

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD WEIGHTAGE FRAMEWORK FOR MQP 2: II PUC MATHEMATICS(35):2024-25

Chapter	CONTENT	Number			PART	PART	PART			
		Of	PART A 1 mark		В	С	D	PART E		Total
		Teaching			2	3	5			
		hours			mark	mark	mark			
			мсо	FR				6	4	
			MCQ					mark	mark	
1	RELATIONS AND FUNCTIONS	9	1			1	1			9
	INVERSE									6
2	TRIGONOMETRIC FUNCTIONS	6	2	1		1				
3	MATRICES	9	1			1	1			9
4	DETERMINANTS	12	1		1		1		1	12
5	CONTINUITY AND	20	0	1	1	1	1		1	17
	DIFFERENTIABILITY		2	1	1	1	1		1	
6	APPLICATION OF DERIVATIVES	10	1		2	1				8
7	INTEGRALS	22	1	1	1	1	1	1		18
8	APPLICATION OF INTEGRALS	5					1			5
9	DIFFERENTIAL EQUATIONS	10	1		1		1			8
10	VECTOR ALGEBRA	11	2	1	1	1				8
11	THREE D	8	1		1	1				6
	GEOMETRY				T	Ţ				
12	LINEAR	7						1		6
	ROGRAMMING							1		
13	PROBABILITY	11	2	1	1	1				8
	TOTAL	140	15	5	9	9	7	2	2	120

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD Model Question Paper -2

II P.U.C MATHEMATICS (35):2024-25

Time : 3 hours

Max. Marks: 80

Instructions :

- 1) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
- 2) PART A has 15 MCQ's ,5 Fill in the blanks of 1 mark each.
- *3)* Use the graph sheet for question on linear programming in PART E.
- 4) For questions having figure/graph, alternate questions are given at the end of question paper in separate section for visually challenged students.

PART A

I. Answer ALL the Multiple Choice Questions

15×1 = 15

- **1**. If a relation R on the set $\{1, 2, 3\}$ is defined by R = $\{(1, 1)\}$, then R is
 - (A) symmetric but not transitive (B) transitive but not symmetric
 - (C) symmetric and transitive.

(D) neither symmetric nor transitive.

2. sin $(\tan^{-1}x)$, |x| < 1 is equal to

(A)
$$\frac{\sqrt{1-x^2}}{x}$$
 (B) $\frac{x}{\sqrt{1-x^2}}$ (C) $\frac{1}{1+x^2}$ (D) $\frac{x}{\sqrt{1+x^2}}$.

3. Match List I with List II

List I	List II
a) Domain of $\sin^{-1} x$	i) (−∞,∞)
b) Domain of $tan^{-1}x$	ii) [ο , π]
c) Range of $cos^{-1} x$	iii) [-1, 1]

Choose the correct answer from the options given below:

A) a-i , b-ii, c-iii	B) a-iii,	b-ii, c-i
C) a-ii, b-i, c-iii	D) a-iii,	b-i, c-ii

4 Statement 1: If A is a symmetric as well as a skew symmetric matrix, then A is a null matrix

Statement 2: A is a symmetric matrix if $A^T = A$ and A is a skew symmetric matrix if $A^T = -A$.

- A) Statement 1 is true and Statement 2 is false.
- B) Statement 1 is false and Statement 2 is false.
- C) Statement 1 is true and Statement 2 is true, Statement 2 is not a correct explanation for Statement 1
- D) Statement 1 is true and Statement 2 is true, Statement 2 is a correct explanation for Statement 1

5. If A is a square matrix of order 3 and |A| = 3, then $|A^{-1}| =$

A) 3 B)
$$\frac{2}{3}$$
 C) $\frac{1}{3}$ D) 12

6. For the figure given below, consider the following statements 1 and 2 Statement 1: The given function is differentiable at x = 1Statement 2: The given function is continuous at x = 02 A) Statement 1 is true and Statement 2 is false B) Statement 1 is false and Statement 2 is true C) Both Statement 1 and 2 are true 0 3 D) Both Statement 1 and 2 are false -1 7. If $y = e^{\log x}$, then $\frac{dy}{dx} =$ (A) $\frac{1}{4}$ B) e^{logx} C) -1 D) 1. **8**. The function f given by $f(x) = \log(\sin x)$ is increasing on (A) $(0, \pi)$ B) $\left(\pi, \frac{3\pi}{2}\right)$ C) $\left(\frac{\pi}{2}, \pi\right)$ D) $\left(\frac{3\pi}{2}, 2\pi\right)$. **9**. $\int \frac{1}{x\sqrt{x^2-1}} dx =$ A) $\sec x + C$ B) $\csc c^{-1}x + C$ C) $\sec^{-1}x + C$ D) $\csc c + C$ **10**. A differential equation of the form $\frac{dy}{dx} = F(x, y)$ is said to be homogenous if F(x, y) is a homogenous function of degree B) 2 A) 1 C) n D) 0. **11**. The projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on y-axis is C) $\frac{8}{\sqrt{17}}$ D) $\frac{2}{\sqrt{17}}$ A) $\frac{3}{\sqrt{17}}$ B) 3 **12**. Unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ is B) $\frac{\hat{\imath}+\hat{\jmath}+2\hat{k}}{6}$ C) $\frac{\hat{\imath}+\hat{\jmath}+2\hat{k}}{4}$ D) $\frac{\hat{\imath}+\hat{\jmath}+2\hat{k}}{2}$ A) $\frac{\hat{i}+\hat{j}+2\hat{k}}{\sqrt{\epsilon}}$ 13. The equation of a line parallel to x-axis and passing through the origin is A) $\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$ B) $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$ C) $\frac{x+5}{0} = \frac{y-2}{1} = \frac{z+3}{0}$ D) $\frac{x-5}{0} = \frac{y+2}{0} = \frac{z-3}{1}$. **14.** If P(A) = 0.4 P(B) = 0.5 and $P(A \cap B) = 0.25$ then P(A'|B) is A) $\frac{1}{2}$ B) $\frac{5}{8}$ C) $\frac{1}{4}$ D) $\frac{3}{4}$.

15. If A and B are independent events with P(A) = 0.3, P(B) = 0.4 then P(A | B)

II. Fill in the blanks by choosing the appropriate answer from those

- given in the bracket (-1, 0, 1, 2, 3, 5,) $5 \times 1 = 5$ 16. The value of $\cos\left(\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right) =$ _____
- 17. The number of points at which f(x)=[x], where [x] is greatest integer function is discontinuous in the interval (-2, 2) is _____
- **18.** $\int_0^{\frac{\pi}{2}} \left(\sin^2 \frac{x}{2} \cos^2 \frac{x}{2} \right) dx =$
- **19.** If $(2\vec{a} 3\vec{b}) \times (3\vec{a} 2\vec{b}) = \lambda(\vec{a} \times \vec{b})$, then the value of λ is _____
- **20.** Probability of solving a specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem then the probability that the problem is solved is $\frac{k}{3}$, then the value of k is _____

PART B

Answer any SIX questions:

- **21.** Find 'k' if area of the triangle with vertices (2,-6), (5,4) and (k,4) is 35 square units.
- **22.** If x = 4t, $y = \frac{4}{t}$, then find $\frac{dy}{dx}$.
- **23**. The radius of an air bubble is increasing at the rate of 0.5 cm/s. At what rate is the volume of the bubble is increasing when the radius is 1 cm ?
- 24. Find the two numbers whose sum is 24 and product is as large as possible.
- **25**. Evaluate: $\int \frac{x^3 x^2 + x 1}{x 1} dx$.
- **26**. Find the general solution of the differential equation $\frac{dy}{dx} = \sqrt{1 x^2 + y^2 x^2 y^2}$.
- 27. Find the area of the parallelogram whose adjacent sides are the vectors
 - $3\hat{\imath} + \hat{\jmath} + 4\hat{k}$ and $\hat{\imath} \hat{\jmath} + \hat{k}$.

Answer any SIX questions:

- **28**. Find the angle between the pair of lines $\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4}$ and $\frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2}$.
- **29**. A couple has two children. Find the probability that both children are males, if it is known that at least one of the children is male.

PART C

6 × **3** = **18**

30. Let L be the set of all lines in a plane and R be the relation in L

defined as $R = \{(L_1, L_2) : L_1 \text{ is perpendicular to } L_2\}$. Show that R is symmetric but neither reflexive nor transitive.

6×2=12

31. Solve: $2 \tan^{-1}(\cos x) = \tan^{-1}(2\cos ex)$.

32. Find 'x', if
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0.$$

33. If $y = 3e^{2x} + 2e^{3x}$, prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$.

34. Find the intervals in which the function f is given by $f(x) = x^3 + \frac{1}{x^3}$ is

a) decreasing b) increasing.

35. Evaluate:
$$\int \frac{3x-2}{(x+1)^2(x+3)} dx$$
.

- **36**. Show that the position vector of the point R, which divides the line joining the points P and Q having the position vectors \vec{a} and \vec{b} internally in the ratio m:n is $\frac{m\vec{b}+n\vec{a}}{m+n}$.
- **37.** Derive the equation of the line in space passing through a given point and parallel to a given vector in the vector form.
- **38**. A man is known to speak truth 3 out of 5 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART D

Answer any FOUR questions:

4×**5=20**

39. Consider the function $f: A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

40. If
$$A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$, verify that $(AB)' = B'A'$.
41. Use the product $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{pmatrix}$ to solve the system of equations

$$x - y + 2z = 1$$
, $2y - 3z = 1$, $3x - 2y + 4z = 9$.

42. Find the values of a and b such that

$$f(x) = \begin{cases} 5 & \text{if } x \le 2\\ ax + b & \text{if } 2 < x < 10 \\ 21 & \text{if } x \ge 10 \end{cases}$$
 is continuous function.

43. Find the integral of $\frac{1}{\sqrt{x^2+a^2}}$ w.r.t x and hence evaluate $\int \frac{1}{\sqrt{x^2+121}} dx$.

- **44**. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ by integration method.
- **45**. Solve the differential equation $ydx (x + 2y^2)dy = 0$.

PART E

Answer the following questions:

46.Prove that
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$
 and hence evaluate $\int_{-1}^2 |x^3 - x| dx$.
OR

Solve the following problem graphically: Maximize and minimize Z = 3x + 2y, Subject to the constraints, $x + 2y \le 10$, $3x + y \le 15$, $x, y \ge 0$.

47. Show that the matrix $A = \begin{bmatrix} 5 & 6 \\ 4 & 3 \end{bmatrix}$ satisfies the equation $A^2 - 8A - 9I = O$, where

I is 2 × 2 identity matrix and O is 2 × 2 zero matrix. Using this equation, find A^{-1} .

OR

Differentiate $(sinx)^{x} + sin^{-1}x$ w.r.t.x.

PART F (For Visually Challenged Students only)

6. For the function f(x)=|x-1|, consider the following statements 1 and 2

Statement 1: The given function is differentiable at x=1

Statement 2: The given function is continuous at x=0

A) Statement 1 is true and Statement 2 is false

- B) Statement 1 is false and Statement 2 is true
- C) Both Statement 1 and 2 are true
- D) Both Statement 1 and 2 are false

4

6