Solved Paper

Question 1

An object moves with speed v_1 , v_2 and v_3 along a line segment AB, BC and CD respectively as shown in figure. Where AB = BC and AD = 3AB, then average speed of the object will be:

•			-
A	в	С	D

Options:

A. $\frac{v_1v_2v_3}{3(v_1v_2 + v_2v_3 + v_3v_1)}$

B.
$$\frac{3v_1v_2v_3}{(v_1v_2 + v_2v_3 + v_3v_1)}$$

C.
$$\frac{(r^2 + r_2 + r_3)}{3}$$

D. $\frac{(v_1 + v_2 + v_3)}{3v_1v_2v_3}$

Answer: B

Solution:

Solution:

Consider,

AB = x

BC = x

 $<_{\rm V}> = \frac{3x}{\frac{x}{v_1} + \frac{x}{v_2} + \frac{x}{v_3}} = \frac{3v_1v_2v_3}{v_2v_3 + v_1v_3 + v_1v_2}$

Question 2

The effect of increase in temperature on the number of electrons in

conduction band (n_{e}) and resistance of a semiconductor will be as:

Options:

- A. Both n_e and resistance decrease
- B. Both n_e and resistance increase
- C. ${\rm n_e}$ increases, resistance decreases
- D. n_e decreases, resistance increases

Answer: C

Solution:

Solution:

When temperature increases, more electrons excite to conduction band and hence conductivity increases, therefore resistance decreases.

Question 3

A radio-active material is reduced to 1 / 8 of its original amount in 3 days. If 8×10^{-3} kg of the material is left after 5 days. The initial amount of the material is

Options:

A. 700 gm

B. 900 gm

C. 475 gm

D. 256 gm

Answer: D

Solution:

 $N = N_0 \left(\frac{1}{2}\right)^n N = \frac{N_0}{8}$ $\frac{N_0}{8} = N_0 \left(\frac{1}{2} \right)^n \Rightarrow \left(\frac{1}{2} \right)^3 = \left(\frac{1}{2} \right)^n$ n = 33 half lives = 3 days 1 half life = 1 day 5 days = 5 half life $N = N_0 \left(\frac{1}{2}\right)^n \Rightarrow 8 \times 10^{-3} = N_0 \left(\frac{1}{2}\right)^5$ \Rightarrow N₀ = 2⁵ × 8 × 10⁻³ = 256 gm

Question 4

A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. The number of spectral lines emitted will be:

Options:

A. 2

- B. 1
- C. 3
- D. 4

Answer: C

Solution:

Solution:

If we assume electron in hydrogen atom takes energy 12.09 eV from the incoming radiation, the maximum excited state $\frac{3(3-1)}{2} = 3.$

of electron will be n = 3. So, number of spectral lines is

Here we assume some part of energy 12.5 eV - 12.09 eV = 0.41 eV get lost due to collision.

Question 5

If 1000 droplets of water of surface tension 0.07 N / m. having same radius 1 mm each, combine to from a single drop. In the process the released surface energy is-

Take
$$\pi = \frac{22}{7}$$

Options:

A. 7.92×10^{-6} J B. 7.92×10^{-4} J C. 9.68×10^{-4} J

D. 8.8 × 10^{-5} J

Answer: B

Solution:

Solution:

We have

$$V_{f} = V_{i}$$

$$\Rightarrow \frac{4}{3}\pi r_{f}^{3} = 1000 \times \frac{4}{3}\pi r_{i}^{3} \Rightarrow r_{f}^{3} = 1000r_{i}^{3}$$

$$\Rightarrow r_{f} = 10r_{i}$$

So, released energy

= Initial surface energy - final surface

energy

 $= 1000 \times T \times 4\pi r_i^2 - T \times 4\pi r_f^2$ = $4\pi T (1000 r_i^2 - r_f^2)$ = $4\pi \times 0.07 (1000 r_i^2 - 100 r_i^2)$ = $4\pi \times 0.07 \times 900 r_i^2$ = $4\pi \times 63 \times 10^{-6} = 7.92 \times 10^{-4} J$

Question 6

The force between two small charged spheres having charges of 1×10^{-7} C and 2×10^{-7} C placed 20 cm apart in air is

Options:

A. 4.5×10^{-2} N

B. 4.5×10^{-3} N

C. 5.4×10^{-2} N

D. 5.4×10^{-3} N

Answer: B

Solution:

Here, $q_1 = 1 \times 10^{-7}$ C, q_2 and 2×10^{-7} C, $r = 20 \text{ cm} = 20 \times 10^{-2}$ m $F = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} = \frac{9 \times 10^9 \times 1 \times 10^{-7} \times 2 \times 10^{-7}}{(20 \times 10^{-2})^2}$ $= 4.5 \times 10^{-3}$ N

Question 7

The work done in placing a charge of 8×10^{-18} coulomb on a condenser of capacity 100 microfarad is

Options:

A. 3.1×10^{-26} joule

B. 4×10^{-10} joule

C. 32×10^{-32} joule

D. 16×10^{-32} joule

Answer: C

Solution:

Solution:

Work done = $\frac{1}{2} \frac{q^2}{C} = \frac{(8 \times 10^{-18})^2}{2 \times 100 \times 10^{-6}} = 32 \times 10^{-32} J$

Question 8

The resistance of a wire is 5 Ω . It's new resistance in ohm if stretched to 5 times of its original length will be :

Options:

A. 625

B. 5

C. 125

D. 25

Answer: C

Solution:

Let resistance of a wire R and length l.

$$R = \frac{\rho \ell}{A} = 5\Omega$$

... Volume of wire is constant in stretching

$$V_{i} = V_{f} \Rightarrow A_{i}\ell_{i} = A_{f}\ell_{f}$$
$$A\ell = A'(5\ell) \Rightarrow A' = \frac{A}{5}$$
$$R_{f} = \frac{\rho\ell_{f}}{A_{f}} = \frac{\rho(5\ell)}{\left(\frac{A}{5}\right)} = 25\left(\frac{\rho\ell}{A}\right) = 25 \times 5 = 125\Omega$$

Question 9

A charge particle is moving in a uniform magnetic field $(2\hat{i} + 3\hat{j})T$. If it has an acceleration of $(\alpha \hat{i} - 4\hat{j})m / s^2$, then the value of α will be : Options:

A. 3

B. 6

C. 12

D. 2

Answer: B

Solution:

Solution:

(b) Given that uniform magnetic field, $\overrightarrow{B} = (2\hat{i} + 3\hat{j})T$

Acceleration $\overrightarrow{a} = (\alpha i - 4j) m / s^2$ We know that

 $F = q(\overrightarrow{v} \times \overrightarrow{B}) \Rightarrow ma = q(\overrightarrow{v} \times \overrightarrow{B})$ Here, $\overrightarrow{a} \perp \overrightarrow{B}$, so, $\overrightarrow{a} \cdot \overrightarrow{B} = 0$ $(\alpha i - 4j)(2i + 3j) = 0 \Rightarrow 2\alpha - 12 = 0 \Rightarrow \alpha = 6$

Question 10

Proton (p) and electron (e) will have same de-Broglie wavelength when

the ratio of their momentum is (assume, $m^{}_{\rm n}$ = 1849m $^{}_{\rm e}$)

Options:

- A. 1:43
- B. 43 : 1
- C. 1 : 1849
- D. 1 : 1

Answer: D

Solution:

Solution:

De Broglie wavelength is $\lambda = \frac{h}{mv}$

$$\begin{split} \lambda_p &= \lambda_e \Rightarrow \frac{h}{m_p v_p} = \frac{h}{m_e v_e} \\ m_e v_e &= m_p v_p \Rightarrow p_e = p_p \quad \therefore \quad \frac{p_p}{p_e} = \frac{1}{1} \end{split}$$

Question 11

A thermodynamic system is taken through cyclic process. The total work done in the process is :

Options:

- A. 100J
- B. 300J
- C. Zero
- D. 200J

Answer: B

Solution:

Work done = Area under the curve

$$\Rightarrow W = \frac{1}{2} \times (4-2) \times (400-100) = \frac{1}{2}(2) \times 300$$

W = 300J

Question 12

In a reflecting telescope, a secondary mirror is used to:

Options:

A. reduce the problem of mechanical support

B. remove spherical aberration

C. make chromatic aberration zero

D. move the eyepiece outside the telescopic tube

Answer: D

Solution:

Solution:

To redirect the light that enters the telescope to the eyepiece or camera. The primary mirror of a reflecting telescopes gathers the light and reflects towards the secondary mirror which then reflect the light towards the eyepiece allowing the observer to see image.

It has advantage of a large focal length in a short telescope.

Question 13

The magnetic moment of an electron (e) revolving in an orbit around nucleus with an orbital angular momentum is given by:

Options:

A.
$$\vec{\mu}_{L} = \frac{e\vec{L}}{2m}$$

B. $\vec{\mu}_{L} = -\frac{e\vec{L}}{2m}$
C. $\vec{\mu}_{l} = -\frac{e\vec{L}}{m}$
D. $\vec{\mu}_{l} = \frac{2e\vec{L}}{m}$

Answer: A

Solution:

As $\overrightarrow{M} = \overrightarrow{IA}$ $\Rightarrow \left| \overrightarrow{M} \right| = \frac{e}{\frac{2\pi R}{v}} \pi R^{2} \left[\because I = \frac{Q}{T} = \frac{e}{\frac{2\pi R}{v}} \right]$ $\Rightarrow \left| \overrightarrow{M} \right| = \frac{1}{2} ev R \Rightarrow \left| \overrightarrow{M} \right| = \frac{mvR}{1} \cdot \frac{e}{2m}$ $\Rightarrow \left| \overrightarrow{M} \right| = \frac{eL}{2m} \Rightarrow \left| \overrightarrow{M} \right| = -\frac{e\overrightarrow{L}}{2m}$ [\there \vec{M} and \vec{L} will always be opposite]

Question 14

The ratio of intensities at two points P and Q on the screen in a Young's double slit experiment where phase difference between two wave of same amplitude are $\frac{\pi}{3}$ and $\frac{\pi}{2}$, respectively are

Options:

- A. 1 : 3
- B. 3 : 1
- C. 3 : 2
- D. 2 : 3

Answer: C

Solution:

Solution:

Intensity at a point in Young's double slit experiment is given by

```
I = I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}} \cos \varphi
Here I_{1} = I_{2} = I_{0} (say)
At P
\therefore I_{p} = I_{0} + I_{0} + 2I_{0} \cos \frac{\pi}{3} = 2I_{0} + 2I_{0} \times \frac{1}{2} = 3I_{0}
At Q
I_{Q} = I_{0} + I_{0} + 2I_{0} \cos 90^{\circ} = 2I_{0}
\frac{I_{P}}{I_{Q}} = \frac{3}{2}
```

Question 15

A bicycle tyre is filled with air having pressure of 270 kPa at 27°C. The approximate pressure of the air in the tyre when the temperature increases to 36°C is

Options:

- A. 270 kPa
- B. 262 KPa
- C. 278 kPa
- D. 360 kPa

Answer: C

Solution:

Solution:

From the ideal gas equation PV = nRT

Here, volume is constant $\therefore \frac{P_1}{T_1} = \frac{P_2}{T_2}$ Here, $T_1 = 27 + 273 = 300$ K

 $P_1 = 270 \text{ kPa}$

 $T_2 = 36 + 273 = 309K$

$$\Rightarrow P_2 = \frac{P_1}{T_1} \times T_2 = \frac{270 \times (309)}{300} = 278 \text{ kPa.}$$

Question 16

A particle executes SHM of amplitude A. The distance from the mean position when it's kinetic energy becomes equal to its potential energy is

Options:

A. $\sqrt{2A}$

B. 2A

C. $\frac{1}{\sqrt{2}}A$

D. $\frac{1}{2}A$

Answer: C

Solution:

Let the distance from the mean position is X.

Given KE = PE

So, $\frac{1}{2}M\omega^2(A^2 - x^2) = \frac{1}{2}M\omega^2 x^2 A^2 - x^2 = x^2 \Rightarrow A^2 = 2 \times 2$ $\therefore \mathbf{x} = \pm \frac{\mathbf{A}}{\sqrt{2}}$

Question 17

Electric field in a certain region is given by $\vec{E} = \left(\frac{A}{x^2}\hat{i} + \frac{B}{y^3}\hat{j} \right)$. The SI unit of A and B are:

Options:

A. $Nm^{3}C^{-1}$; $Nm^{2}C^{-1}$

B. Nm^2C^{-1} ; Nm^3C^{-1}

C. Nm³C; Nm²C

D. Nm²C; Nm³C

Answer: B

Solution:

Solution:

Electric field in a certain region is given by,

$$\overrightarrow{E} = \frac{A}{x^2} \overrightarrow{i} + \frac{B}{y^3} \overrightarrow{j}$$

$$\left[\frac{A}{x^2}\right] = NC^{-1} \Rightarrow [A] = Nm^2C^{-1}$$

$$\left[\frac{B}{y^3}\right] = NC^{-1} \Rightarrow [B] = Nm^3C^{-1}$$

Question 18

At any instant the velocity of a particle of mass 500g is $(2t^{\hat{i}} + 3t^{2} j)ms^{-1}$. If the force acting on the particle at t = 1s is $(\hat{i} + xj)N$. Then the value of x will be:

Options:

A. 3

B. 4

C. 6

D. 2

Answer: A

Solution:

Solution:

Mass of particle,

m = 500g = 0.5 kg

velocity of a particle,

$$\overrightarrow{v} = 2t_i^{\hat{n}} + 3t_j^{\hat{n}}$$
$$\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt} = 2\hat{i} + 6\hat{t}\hat{j}$$
$$\text{at } t = 1, \ \overrightarrow{a} = 2\hat{i} + 6\hat{j}$$

Force acting on the particle,

 $\overrightarrow{F} = m\overrightarrow{a} = 0.5(2\overrightarrow{i} + 6\overrightarrow{j}) = \overrightarrow{i} + 3\overrightarrow{j}$ $\overrightarrow{F} = \overrightarrow{i} + x\overrightarrow{j}$ Hence x = 3

Question 19

A particle of mass m moving with velocity v collides with a stationary particle of mass 2m. After collision, they stick together and continue to move together with velocity

Options:

A. v

B. $\frac{v}{2}$

C. $\frac{v}{3}$

D. $\frac{V}{4}$

Answer: C

Solution:

$$\Rightarrow \overrightarrow{\mathbf{P}}_{i} = \overrightarrow{\mathbf{P}}_{f} (\because \mathbf{P} = mv)$$
$$mv_{1} + 2mv_{2} = (m + 2m)v'$$
$$mv + 2m \times 0 = (3m)v'$$
$$\Rightarrow mv = 3 mvv' \Rightarrow v' = \frac{v}{3}$$

Question 20

Which of the following Maxwell's equations is valid for time varying conditions but not valid for static conditions :

Options:

- A. $\oint \vec{B} \cdot \vec{dl} = \mu_0 I$
- B. $\oint \vec{E} \cdot \vec{dl} = 0$
- C. $\oint \vec{E} \cdot \vec{dl} = -\frac{\partial \phi_B}{\partial t}$
- D. $\oint \vec{D} \cdot \vec{dA} = Q$

Answer: C

Solution:

Solution:

For time varying condition Maxwell's equation, $\oint \overrightarrow{E} \cdot \overrightarrow{dl} = -\frac{d\phi_B}{dt}$

Question 21

In an LC oscillator, if values of inductance and capacitance become twice and eight times, respectively, then the resonant frequency of

oscillator becomes x times its initial resonant frequency ω_0 . The value of x is:

Options:

- A. 1 / 4
- B. 16
- C. 1 / 16
- D. 4

Answer: A

Solution:

Solution:

The resonance frequency of LC oscillations circuit is

$$\omega = \frac{1}{\sqrt{L'C'}} \Rightarrow L' \rightarrow 2L$$

$$C' \rightarrow 8C$$

$$\omega = \frac{1}{\sqrt{2L \times 8C}} = \frac{1}{4\sqrt{LC}}9\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega = \frac{\omega_0}{4} \text{ So, } x = \frac{1}{4}$$

Question 22

A conducting loop of radius $\frac{10}{\sqrt{\pi}}$ cm is placed perpendicular to a uniform magnetic field of 0.5T. The magnetic field is decreased to zero in 0.5 s at a steady rate. The induced emf in the circular loop at 0.25s is:

Options:

A. emf = 1 mV

- B. emf = 10 mV
- C. emf = $100 \,\mathrm{mV}$

D. emf = 5 mV

Answer: B

Solution:

As
$$\varepsilon_{|t=0.5 \ sec} = -\frac{d\varphi}{dt}$$

 $= -A \frac{dB}{dt} \quad [\because \theta = 0^{\circ} \Rightarrow \cos \theta = 1]$
 $= -\pi \times \left(\frac{10}{\sqrt{\pi}}\right)^{2} \times 10^{-4} \times \frac{0 - 0.5}{0.5} = 10^{-2} V = 10 \text{ mV}$
As $\frac{dB}{dt} = \text{ constant} \Rightarrow \text{ Induced emf will not change with time. So, } e_{|0.5 \ sec} = e_{|0.25 \ sec} = 10 \text{ mV}$

Question 23

A disc is rolling without slipping on a surface. The radius of the disc is R. At t = 0, the top most point on the disc is A as shown in figure. When the disc completes half of its rotation, the displacement of point A from its initial position is

Options:

A. $R\sqrt{(\pi^2+4)}$

B. $R\sqrt{(\pi^2+1)}$

C. 2R

D. $2R\sqrt{(1+4\pi^2)}$

Answer: A

Solution:

Question 24

Two planets A and B of radii R and 1.5R have densities ρ and ρ / 2 respectively. The ratio of acceleration due to gravity at the surface of B to A is :

Options:

A. 2 : 3

B. 2 : 1

C. 3 : 4

D. 4 : 3

Answer: C

Solution:

Solution:

Acceleration due to gravity,

$$g = \frac{GM}{R^2} = \frac{4}{3}\pi G\rho R$$

$$\therefore \ \frac{g_2}{g_1} = \frac{\rho_2}{\rho_1} \times \frac{R_2}{R_1} = \frac{1}{2} \times 1.5 = \frac{3}{4}$$

Question 25

A 100m long wire having cross-sectional area $6.25 \times 10^{-4} m^2$ and Young's modulus is $10^{10} Nm^{-2}$ is subjected to a load of 250N, then the elongation in the wire will be :

Options:

A. 6.25×10^{-3} m

B. 4×10^{-4} m C. 6.25×10^{-6} m D. 4×10^{-3} m

Answer: D

Solution:

Solution:

 $\Delta \ell = \frac{F\ell}{YA} = \frac{250 \times 100}{10^{10} \times 6.25 \times 10^{-4}} = 40 \times 10^{-4} m$ $= 4 \times 10^{-3} m$

Question 26

The ratio of speed of sound in hydrogen gas to the speed of sound in oxygen gas at the same temperature is:

Options:

A. 4 : 1

B. 1 : 2

C. 1 : 4

D. 1 : 1

Answer: A

Solution:

Solution:

Given $M_{H_2} = 2; M_{O_2} = 32$

Speed of sound, $v = \sqrt{\frac{\gamma RT}{M}}$

$$\therefore \quad \frac{\mathrm{v}_{\mathrm{H}_2}}{\mathrm{v}_{\mathrm{O}_2}} = \sqrt{\frac{\mathrm{M}_{\mathrm{O}_2}}{\mathrm{M}_{\mathrm{H}_2}}} = \sqrt{\frac{32}{2}} = 4:1$$

Question 27

The free space inside a current carrying toroid is filled with a material of susceptibility 2×10^{-2} . The percentage increase in the value of magnetic field inside the toroid will be

Options:

A. 2%

B. 0.2%

C. 0.1%

D. 1%

Answer: A

Solution:

Solution:

Given,

Susceptibility of material, $\chi_m = 2 \times 10^{-2}$

Using $\mu_{\rm r} = 1 + \chi_{\rm m} = 1 + 0.02 = 1.02$

 $B_{final} = \mu_f B_0$ (here, $B_0 =$ initial magnetic field)

% increase in magnetic field

$$= \frac{B_{\text{final}} - B_0}{B_0} \times 100 = \frac{\mu_r B_0 - B_0 \times 100}{B_0}$$
$$= \frac{(\chi + 1) - 1 \times 100}{1} = 0.02 \times 100 = 2\%$$

Question 28

The ratio of average electric energy density and total average energy density of electromagnetic wave is :

Options:

A. 2

B. $\frac{1}{2}$

C. 1

D. 3

Answer: B

Solution:

We have
$$\frac{U_E}{U_T} = \frac{U_E}{U_E + U_B} = \frac{U_E}{2U_E} = \frac{1}{2}$$

 $\left[\because U_E = U_B = \frac{1}{2}E_0 E_0^2 = \frac{B_0^2}{2\mu_0} \right]$

Question 29

In a Young's double slit experiment, the intensities at two points, for the path difference $\frac{\lambda}{4}$ and $\frac{\lambda}{3}$ (λ being the wavelength of light used) are I₁ and I₂ respectively. If I₀ denotes the intensity produced by each one of the individual slits, then $\frac{I_1 + I_2}{I_0} = \dots$

Options:

A. 3

- B. 5
- C. 7
- D. 10

Answer: A

Solution:

Solution:

Resultant intensity in Young's double slit experiment

 $I = 4I_0 \cos^2 \left(\frac{\Delta \varphi}{2} \right)$

For path difference $\frac{\lambda}{4}$ phase difference,

$$\Delta \varphi = \frac{2\pi}{\lambda} \times \frac{\lambda}{4} = \frac{\pi}{4}$$
$$\therefore I_1 = 4I_0 \cos^2\left(\frac{\pi}{4}\right)' = 2I_0$$

For path difference $\frac{\lambda}{3}$

 $I_2 = 4I_0 \cos^2 \left(\frac{2\pi}{\lambda} \times \frac{\lambda}{3} \right) = I_0$ $\therefore \ \frac{I_1 + I_2}{I_0} = 3$

Question 30

The energy levels of an atom is shown is figure. Which one of these transitions will result in the emission of a photon of wavelength 124.1 nm ? Given (h = 6.62×10^{-34} Js)

Options:

A. B

B. A

C. C

D. D

Answer: D

Solution:

Solution:

As $E(eV) = \frac{1240}{\lambda(nm)} = \frac{1240}{124.1} \simeq 10 \text{ eV}$ Only is transition (D), the energy gap is 10 eV So, option (d) is correct $K_a = 0.001 \left(\frac{\alpha^2}{1-\alpha}\right) = \frac{0.001 \times \left(\frac{2}{19}\right)^2}{1-\left(\frac{2}{19}\right)}$