</sup> |  |  |
| 10. | 0. A parallel plate capacitor is connected to a battery supplying constant voltage difference such that it accumulates charge <i>Q</i> . While being connected, if the separation <i>d</i> between the plates is increased a) both electric field inside the capacitor and Q decrease |                          |                          |                          |  |  |
|     | <ul><li>b) electric field inside the</li><li>c) electric field inside the</li><li>d) both electric field inside</li></ul>                                                                                                                                                             | e capacitor increases ar | nd Q decreases           |                          |  |  |
| 11. | The sides (in meters) $\mathbf{a} = 4\mathbf{i}$ , $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{c} = \mathbf{i}$                                                                                                                                                             |                          |                          | esented by vectors       |  |  |
|     | a) 20 m <sup>2</sup>                                                                                                                                                                                                                                                                  | b) 26 m <sup>2</sup>     | c) 36 m2                 | d) $40 \text{ m}^2$      |  |  |
| 12. | 12. The slant side of a frictionless incline making an angle 60° with the vertical is 1 m Starting from rest the time taken by a mass to slide down the incline from top to the base is                                                                                               |                          |                          |                          |  |  |
|     | a) 0.63 s                                                                                                                                                                                                                                                                             | b) 0.23 s                | c) 0.2 s                 | d) 0.4 s                 |  |  |
| 13. | A mass of 0.01 kg is huspring constants $k_1$ = 10 system is                                                                                                                                                                                                                          |                          |                          |                          |  |  |
|     | a) 3 cm                                                                                                                                                                                                                                                                               | b) 1.5 cm                | c) 6 cm                  | d) 2.5 cm                |  |  |
| 14. | A mass $m = 1 \text{ kg located}$ in the y direction. All nur                                                                                                                                                                                                                         |                          | The angular acceleration | n is                     |  |  |
|     | a) 0.24 radians s <sup>-2</sup> along a<br>c) 0.12 radians s <sup>-2</sup> along a                                                                                                                                                                                                    |                          | ,                        |                          |  |  |
| 15. | A circuit is operated by flowing in the circuit is (internal resistance is                                                                                                                                                                                                            |                          |                          |                          |  |  |
|     | a) 1.8 W                                                                                                                                                                                                                                                                              | b) 1.74 W                | c) 1.42 W                | d) 1.62 W                |  |  |
| 16. | 16. A small magnet of magnetic moment <b>m</b> is placed inside a hollow sphere of radius R; the net magnetic flux emerging out of the sphere is                                                                                                                                      |                          |                          |                          |  |  |
|     | <ul><li>a) proportional to m</li><li>b) proportional to the proc</li><li>c) zero</li><li>d) a function of location a</li></ul>                                                                                                                                                        |                          |                          |                          |  |  |
| Ro  | ugh Work                                                                                                                                                                                                                                                                              |                          |                          |                          |  |  |
| 110 | -511 (11 CIA                                                                                                                                                                                                                                                                          |                          |                          |                          |  |  |

|                                                                                   | netic induction flux crost + 4 <b>j</b> + 6 <b>k</b> ? All numbers                                                        |                                                    | plane if magnetic induction                     |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| a) 2                                                                              | b) 4                                                                                                                      | c) 6                                               | d) <b>√56</b>                                   |
| 18. The direction of corresponding w                                              |                                                                                                                           | plane wave is along                                | unit vector $n = i + j$ . The                   |
| <ul><li>a) parallel to z as</li><li>c) perpendicular</li></ul>                    |                                                                                                                           | b) parallel to a d) parallel to                    |                                                 |
| _                                                                                 | l in a region is given by at a point (-5,1,2) is                                                                          | $4x^2+3$ . All numbers                             | are in SI units. The Electric                   |
| a) 40                                                                             | b) 20                                                                                                                     | c) 80                                              | d) 10                                           |
|                                                                                   | ism of refracting angle 6<br>The critical angle of glas                                                                   |                                                    | iquid, its angle of minimum<br>liquid medium is |
| a) 45°                                                                            | b) 30°                                                                                                                    | c) 60°                                             | d) 55°                                          |
| <ul><li>(i) The ammete</li><li>(ii) An ammeter</li><li>(iii) An ammeter</li></ul> | p of incorrect statement in used to measure current should have very low reshould have very high reammeter in series will | et in a circuit is to be consistance.  Resistance. | e e                                             |
| a) (i) and (ii)                                                                   | b) (ii) and (iii)                                                                                                         | c) (iii) and (iv                                   | d) (iv) and (i)                                 |
|                                                                                   | h $i=1,2$ denote respective secondary coils of an ide                                                                     | =                                                  | of turns, and the current in                    |
| a) $E_1/E_2 = N_1/N_1$<br>c) $E_2/E_1 = N_1/N_2$                                  |                                                                                                                           | b) $E_1/E_2 = N_2$<br>d) $E_1/E_2 = N_1$           |                                                 |
| 23. Which of the fol                                                              | lowing are unrelated?                                                                                                     |                                                    |                                                 |
|                                                                                   | ciple and propagation of                                                                                                  | light                                              |                                                 |
|                                                                                   | nciple and speed of light ation and Kepler's laws                                                                         |                                                    |                                                 |
| ,                                                                                 | and Coulomb force                                                                                                         |                                                    |                                                 |
| •                                                                                 | pole of dipole moment p<br>nt (b,0,0) and (0,0,b) are                                                                     | •                                                  | gin. The electric fields at                     |
| a)                                                                                |                                                                                                                           | equal in magr                                      | nitude                                          |
| b) equal c) equal in direc                                                        | tion only                                                                                                                 |                                                    |                                                 |
| / <b>1</b>                                                                        | ignitude and opposite in                                                                                                  | direction                                          |                                                 |
| Rough Work                                                                        |                                                                                                                           |                                                    |                                                 |
|                                                                                   |                                                                                                                           |                                                    |                                                 |

| 25. | <ul> <li>25. A compound telescope have two lenses A and B. Lens A is closer to object than lens B. Which statement is correct?</li> <li>a) Both A and B form real images.</li> <li>b) Both A and B form virtual images.</li> <li>c) A forms real image and B forms virtual image.</li> <li>d) A forms virtual image and B forms real image.</li> </ul> |                                                                                                |                                                |                                    |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|--|--|
| 26. | Assume that the wave le 600 nm. Its frequency is                                                                                                                                                                                                                                                                                                       |                                                                                                | C                                              |                                    |  |  |
|     | a) $0.5 \times 10^{15} \text{ Hz}$                                                                                                                                                                                                                                                                                                                     | b) 0.33 x10 <sup>15</sup> Hz                                                                   | c) $1.5 \times 10^{15} \text{ Hz}$             | d) $0.5 \times 10^{15} \text{ Hz}$ |  |  |
| 27. | The energies of two phomenta is                                                                                                                                                                                                                                                                                                                        | notons are in the rational                                                                     | to 1:4. The correspon                          | nding ratio of their               |  |  |
|     | a) 1:2                                                                                                                                                                                                                                                                                                                                                 | b) 1:4                                                                                         | c) 2:1                                         | d) 4:1                             |  |  |
| 28. | At a given kinetic energy                                                                                                                                                                                                                                                                                                                              | which of the followin                                                                          | g has the highest speed                        | 1?                                 |  |  |
|     | a) neutrino                                                                                                                                                                                                                                                                                                                                            | b) electron                                                                                    | c) muon                                        | d) photon                          |  |  |
| 29. | The time taken by light to order of                                                                                                                                                                                                                                                                                                                    |                                                                                                |                                                |                                    |  |  |
|     | a) $10^{-21}$ s                                                                                                                                                                                                                                                                                                                                        | b) $10^{-23}$ s                                                                                | c) $10^{-25}$ s                                | d) $10^{-19}$ s                    |  |  |
| 30. | <ul><li>Water in a porcelain con of the water rises, but the a) porcelain is a bad cond b) water is a liquid and ca conductor.</li><li>c) preferential absorption d) microwaves are more</li></ul>                                                                                                                                                     | container temperature<br>ductor of heat.<br>an set up convection con<br>a of microwaves of cer | does not rise much. Turrents but the container | his is because<br>er is solid non  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                                | IN COMPLETE                        |  |  |
| Roi | agh Work                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                |                                    |  |  |

# CHEMISTRY (S.No. 36 to 70 ) 35 Questions

| 36. | 6. 20 g of a solute whose density is 2.0 g/cc is dissolved in water and the solution is made upto one litre. If the molecular weight of the solute is 100, what is the molality of the solution?                                                                                                                                                                                |                                   |                                                                        |                          |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|--------------------------|--|--|
|     | a) 0.2020                                                                                                                                                                                                                                                                                                                                                                       | b) 0.4040                         | c) 0.2000                                                              | d) 0.0200                |  |  |
| 37. | The velocity of infra red a) twice                                                                                                                                                                                                                                                                                                                                              | radiation in vacuum co<br>b) half | ompared to ultra violet c) equal                                       | is d) four times         |  |  |
| 38. | <ul> <li>8. Which one of the following statements is true?</li> <li>a) An orbit and orbital mean the same thing.</li> <li>b) An orbit and orbital contain the same number of electrons always.</li> <li>c) The energies of the orbit and the orbital are the same.</li> <li>d) The maximum number of electrons present in an orbit and an orbital will be different.</li> </ul> |                                   |                                                                        |                          |  |  |
| 39. | Which one of the foll principle? a) calcium                                                                                                                                                                                                                                                                                                                                     | lowing has electronic b) titanium | c configuration in vi                                                  | d) manganese             |  |  |
| 40  | ,                                                                                                                                                                                                                                                                                                                                                                               | ,                                 | ,                                                                      | u) manganese             |  |  |
| 40. | <ul> <li>a) A matchstick on strike burns.</li> <li>b) Camphor packed in a container without over space catches fire on its own.</li> <li>c) Petrol kept in an open beaker reduces in quantity slowly.</li> <li>d) Water in a beaker surrounded by ice and salt freezes.</li> </ul>                                                                                              |                                   |                                                                        |                          |  |  |
| 41. | 41. For a substance $A_2B$ the first dissociation constant is $5x10^{-5}$ and the second dissociation constant is $1x10^{-9}$ at $25^{\circ}C$ . The value of the equilibrium constant for the following reaction $A_2B \leftrightarrow 2A^+ + B^{2-}$ at the same temperature is                                                                                               |                                   |                                                                        |                          |  |  |
| 4.0 | a) 5 x 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                          | ,                                 | c) $4 \times 10^{-4}$                                                  | d) 5 x 10 <sup>-14</sup> |  |  |
| 42. | In ice-liquid water equilib                                                                                                                                                                                                                                                                                                                                                     | _                                 |                                                                        |                          |  |  |
|     | <ul><li>a) increase in melting poi</li><li>c) no change in melting p</li></ul>                                                                                                                                                                                                                                                                                                  |                                   | <ul><li>b) decrease in melting</li><li>d) disappearance of o</li></ul> | _                        |  |  |
| 43. | 3. A silver rod dipped in a solution of silver nitrate of a particular concentration shows a potential of 0.75 V vs standard hydrogen electrode. If the standard potential for silver is 0.8V, at what molar concentration of the solution the potential will become zero?                                                                                                      |                                   |                                                                        |                          |  |  |
|     | a) $2.76 \times 10^{-14}$                                                                                                                                                                                                                                                                                                                                                       | b) $2.76 \times 10^{14}$          | c) $7.6 \times 10^{-28}$                                               | d) $7.6 \times 10^{28}$  |  |  |
| Ro  | ough Work                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                                        |                          |  |  |


| 44. | 4. What is the theoretical quantity of hydrogen required to generate 53.6Ah in a Proton Exchange Membrane Fuel Cell?                            |                                                                 |                                                                  |                       |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----------------------|--|
|     | a) 1.0 g                                                                                                                                        | b) 1.0 kg                                                       | c) 2.0 g                                                         | d) 2.0 litre          |  |
| 45. | the concentration of X is reaction increases by for                                                                                             | our times. What is the                                          | nat of Y and Z constant. T e order of the reaction?              |                       |  |
|     | a) 2                                                                                                                                            | b) 4                                                            | c) 1                                                             | d) 0                  |  |
| 46. | Which one of the follow                                                                                                                         | wing exhibits Schottl                                           | ky defect?                                                       |                       |  |
|     | <ul><li>a) nickel oxide</li><li>c) ferrous sulphide</li></ul>                                                                                   |                                                                 | <ul><li>b) potassium bromid</li><li>d) silver chloride</li></ul> | e                     |  |
| 47. | Which one of the follow                                                                                                                         | wing is anti ferromag                                           | gnetic?                                                          |                       |  |
|     | a) titanium dioxide                                                                                                                             |                                                                 | b) nickel                                                        |                       |  |
|     | c) oxygen                                                                                                                                       |                                                                 | d) ferrous oxide                                                 |                       |  |
| 48. | The gas that is produce                                                                                                                         | d through catalytic re                                          | eforming of sewage is                                            |                       |  |
|     | a) producer gas                                                                                                                                 |                                                                 | b) syngas                                                        |                       |  |
|     | c) natural gas                                                                                                                                  |                                                                 | d) carbon monoxide                                               |                       |  |
| 49. | Which one of the follow                                                                                                                         | wing hydrides is non-                                           | -stoichiometric?                                                 |                       |  |
|     | a) ammonia                                                                                                                                      | b) nickel hydride                                               | c) sodium hydride                                                | d) diborane           |  |
| 50. | The order of energy release 1 LPG > octane > lie b) liquid hydrogen > g c) octane > LPG > lie d) gaseous hydrogen >                             | quid hydrogen > gas<br>gaseous hydrogen ><br>quid hydrogen > ga | LPG > octane<br>seous hydrogen                                   | r litre is            |  |
| 51. | Density of the following                                                                                                                        | g alkali metals is in t                                         | the order of                                                     |                       |  |
|     | c) sodium < potass                                                                                                                              | ium < sodium<br>ium < lithium                                   |                                                                  |                       |  |
| 52. | The discontinuity in ior is due to                                                                                                              | nization enthalpy val                                           | ues of group 13 elements                                         | in the periodic table |  |
|     | <ul><li>a) irregular variation in</li><li>b) irregular variation in</li><li>c) poor shielding effect</li><li>d) poor shielding effect</li></ul> | electronegativity of 'p' and 'd' electro                        |                                                                  |                       |  |
| Roi | ıgh Work                                                                                                                                        |                                                                 |                                                                  |                       |  |

| 53. | 3. The reduction of germanium tetrachloride with lithium aluminium hydride gives                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                             |                                                    |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|--|
|     | <ul><li>a) digermane</li><li>c) monogermane</li></ul>                                                                                                                                                                                                                                                                                                                |                                                                                        | <ul><li>b) di and tri germanes</li><li>d) mixture of all germanes</li></ul> |                                                    |  |
| 54. |                                                                                                                                                                                                                                                                                                                                                                      | following is used as cathode in                                                        |                                                                             | ery?                                               |  |
|     | <ul><li>a) liquid sulphur o</li><li>c) poly ethylene o</li></ul>                                                                                                                                                                                                                                                                                                     |                                                                                        | <ul><li>b) thionyl chloride</li><li>d) methyl cyanide</li></ul>             |                                                    |  |
| 55. | • •                                                                                                                                                                                                                                                                                                                                                                  | nerism is possible in pentaamn                                                         |                                                                             |                                                    |  |
|     | a) linkage                                                                                                                                                                                                                                                                                                                                                           | b) optical                                                                             | c) position                                                                 | d) ionisation                                      |  |
| 56. | A coordination co is the type of hybr                                                                                                                                                                                                                                                                                                                                | =                                                                                      | •                                                                           |                                                    |  |
|     | a) dsp <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                  | b) sp <sup>3</sup>                                                                     | c) $sp^3d$                                                                  | d) $d^2sp^3$                                       |  |
| 57. | pressure and 27°                                                                                                                                                                                                                                                                                                                                                     | nic compound gave 60 mL of PC. Aqueous tension at 27° trogen in the compound? b) 2.125 |                                                                             |                                                    |  |
| 58. | <ul> <li>58. Predict the products formed on passing acetylene through acetic acid followed by distillation in presence of mercuric sulphate.</li> <li>a) acetic anhydride and acetone</li> <li>b) acetic anhydride and ethanol</li> <li>c) propionic anhydride and methanol</li> <li>d) acetic anhydride and ethanal</li> </ul>                                      |                                                                                        |                                                                             |                                                    |  |
| 59. | 69. The order of reactivity of the following for an S <sub>N</sub> <sup>2</sup> reaction is  a) alkyl fluoride > alkyl chloride > alkyl bromide > alkyl iodide b) alkyl fluoride > alkyl bromide > alkyl chloride > alkyl iodide c) alkyl iodide > alkyl bromide > alkyl chloride > alkyl fluoride d) alkyl bromide > alkyl fluoride > alkyl iodide > alkyl chloride |                                                                                        |                                                                             |                                                    |  |
| 60. | acid at 170°C to                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | sis, followed by hydr                                                       | olysis with lithium<br>set of products from<br>nol |  |
|     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                             |                                                    |  |

IN COMPLETE

# MATHEMATICS (S.No. 71 to 120) 50 Questions

|                                                 | 6i and $z_2 = 4 + 6i$ . If $z = \frac{\pi}{4}$ , then $ z - 7 - 9i $ is ea | • •                                                      | such that the argument                                         |
|-------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|
| or 2-2 <sub>2</sub> 1 (a) 6                     | (b) 3√2                                                                    | quai to<br><b>(ɛ) 2√3</b>                                | (d) √6                                                         |
| 72. The complex                                 | numbers $z_1$ and $z_2$ are                                                | e such that $z_1 \neq z_2$ and                           | $ z_1  =  z_2 $ . If $z_1$ has                                 |
| positive real j                                 | part and Z <sub>2</sub> has negati                                         | ive imaginary part, then (b) real and                    | $\frac{z_1 + z_2}{z_1 - z_2}  \text{may be}$ negative          |
| (c) purely in                                   | naginary                                                                   | (d) real and p                                           | ositive                                                        |
| 73. The maximum (a) √3 – 1                      | value of $ z $ where ' $z$ ', (b) $\sqrt{3}$                               | satisfies the condition $ z $                            | $\left  +\frac{2}{z} \right  = 2$ is $(d) \sqrt{3} + \sqrt{2}$ |
| 74. If ' 🥨 ' is a no                            | n real cube root of unity, th                                              | nen (α + b)(α + bω)(α + l                                | <i>ω</i> <sup>2</sup> ) is                                     |
| (a) $a^2 - b^2$                                 | (b) $a^2 + b^2$                                                            |                                                          | (d) $a^2 + b^2$                                                |
| 75. If a² +b² +c²                               | a = 1, then, $bc + ca + ab$                                                | lies in the interval                                     |                                                                |
| (a) $\left[-\frac{1}{2}\right]$                 | 1] (b) $\left[-\frac{1}{2}\right]$                                         | 3] (c) [-1,                                              | 2] (d) [-1,                                                    |
|                                                 | e the number of triangles<br>n of $n$ sides. If $T_{n+1}-T_n$              |                                                          |                                                                |
| (a) 5                                           | (b) 4                                                                      | (c) 6                                                    | (d) 7                                                          |
| 77. If <b>(2</b> n + <b>1)</b> P <sub>n-1</sub> | $_{1}: (2n-1)P_{n} = 3:5$ , the                                            | en the value of <sup>n</sup> is                          |                                                                |
| (a) 3                                           | (b) 6                                                                      | (c) 4                                                    | (d) 8                                                          |
| 78. The inverse of                              | the function $y = \frac{10^{x} - 10}{10^{x} + 10}$                         | is                                                       |                                                                |
| (a) $log_{10}$ (2 –                             | <b>x</b> )                                                                 | (b) $\frac{1}{2}log_{10}\left(\frac{1}{1}\right)$        | $\left(\frac{x}{x}\right)$                                     |
| (c) $\frac{1}{2}log_{10}(2x)$                   | <b>–1)</b>                                                                 | (d) $\frac{1}{2} log_{10} \left( \frac{2x}{2-x} \right)$ | $\left(\frac{c}{x}\right)$                                     |
| Rough Work                                      |                                                                            |                                                          |                                                                |



- (a)  $2^{n} 1$
- (b)  $1 2^{-n}$
- (c)  $2^{-n} n + 1$
- (d)  $2^{-n} + n 1$
- 80. If  $\mathbf{5^{1+x} + 5^{1-x}}$ ,  $\frac{\alpha}{2}$  and  $2\mathbf{5^{x} + 25^{-x}}$  are three consecutive terms of an A.P., then the values of '\alpha' are given by
  - (a)  $\alpha \geq 12$
- (b) a > 12
- (c) a < 12
- (d)  $\alpha \leq 12$

81. If 
$$a_a$$
  $b_a$   $c$  are in H.P., then the value of  $\frac{b+a}{b-a} + \frac{b+c}{b-c}$  is

(a) 0

(b) 1

(c) 2

(d) 3

82. Let 
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = \mathbf{\Lambda}$$
, where  $a_s$   $b_s$   $c$  are positive. Then

- $(a) \Delta > 0$
- (b) ∆≥ 0
- (c) ∆≤ 0
- $(d) \Delta < 0$

83. If 
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = 0$$
, then the value of  $x$  is

 $(a) - \frac{1}{2}$ 

 $(b)^{\frac{1}{2}}$ 

 $(c)^{\frac{12}{5}}$ 

 $(d) - \frac{12}{5}$ 

- 84. The quadratic expression  $17 + 12x 4x^2$  takes
  - (a) the least value 6

(b) the highest value 26

(c) the highest value 17

- (d) the lowest value 17
- 85. Three vectors  $\overline{A}_s$   $\overline{B}$  and  $\overline{C}$  are given by  $\hat{\imath} + \hat{k}_s$   $\hat{\imath} + \hat{\jmath} + \hat{k}$  and  $3\hat{\imath} 2\hat{\jmath} + 5\hat{k}$  respectively. Then the vector  $\overline{R}$  which satisfies the relation  $\overline{R} \times \overline{B} = \overline{C} \times \overline{B}$  and  $\overline{R} \cdot \overline{A} = \mathbf{0}$  is
  - (a)  $-\hat{\imath} 6\hat{\jmath} + \hat{k}$

(b)  $\hat{i} + 6\hat{j} - \hat{k}$ 

(c)  $2\hat{i} - 3\hat{j} + \hat{k}$ 

(d)  $-\hat{\imath} + 6\hat{\jmath} - \hat{k}$ 

| 86. If the magnitude of more through the point $\hat{i} + \hat{j}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                 | $\hat{i} + \alpha \hat{j} - \hat{k}$ acting |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------------|
| (a) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) 4                                  | (c) ± 2                                         | (d) ± 3                                     |
| 87. The arithmetic mean of <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | odd natural numbers is                 | }                                               |                                             |
| (a) n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) $\frac{n(n+1)}{2}$                 | (c) n – 1                                       | (d) n <sup>2</sup>                          |
| 88. A car completes the first have velocity *** The average velocity ** | <i>y</i>                               | •                                               | remaining half with                         |
| (a) $\sqrt{v_1 v_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) $\frac{v_1 - v_2}{2}$              | $(c) \frac{v_1 + v_2}{2}$                       | $(d)  \frac{2v_1v_2}{v_1 + v_2}$            |
| 89. An integer $x$ is chosen $x + \frac{192}{x} \le 30$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at random from the nu                  | mbers 1 to 28.                                  | The probability that                        |
| (a) $\frac{7}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) $\frac{1}{15}$                     | (c) $\frac{2}{28}$                              | (d) $\frac{5}{28}$                          |
| 90. Let ** be a nonzero determinants of order two the determinant is nonzero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | with entries $x$ and $x$               |                                                 |                                             |
| (a) $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b) $\frac{1}{2}$                      | (c) $\frac{3}{16}$                              | (d) $\frac{1}{8}$                           |
| 91. Two candidates <i>A</i> and probability that <i>A</i> is select atmost <b>0.25</b> . Then the pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ted is $0.5$ and the proba             | bility that both 🐴 a                            | and $B$ are selected is                     |
| (a) 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) 0.7                                | (c) 0.8                                         | (d) 0.6                                     |
| 92. The curve satisfying the dithe point (1, -1) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ifferential equation $\frac{dy}{dx}$ = | $= \frac{y^2 - 2xy - x^2}{y^2 + 2xy - x^2}$ and | nd passing through                          |
| (a) a circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | (b) a straight lin                              | ne                                          |
| (c) an ellipse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | (d) a parabola                                  |                                             |
| Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                                 |                                             |

| 93. The solution of the differential equation | log dy _ ox 6v 16             |                 |      |
|-----------------------------------------------|-------------------------------|-----------------|------|
| 93. The solution of the differential equation | $\frac{dx}{dx} = 3x - 6y + 6$ | , given $y = 1$ | when |
| x = <b>0</b> is                               |                               |                 |      |

(a) 
$$3e^{6y} = 2e^{9x-6} + 6e^x$$

(b) 
$$3e^{6y} = 2e^{9x+6} - 6e^6$$

(c) 
$$3e^{6y} = 2e^{9x+6} + e^6$$

(d) 
$$e^{6y} = 2e^{9x-6} + e^{-6}$$

94. 
$$\sqrt{2 + \sqrt{2 + 2\cos 8\theta}}$$
 is equal to

(d) 
$$\cos 2\theta$$

95. The value of 
$$\lim_{|x|\to\infty} [\cos(\tan^{-1})] (\sin(\tan^{-1}x))$$
 is equal to

$$(\alpha)-1$$

(c) 
$$-\frac{1}{\sqrt{2}}$$

$$(d)\frac{1}{\sqrt{2}}$$

96. If the orthocentre H of a triangle ABC bisects the altitude AD of the triangle ABC, then the value of tanBtanC is

$$(c)$$
 3

97. The remainder got by dividing 2804 by 257 is

98. If 
$$\lim_{x\to 0} f(x) = \frac{1}{2}$$
 and  $\lim_{x\to 0} g(x) = 4$ , then  $\lim_{x\to 0} \frac{f(x)\cos x}{e^x \sqrt{g(x)}}$  is

**(b)** 
$$-1$$

99. If 
$$f(x)$$
 and  $g(x)$  are two functions such that  $f(2) = 3$ ,  $g(2) = -4$ ,  $f'(2) = -\frac{1}{2}$  and  $g'(2) = -\frac{8}{3}$ , then the derivative of  $\log_{\epsilon}[f(x)g(x) + x]$  at  $x = 2$  is

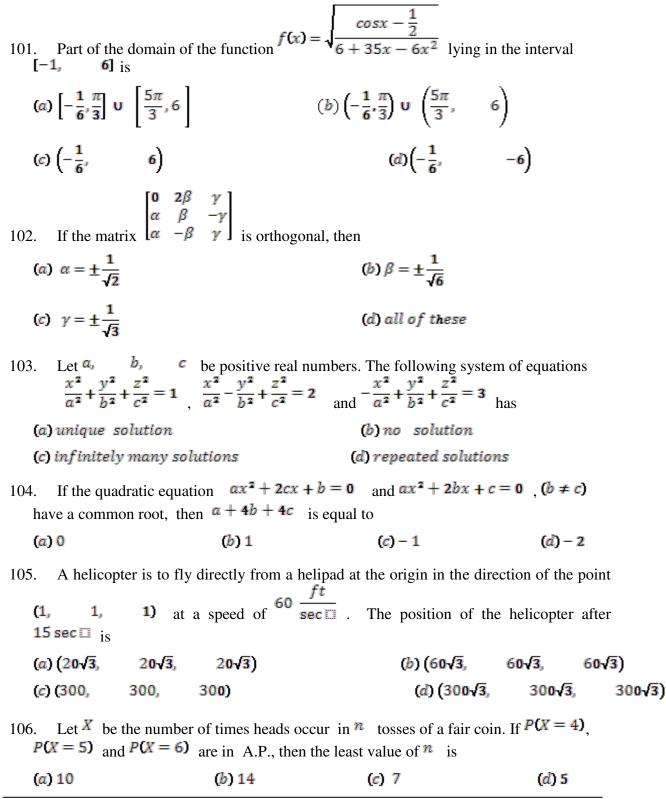
(a) 
$$\frac{1}{3}$$

(b) 
$$\frac{1}{2}$$

(c) 
$$-\frac{1}{3}$$

(b) 
$$\frac{1}{2}$$
 (c)  $-\frac{1}{3}$  (d)  $-\frac{1}{2}$ 

100. If 
$$p(x)$$
 is a


polynomial of degree three which attains its maximum value 60 at x = -3 and minimum value -84 at x = 3, then the polynomial is

(a) 
$$\frac{x^3}{3} - 9x - 12$$

(b) 
$$x^2 - 9x - 12$$

(c) 
$$4\left(\frac{x^3}{3} - 9x\right) - 12$$

(d) 
$$4\left(\frac{x^3}{3} - 9x\right) + 12$$



(a) 
$$y = \frac{\varphi(x) + C}{x}$$

(c) 
$$y = \varphi(x) + x + C$$

$$\frac{dy}{dx} = \frac{y\varphi(\square'(x) - y^2)}{\varphi(x)}$$
 is

(b) 
$$y = \frac{\varphi(x)}{x + C}$$

(d) 
$$y = \frac{\varphi(x)}{x} + C$$

108. The solution of the differential equation 
$$\frac{dy}{dx} = \sin(x + y) + \cos(x + y)$$
 is

(a) 
$$\log \left| 1 - \tan \left( \frac{x + y}{2} \right) \right| = y + C$$

(c) 
$$\log \left| 1 + \tan \left( \frac{x+y}{2} \right) \right| = y + C$$

(b) 
$$\log \left| 1 + \tan \left( \frac{x+y}{2} \right) \right| = x + C$$

(d) 
$$log|1 + tan(x + y)| = x + C$$

109. The equation 
$$sin^4x + cos^4x + sin2x + \beta = 0$$
 is solvable for

$$(\alpha) - \frac{5}{2} \le \beta \le \frac{1}{2}$$

$$(c) -\frac{3}{2} \le \beta \le \frac{1}{2}$$

(d) 
$$-1 \le \beta \le 1$$

110. Given that 
$$x=x(t)$$
 and  $y=y(t)$  satisfy the equations  $x+2x^{\frac{3}{2}}=t^2+t$  and  $y\sqrt{1+t}+2t\sqrt{y}=4$ , then  $dy = dy$  at  $t=0$  is

$$(a) - 6$$

$$(b) - 4$$

111. Two ships are steaming away from a point \*\*O ' along routes that make an angle of 120°. Ship A moves at 14 knots and ship B at 21 knots. The ships are moving apart at a rate of  $\Box'a \ knots'$  when OA = 5 nautical miles and OB = 3 nautical miles, where is

- (a)29.5
- (b) 28.5
- (c)29
- (d)28

112. If 
$$U_n = \int_0^1 x^n tan^{-1} x dx$$
, then the value of  $(n+1)U_n + (n-1)U_{n-2}$  is

- $(a)\frac{\pi}{4} \frac{1}{n}$   $(b)\frac{\pi}{4} + \frac{1}{n}$   $(c)\frac{\pi}{2} \frac{1}{n}$   $(d)\frac{\pi}{2} + \frac{1}{n}$

113. The value of 
$$\int_{1}^{5} 2^{\sqrt{x-1}} dx$$
 is

$$(b)\frac{8}{\log 2} + \frac{16}{(\log 2)^2}$$

(c) 
$$\frac{8}{log2} - \frac{4}{(log2)^2}$$

(d) 
$$\frac{16}{\log 2} - \frac{8}{(\log 2)^2}$$

114. The pair of tangents drawn from the point  $P = (h_1, k)$  to the two circles  $x^2 + y^2 + 2x = 0$  and  $x^2 + y^2 - 6x = 0$  coincide. Then the point P is

0)

115. Two circles pass through  $(0, \pm \alpha)$  and touch the straight line x - 2y - 4 = 0. If the two circles are orthogonal, then the value of  $\alpha$  is

$$(\alpha)\frac{3}{4}$$

$$(b)\frac{\sqrt{3}}{4}$$

(c) 
$$\frac{4}{3}$$

(d) 
$$\frac{3}{2}$$

116. A force  $\bar{F} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$  is applied to a spacecraft with velocity  $\bar{v} = \hat{\imath} - 2\hat{\jmath}$ . Then the force  $\bar{F}$  expressed as a vector which is both parallel and orthogonal to  $\bar{v}$  is

(a) 
$$\frac{1}{5}(14\hat{\imath} + 7\hat{\jmath} - 2\hat{k})$$

(b) 
$$\frac{1}{5} (14\hat{\imath} - 7\hat{\jmath} - 2\hat{k}) + \frac{\hat{\imath} - 2\hat{\jmath}}{\sqrt{5}}$$

$$(c)\frac{14\hat{i}}{5} + \frac{7\hat{j}}{5} - 2\hat{k} + \frac{\hat{i} - 2\hat{j}}{5}$$

(d) 
$$\frac{1}{5}(14\hat{\imath} + 7\hat{\jmath} - 2\hat{k}) + \hat{\imath} - 2\hat{\jmath}$$

117. If x + 4y - 14 = 0 is the normal to the curve  $y^2 = px^3 + q$  at the point  $\{p_a = q\}$  is

7}

(d) 
$$\{2, -7\}$$

118.  $\int \frac{\log(x+1) - \log x}{x(x+1)} dx$ 

(a) 
$$C - \frac{1}{2} \left( \log \left( 1 + \frac{1}{x} \right)^2 \right)$$

(b) 
$$\log\left(\frac{x+1}{x}\right) + C$$

$$(c) - \frac{1}{2} \left( \log \left( x - \frac{1}{x} \right) \right)^2 + C$$

(d) 
$$2\log\left(x+\frac{1}{x}\right)+C$$

119. If  $\int \frac{x^2+2}{(x^2+1)(x^2+4)} dx = p \tan \Box^{-1} \left(\frac{qx}{r+x^2}\right) + C$ , then the values of p, q and r are respectively

(a)  $\left\{ \frac{1}{3}, -3, -2 \right\}$ (c)  $\left\{ -3, -\frac{2,1}{3} \right\}$ 

(b)  $\left\{-\frac{1}{3}, 3, 2\right\}$ (d)  $\left\{\frac{1}{3}, 3, 2\right\}$ 

120. The area enclosed between the two parabolas  $y = 7 - 2x^2$  and  $y = x^2 + 4$  is

- (a) 3
- **(b)** 4
- (c) 2
- (d)5

## (Continued from the first page)

### OMR ANSWER SHEET

- 1. Use the OMR answer sheet carefully; no spare sheet will be issued under any circumstance.
- 2. Do not fold or make any stray mark on the OMR sheet.
- 3. Use HB Pencil or Blue / Black ball point pen for shading the bubbles and black ball pen for writing.
- 4. In the OMR answer sheet, make the following entries
  - a. Write the Registration number, Question Booklet Number and Question Booklet Version code.
  - b. Fill the ovals corresponding to the Registration Number, Question Booklet Number and Question Booklet Version Code.
  - c. Write your Name and Signature.
- 5. Rough work should not be done on the answer sheet.

### ANSWERING AND EVALUATION

- 6. For each question, four answers are suggested of which only one is correct / most appropriate. Mark the correct / most appropriate answer by darkening the corresponding bubble using HB pencil or Blue / Black ball point pen.
- 7. In case the candidate wishes to change the choice already shaded using HB pencil, he/she may erase the marking completely and thereafter shade the alternative bubble.
- 8. If more than one bubble is darkened against a question, it will be treated as an incorrect answer.
- 9. For each correct answer, three marks will be awarded.
- 10. For each incorrect answer, one mark will be deducted from the total score.
- 11. If any smudge is left on the OMR sheet, evaluation will become imperfect.